Aerosolization systems provide effective delivery for a variety of medicaments, such as insulin and asthma medications. Such systems deliver the medicaments directly to a user's respiratory system by aerosolizing a metered dose of the medicament in liquid form. The user then inhales the aerosolized medicament directly into the respiratory system, enabling faster treatment of various medical conditions.
Delivery of consistent and properly metered doses of aerosolized medicament to a user is very important. Current aerosolization systems often provide inconsistent doses by having some of the medicament remain in a reservoir in liquid form after the aerosolization process. Additionally, the aerosolized medicament is often delivered with too great or too little force for substantially all of the metered dose to properly enter the user's respiratory system. A further problem of current aerosolization systems is a tendency for the medicament to become contaminated by the user or other sources. Contamination of the medicament is particularly problematic since some or all of the contaminated medicament is thereafter delivered directly to the user's respiratory system. Embodiments of the invention may provide solutions to these and other problems.
In one embodiment, an aerosolization device for delivering aerosolized medicament to a user is provided. The aerosolization device may include a conduit, an aerosol generator in communication with the conduit, a fluid receiving chamber in communication with the aerosol generator, a restrictor disposed within the conduit, and an indicator mechanism. The conduit may have an inner wall and a mouthpiece end by which a user may cause an inspiratory flow through the conduit. The aerosol generator may include a vibratable mesh where the vibratable mesh may be laterally offset from the inner wall. The fluid receiving chamber may receive a volume of a liquid medicament. At least a portion of the fluid receiving chamber may be tapered such that substantially all of the liquid medicament may be directed onto the vibratable mesh for aerosolization. The restrictor may define a plurality of apertures. The plurality of apertures may be configured to provide an increase in pressure differential that varies with an inspiratory flow rate within the conduit and to provide a relatively laminar flow downstream of the restrictor compared to upstream of the restrictor plate. The indicator mechanism may indicate to a user a state of one or more flow parameters relative to a predefined desired range. The aerosol generator may be configured to aerosolize at least a portion of the volume of the liquid medicament only when the one or more flow parameters of the inspiratory flow are within the desired range.
In another embodiment, a different aerosolization device for delivering aerosolized medicament to a user is provided. The aerosolization device may include a conduit, an aerosol generator in communication with the conduit, and a fluid receiving chamber in communication with the aerosol generator. The conduit may be attachable to a housing. The conduit may have an inner wall and a mouthpiece end by which a user may cause an inspiratory flow through the conduit. The aerosol generator may include a vibratable mesh. The vibratable mesh may be laterally offset from the inner wall by about 1 millimeter (mm) and 6 mm. The aerosol generator may receive a volume of a liquid medicament and at least a portion of the fluid receiving chamber may be tapered such that substantially all of the liquid medicament may be directed onto the vibratable mesh for aerosolization. The aerosol generator may be configured to aerosolize at least a portion of the volume of liquid medicament only when one or more flow parameters of an inspiratory flow are within a predefined desired range.
In another embodiment, a method of delivering an aerosolized medicament to a user's respiratory system is provided. The method may include sensing a state of a flow parameter of an inspiratory flow within a conduit. The conduit may have an inner wall and a mouthpiece end by which a user may cause the inspiratory flow within the conduit. The method may also include vibrating a mesh of an aerosol generator in communication with the conduit to aerosolize a volume of a liquid medicament to produce a plume of aerosolized medicament within the conduit when the state of the flow parameter is within a predefined desired range. The mesh may be laterally offset from the inner wall. The plume of aerosolized medicament may be carried toward the mouthpiece end of the conduit.
The present invention is described in conjunction with the appended figures:
In the appended figures, similar components and/or features may have the same numerical reference label. Further, various components of the same type may be distinguished by following the reference label by a letter that distinguishes among the similar components and/or features. If only the first numerical reference label is used in the specification, the description is applicable to any one of the similar components and/or features having the same first numerical reference label irrespective of the letter suffix.
The ensuing description provides exemplary embodiments only, and is not intended to limit the scope, applicability or configuration of the invention. Rather, the ensuing description of exemplary embodiments will provide those skilled in the art with an enabling description for implementing various embodiments of the invention. It will be understood that various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the invention as set forth in the appended claims. For example, any detail discussed with regard to one embodiment may or may not be present in variations of that embodiment, and/or in other embodiments discussed herein.
