The present invention relates to the masking and pretreating of plastic parts or composite components to protect adhesive bond lines from contamination during further processes such as spray painting.
In the automotive field there has been an increased desire to form exterior panels out of plastic or composite materials. The plastic or composite materials provide automakers with the ability to create aesthetic shapes and contours that are otherwise not available using other materials such as metal. In particular composite vehicle lift gates are created by connecting together an outer panel and an inner panel. The inner panel provides the vehicle component with strength while the outer panel is painted to have a desired show surface. Creating plastic components in this manner requires forming the components individually, finishing the components by spraying them with paint and then adhesively bonding them together. The inner and outer panels typically have what is referred to as an adhesive bond line, which are surfaces on the outer panel and inner panel that meet and are connected together using bonding techniques such as using adhesives. Since the outer panel is typically spray-painted, the overspray from painting can land on the adhesive bond lines, thereby contaminating that area, Then when the outer panel is bonded to the inner panel the adhesive adheres to the paint overspray and creates a weak spot, which is undesirable and can cause the inner panel and outer panel to separate. These problems are also consistent with other vehicle component applications where plastic components are painted and then bonded together. Other examples include running boards, door trim components, spoilers, fascias and vehicle tailgates.
In order to address the contamination issue occurring at the adhesive bond lines paint masking tape has been applied to the areas to prevent overspray contamination. The use of masking tape is a time-consuming process and is also difficult to apply, particularly where the bond line curves or changes direction. In the area where the bond line curves or changes direction, specially cut strips of masking tape are used which have been die-cut to the desired shape. This creates additional waste when applying the masking tape to the part. It is therefore desirable to create a method of quickly applying a masking along the adhesive bond line on the part in a manner that will accommodate the shape of the adhesive bond line as well as cut down on the amount of time needed to apply the masking tape to the part prior to painting. It is also desirable to cut down on the amount of waste material created by using die-cut masking tape.
The present invention is directed to a method of masking and pretreating a plastic part prior to being spray-painted. The method includes providing a plastic part formed of a composite material. In particular the part can be formed of thermoplastic olefin (TPO), acrylonitrile butadiene styrene (ABS) or other suitable materials. The plastic part has one or more adhesive bond lines which are defined as regions where the plastic part is adhesively bonded with other components during assembly. In addition to providing the plastic part the method includes providing a robotic arm that has an applicator capable of applying a liquid mask to the one or more bond lines on the plastic part. Also connected to the robotic arm is an ultraviolet light source. For holding the plastic part there is a holder that has a work surface for securely holding the plastic part relative to the robotic arm. The holder includes clamps that assist in holding the plastic part.
The method begins by placing the plastic part onto the holder in securing the plastic part with clamps that are part of the holder. Next a step of moving the robotic arm toward the holder and into position near the one or more bond lines. Then the robotic arm performs a first pass by moving the robotic arm and applying a liquid mask from the applicator to the one or more bond lines, while moving the robotic arm along a complete surface of the one or more bond lines. Then the method involves stopping the flow of liquid mask from the applicator once the one or more bond lines have been covered with the liquid mask. Next a step of curing occurs where the liquid mask is cured by moving the ultraviolet light source to a predetermined distance from the liquid mask. Then activating the ultraviolet light source on the robotic arm and performing a second pass of the robotic arm by moving the ultraviolet light source along the complete surface of the one or more bond lines, then turning off the ultraviolet light source upon completing the second pass. The next step involves moving the robotic arm away from the holder and removing the plastic part, which now has a cured mask on the one or more bond lines so that the plastic part can be painted without worry of having one or more bond lines contaminated with paint overspray.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
The outer panel 10 is painted prior to being bonded to the inner panel 11. During the painting process it is important to protect the bond line 12, 12′ shown in an inside surface of the outer panel 10, from being contaminated by paint overspray. Protecting the bond line 12, 12′ is accomplished by practicing the method of masking and pretreating the plastic part prior to being spray painted and then removing the making after painting, which will is shown in
Referring now to
As shown in
The robotic arm 14 also has an ultraviolet light source 15 mounted thereon that is used to cure the liquid mask 18, 18′ into a cured mask 21 (shown in
The method of masking and pretreating the plastic part prior to being spray painted as shown in
In an alternate embodiment of the invention a different liquid mask material is used along with a heat cured method. The liquid mask material is a poly vinyl acetate (PVA) dispersed in an aqueous solution. It is also within the scope of this invention for the PVA to be dispersed in an organic solution depending on a particular application. Examples of PVAs include Groco 2220 or Groco 2223 produced by Groco Specialty Coatings Company of Dallas Tex. Another exemplary material is Kollicoate SR 30 D produced by BASF North America Inc. In addition to using PVA it is also within the scope of this invention to use liquid vinyl-acetate-acrylic copolymer (VAA) dispersed in an aqueous solution. It is also within the scope of this invention for the VAA to be dispersed in an organic solution depending on a particular application. The PVA or VAA is optionally mixed with thickening agents to achieve a desired viscosity ranging from 7000 centipoise to 29,000 centipoise generally, 13,000 centipoise to 18,000 centipoise specifically and about 15,000 centipoise ideally. An example of a suitable thickening agent, includes but is not limited to poly(ethylene oxide). The liquid PCA or VAA material is applied using an applicator on the tip of the robotic arm. The applicator can be a pneumatic sprayers, roller or brush depending on the application. In one particular application the applicator is dipped into a water bath between applications to prevent the liquid mask from curing and clogging the applicator.
The method of applying the liquid mask is the same as the first pass described above. However, instead of curing the liquid mask with an ultraviolet light source the liquid mask is cured using a heat source. After the liquid mask is applied, the plastic part is removed from the holder and the heat source is applied to the plastic part to cure the liquid mask. The heat source in one embodiment of the invention is an oven that heats the plastic part and liquid mask at a temperature of about 90° C. for ten minutes. However it is within the scope of the invention for different temperatures to be used and different time durations to be used depending on the size of the part, thickness and composition of the liquid mask. It is also within the scope of this invention for the part to stay on the holder and be cured using infrared lights. The end result is that the one or more adhesive bond lines on the plastic part are covered with a cured mask that will stay on until after the part has been painted. The cured mask can then be removed and the plastic part can be bonded along the adhesive bond lines without the presence of any contamination.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 62/615,090, filed Jan. 9, 2018.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US19/12892 | 1/9/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62615090 | Jan 2018 | US |