Electronic systems and equipment such as computer systems, network interfaces, storage systems, and telecommunications equipment are commonly enclosed within a chassis, cabinet or housing for support, physical security, and efficient usage of space. Electronic equipment contained within the enclosure generates a significant amount of heat. Thermal damage may occur to the electronic equipment unless the heat is removed.
Compact electronic systems and devices, for example compact computer servers with a rack-mount 1U form factor, typically have very little space available for implementing a cooling solution. Conventional air-cooled heat sinks generally must be directly connected to the heat source. The footprint of the heat sink cannot be much larger than the heat source given the intrinsic heat spreading resistance of an aluminum or copper heat sink. Given the restriction on heat sink height dictated by the form factor and the practical limits on heat sink footprint, cooling capabilities are highly restricted.
In accordance with an embodiment of a liquid loop cooling system, a tubing encloses an interior bore or lumen within which a cooling fluid can circulate. A plurality of heat exchangers is coupled to the tubing and is configured within in a constrained space in conformance to space availability.
Embodiments of the invention relating to both structure and method of operation, may best be understood by referring to the following description and accompanying drawings.
A liquid loop cooling system uses multiple heat exchangers in the loop to exploit available open space in the chassis of an electronic device.
Referring to
Referring to
Referring to
In some embodiments, the cooling system 300 has multiple heat exchangers 304 with different shapes and/or sizes configured to conform to the sizes and shapes of localized spatial voids inside a system enclosure. The tubing 302 is typically configured with a plurality of angles and/or bends formed into the tubing 302 so that the plurality of heat exchangers 304 is positioned in conformance with space availability. For example, heat exchangers 304 can be distributed in the chassis interior according to positioning of interior voids between devices and components. The interior heat exchanges 304 can be arranged with nearby associated fans 316 that pressurize the down-stream portion of the chassis to drive warmed air out of the chassis through venting.
A pump 314 can be coupled to the tubing 302 and capable of pumping the cooling fluid through the tubing 302. In some cooling systems 300 the pump 314 can be omitted, for example systems in which the fluid is gravity-driven. The cooling system 300 also includes the cooling fluid, in some examples and ethylene glycol-based fluid although other suitable fluids may otherwise be used. The cooling fluid is contained within the tubing 302 and the tube segments 306 of the plurality of heat exchangers 304.
One or more fans 316 configured to drive air through the heat exchangers 304 can be included in the cooling system 300. In addition, one or more cold plates 318 may be coupled to the tubing 302. The cold plates 318 are generally attached to processors and other high-power components 320 to enable cooling of localized heat sources.
Referring to
The various heat exchangers 304 may have different shapes and/or sizes in an arrangement that improves or optimizes volume usage inside the chassis 332. Heat exchangers 304 may be added to the liquid loop to exploit otherwise unused volume within the electronics chassis 332, enabling usage of different sized fans 316 for heat exchangers 304 with different shapes.
Electronic system architectures such as server architectures with a compact form factor may include the liquid loop cooling apparatus 300 to accommodate increasing power and power density levels of components including microprocessors and associated electronics. In some embodiments, the liquid loop cooling system 300 may use the pump 314 to drive the cooling fluid through high pressure-drop channels of the cold plates 318 attached to processors and other high-power components. The pump 314, if included in the cooling system embodiment, also drives the cooling fluid along a potentially long and narrow-diameter tube that completes the loop between the cold plates 318, the heat exchanger 304, and the pump 314. Forced-air convection at the heat exchanger 304 removes heat from the loop.
In a compact electronic system 330, for example a compact server or computer system, cooling air is driven across the heat exchanger 304 using tube-axial or blower fans 316 in close proximity to the heat exchanger fins. Redundant fans 316 are typically used for electronic systems 330.
The liquid loop cooling system 300 and computer server 330 can be configured by determining space availability within a chassis 332 that contains components 320 of the computer server 330 and arranging the sizes and shapes of the multiple heat exchangers 304 to fit into the localized spatial voids within the chassis 332. The multiple heat exchangers 304 are connected using the tubing 302 that is formed and configured to position the heat exchangers 304 in the available space arrangement.
In some embodiments, the heat distribution within the chassis 332 containing components 320 of the electronic system 330 can be determined and the sizes and shapes of the multiple heat exchangers 304 can be selected based on heat distribution and the available space in combination. The multiple heat exchangers 304 can be then connected with the tubing 302 in a configuration that positions the heat exchangers 304 according to the heat distribution and available space arrangement.
The sizes and shapes of the fans 316 can also be selected based on the configuration of heat exchangers 304 and/or based on the heat distribution within the chassis 332. The selected fans 316 are positioned to appropriately drive air through the plurality of heat exchangers 304.
While the present disclosure describes various embodiments, these embodiments are to be understood as illustrative and do not limit the claim scope. Many variations, modifications, additions and improvements of the described embodiments are possible. For example, those having ordinary skill in the art will readily implement the steps necessary to provide the structures and methods disclosed herein, and will understand that the process parameters, materials, and dimensions are given by way of example only. The parameters, materials, and dimensions can be varied to achieve the desired structure as well as modifications, which are within the scope of the claims. Variations and modifications of the embodiments disclosed herein may also be made while remaining within the scope of the following claims. For example, although particular geometries of the heat exchanger are shown, other arrangements are possible including multiple-pass arrangements in which additional tube segments are added. Also, particular electronic system embodiments are illustrated, for example a computer server. In other embodiments, the external heat exchanger can be employed in other types of electronic systems such as communication systems, storage systems, entertainment systems, and the like.
Number | Name | Date | Kind |
---|---|---|---|
4072188 | Wilson et al. | Feb 1978 | A |
5020586 | Mansingh | Jun 1991 | A |
5131233 | Cray et al. | Jul 1992 | A |
5285347 | Fox et al. | Feb 1994 | A |
5293930 | Pitasi | Mar 1994 | A |
5339214 | Nelson | Aug 1994 | A |
5647216 | Garrett | Jul 1997 | A |
6038128 | Hood et al. | Mar 2000 | A |
6088223 | Diemunsch | Jul 2000 | A |
6313990 | Cheon | Nov 2001 | B1 |
6351381 | Bilski et al. | Feb 2002 | B1 |
6377453 | Belady | Apr 2002 | B1 |
6418018 | Lo | Jul 2002 | B1 |
6496386 | Warzecha et al. | Dec 2002 | B2 |
6504719 | Konstad et al. | Jan 2003 | B2 |
6510052 | Ishikawa et al. | Jan 2003 | B2 |
6529377 | Nelson et al. | Mar 2003 | B1 |
6536516 | Davies et al. | Mar 2003 | B2 |
6628520 | Patel et al. | Sep 2003 | B2 |
6637505 | Sasaki | Oct 2003 | B1 |
6926070 | Jenkins et al. | Aug 2005 | B2 |
20020117291 | Cheon | Aug 2002 | A1 |
20030051859 | Chesser et al. | Mar 2003 | A1 |
20030188538 | Chu et al. | Oct 2003 | A1 |
20040057205 | Chen et al. | Mar 2004 | A1 |
20050180105 | Matsushima et al. | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
4307993 | Oct 1992 | JP |
7321267 | Dec 1995 | JP |
Number | Date | Country | |
---|---|---|---|
20050231910 A1 | Oct 2005 | US |