Embodiments of an aerosolization device for assisting in proper delivery of an uncontaminated dose of aerosolized medication to a user's respiratory system are described herein. In many embodiments, liquid medicament may be provided to an aerosolization device in a metered dose. The liquid medicament may be dispensed to an aerosol generator. In some embodiments, the liquid medicament may be provided via a chamber or reservoir that funnels the liquid medicament into the aerosol generator where the liquid medicament is aerosolized for delivery into a user's respiratory system. In some embodiments, a separate container holding the liquid medicament may couple with the aerosolization device to provide the liquid medicament thereto. The aerosol generator may be configured to aerosolize at least a portion of the volume of the liquid medicament only when the one or more flow parameters of the inspiratory flow are within a desired range.
In some embodiments, the aerosolization device may include a conduit, an aerosol generator in communication with the conduit, a fluid receiving chamber in communication with the aerosol generator, a restrictor plate disposed within the conduit, and an indicator mechanism. In many embodiments, some or all of these components are disposed within a housing. In some embodiments, the conduit and/or the aerosol generator may be removably coupled with or received within the housing. By providing a removable conduit and/or aerosol generator, the aerosolization device may be easily cleaned, thus preventing contamination and buildup of pathogens and/or other contaminants. The removal of the components also helps in drying the components. As the aerosolization device is quickly and easily cleaned and dried in this manner, no standing liquid remains that could lead waterborne bacteria to proliferate.
In some embodiments, the conduit may include an inner wall and a mouthpiece end by which a user may cause an inspiratory flow through the conduit. A user may inhale through the mouthpiece to create the inspiratory flow of air that may transport an aerosolized medicament to the user. In some embodiments, the mouthpiece end of the conduit may deliver the aerosolized medicament to the user at an angle relative to a horizontal plane. Such a delivery angle may be selected based on the dosage and type of medicament to be delivered to the user's respiratory to ensure that a substantial portion of the aerosolized medicament is delivered to the respiratory system without becoming stuck in the user's mouth, throat, and/or other area.
In many embodiments, a sensor is used to determine when a parameter of the inspiratory flow is within a predefined desired or operating range of the aerosolization device and/or the aerosol generator. For example, a flow sensor or pressure transducer may be used to determine a flow rate or pressure differential within the conduit. Other types of sensors and flow parameters may also be employed/measured. For example, the flow parameter can be an inspiratory flow rate, inspiratory pressure, inspiration time, and the like detected by a flow sensor, timer, pressure transducer, or other sensing mechanism. A processing unit coupled with the sensor may compare the sensed value to a stored desired range. In some embodiments, the desired range of a flow parameter for a particular medicament delivery may correspond to the operating range of the aerosol generator. In other embodiments, the desired range of a flow parameter may be narrower or broader than the operating range of the aerosol generator.
In some embodiments, the aerosol generator may include a vibratable mesh that is in fluid communication with the conduit. The vibratable mesh may be domed shaped and be vibrated by an annular piezoelectric element (not shown) or other electro-mechanical resonating device that circumscribes the vibratable mesh. The vibratable mesh is vibrated when one or more flow parameters are within an operating range of the aerosol generator. For example, a flow sensor and/or pressure transducer in communication with the conduit may detect that an inspiratory flow rate and/or a pressure differential within the conduit is within an operating range of the aerosol generator. A processor may control a circuit to provide an electric current to the piezoelectric element to vibrate the mesh. Typically, the vibratable mesh will be vibrated at a frequency in the range from about 50 kHz to about 150 kHz to aerosolize the dose of liquid medicament.
The vibratable mesh may be disposed at a distance from the inner wall of the conduit such that a lower surface of the vibratable mesh is offset from the most proximate wall of the conduit. This offset ensures that substantially all of any pathogens or other contaminants that are introduced to the conduit will be deposited onto surfaces other than the vibratable mesh, thereby maintaining a clean and/or sterile source of aerosolized medicament. Such pathogens and/or contaminants may be introduced to the aerosolization system by the user via a cough, sneeze, or other action or by an environmental source.
In some embodiments, the vibratable mesh may define a plurality of apertures. The plurality of apertures may include more than 500 apertures. In some embodiments, the plurality of apertures may include more than 1000 apertures. Each aperture may have an exit diameter ranging from about 1 μm to about 8 μm, preferably from about 3 μm to about 6 μm, and in some cases around 4 μm. Due to the combination of small aperture size and being offset from the conduit, the vibratable mesh and reservoir can stay substantially clean to produce an uncontaminated plume of aerosolized medicament.
In some embodiments, the fluid receiving chamber may receive a volume of a liquid medicament to be aerosolized. Any medicament that is not deposited directly onto the vibratable mesh can be funneled or otherwise directed onto the vibratable mesh by tapered walls of the fluid receiving chamber such that substantially all of the liquid medicament may be directed onto the vibratable mesh for aerosolization. The fluid receiving chamber can be configured to have not more than 15 μl of the liquid medicament remain within the fluid receiving chamber after aerosolization. By dispensing the entire dose or substantially all of the dose, the vibratable mesh is kept essentially free of liquid from one dose to the next. Any remaining liquid will air dry between doses. In some instances, the time between doses may be between about 45 minutes and 2 hours. In this way, it is thereby possible to avoid contact between liquid and ambient air during periods of non-use between successive uses. For pharmaceutical preparations this is particularly important since it may obviate the need for the use of preservatives in the liquid and avoids evaporative losses. For example, various preservative free insulin formulations that may be used include those described in U.S. application Ser. No. 13/004,662, entitled “Preservative Free Insulin Formulations and Systems and Methods for Aerosolizing,” which is hereby incorporated by reference in its entirety.
In many embodiments, the inhaled air may pass through a restrictor array within the conduit. In some embodiments, the restrictor array may be a restrictor plate that has a plurality of apertures passing therethrough. As air passes through the apertures, the apertures provide an increase in pressure differential that varies according to the inspiratory flow rate within the conduit. The apertures also provide a relatively laminar flow downstream of the restrictor plate compared to upstream of the restrictor plate. In many embodiments, the apertures are disposed along an outer periphery of the restrictor plate. In some embodiments, the vibratable mesh may be located downstream of the restrictor plate or other restrictor array and produce a plume of aerosolized medicament within the relatively laminar flow produced by the restrictor array. In some embodiments, the restrictor array may include multiple restrictor plates in series.
The indicator mechanism may indicate to a user a state of a parameter of the inspiratory flow relative to a predefined desired range. For example, the indicator may be a light, analog/digital display or readout, speaker, vibration-generating device, and/or other feature that alerts a user as to the state of the parameter. In some embodiments, the state of the parameter can be an inspiratory flow rate, inspiratory pressure, inspiration time, and the like detected by a flow sensor, timer, pressure transducer, or other sensing mechanism. The indicator may inform the user if they are within or outside of the desired range for the parameter.
In some embodiments, an ‘end of dose’ indication can be provided to a user when an entire dose of the medicament has been aerosolized. Such an indication may be provided upon a sensor, such as a load or flow sensor, detects that substantially all of the medicament has been aerosolized. Another indication may also be provided to the user informing them of when the liquid medicament is actually being aerosolized by the activated vibratable mesh. Such indications can be provided by the indicator mechanism described above, such as by providing a distinguishable indication from the indication of the state of the flow parameter. For example, the state of the flow parameter may be indicated by a green light and the indication of the end of dose may be provided by a blue light. In other embodiments, the end of dose indication and/or the aerosolization indication may be provided by one or more separate indicator mechanisms.
In some embodiments, the aerosolization device may further include an input device for receiving and setting the predefined desired range of the parameter of the inspiratory flow. For example, the input device may include a barcode scanner, radio frequency identification (RFID) reader, keyboard, or any other input device that can receive an input from the user regarding one or more parameters of the inspiratory flow, such as a desired flow rate, inspiratory pressure, or inspiration time. In some embodiments, the desired flow rate may be visually or otherwise encoded on the medicament delivery container, and read by the aerosolization device therefrom.
In some embodiments, the parameter of the inspiratory flow may include the inspiratory flow rate within the conduit. The predefined desired range of the inspiratory flow rate may be between about 5 and 14 liters per minute (L/min). In some embodiments, the parameter of the inspiratory flow may include the inspiration time. The predefined desired range of the inspiration time may be between about 5 and 26 seconds. In some embodiments, multiple parameters may be measured and referred to. For example, in one embodiment, a certain amount of inspiration time of a minimum inspiratory flow may be necessary.
In some embodiments, the aerosolization system may include electronic elements including, but not limited to, a processing element and a memory unit. The processing element may be used to control the actuation of the aerosol generator, indicator mechanisms, and input devices, as well as any sensors such as flow sensors and pressure transducers. The memory unit may be configured to store settings and ranges set by the input device for the parameters of the indicator mechanism and/or aerosol generator. The memory unit may also be configured to store data related to past aerosolization sessions, as well as information provided by medicament delivery vessels attached thereto.
Turning now to the drawings,
In some embodiments, conduit 102 may include a mouthpiece end 110 through which a user may inhale to produce an inspiratory flow to deliver aerosolized medicament to the user's respiratory system. As seen in
Exemplary aerosol generators that can be used are also described in U.S. Pat. Nos. 5,164,740; 6,629,646; 6,926,208; 7,108,197; 5,938,117; 6,540,153; 6,540,154; 7,040,549; 6,921,020; 7,083,112; 7,628,339; 5,586,550; 5,758,637; 6,085,740; 6,467,476; 6,640,804; 7,174,888; 6,014,970; 6,205,999; 6,755,189; 6,427,682; 6,814,071; 7,066,398; 6,978,941; 7,100,600; 7,032,590; 7,195,011, incorporated herein by reference. These references describe exemplary aerosol generators, ways to manufacture such aerosol generators and ways to supply liquid to aerosol generators, and are incorporated by reference for at least these features.
In some embodiments, the vibratable mesh may be disposed at a distance 122 from the inner wall 120 of the conduit 102. For example, vibratable mesh 112 may be disposed at a distance 122 between about 1 mm and 6 mm from the inner wall 120. The vibratable mesh 112 may define a plurality of apertures from which the aerosolized medicament is dispersed into the conduit 102. In some embodiments, the plurality of apertures may include more than 500 apertures, each aperture having a diameter between about 1 and 8 μm. In other embodiments, the plurality of apertures may include more than 1000 apertures. The small size of the apertures in conjunction with the vibratable mesh 112 being offset from the conduit 102 helps ensure that the aerosolized medicament is uncontaminated. The vibratable mesh 112 may be dome shaped and be vibrated by an annular piezoelectric element (not shown) that circumscribes the apertures. The diameter of the vibratable mesh 112 may be in the range from about 5 mm to about 8 mm. The vibratable mesh 112 may also have a thickness in the range from about 50 microns to about 70 microns. Typically, the vibratable mesh 112 will be vibrated at a frequency in the range from about 50 kHz to about 150 kHz to aerosolize the dose of liquid medicament.
In some embodiments, the conduit 102 may include an opening 134 that provides access to the fluid receiving chamber 114. The opening 134 may have a diameter that is smaller than a diameter 136 of a top of the fluid receiving chamber 114. Such geometry ensures that sides of a tip of a dispenser of liquid medicament cannot contact the walls of the fluid receiving chamber 114, and also provides a contact point for a shoulder of a dispensing mechanism to prevent the dispenser tip from contacting the vibratable mesh 112. By preventing such contact, the tip cannot contact a volume of liquid medicament within the fluid receiving chamber 114 and pull some of the volume out of the fluid receiving chamber 114 and/or contaminate the liquid medicament.
In some embodiments, the aerosolization device 100 include a processing unit or integrated circuit (IC) 138 that controls the function of or runs computer code to control other electronic components of the aerosolization device 100. Aerosolization device 100, including IC 138, may be powered by batteries 140 that are coupled with IC 138. IC 138 may be electrically coupled with electronic components, such as any sensors, indicating mechanisms 106 and/or a piezoelectric element of aerosol generator 104. IC 138 can control the actuation of the indicator mechanisms and/or the aerosol generator 104 based on information received from any sensors, such as flow sensors or pressure transducers in fluid communication with the conduit 102. In some embodiments, IC 138 may be electrically coupled with the conduit 102 and/or the aerosol generator 104 using a plug 124. The conduit 102 and/or aerosol generator 104 may be removable from housing 108. The conduit 102 and/or aerosol generator 104 may be inserted into housing 108 and interfaced with plug 124 to supply power to and control actuation of the aerosol generator 104 based on measurements from sensors in fluid communication with conduit 102.
In some embodiments, optimal pulmonary delivery of medicaments such as liquid insulin occurs at specified flow rates and inspiratory times. For example, an optimal flow rate may be between about 5 and 14 L/min, or more often between about 7 and 14 L/min. Flow rates that are too high or too low can result in losses in the amount of aerosolized medicament delivered to the proper locations of a user's respiratory system. An optimal inspiratory time may be between 6 and 24 seconds. Breathing indicator 116 can be used to direct a user to maintain an inhalation within these parameters.
The breathing indicator 116 may produce a different colored light as an “end of dose” indictor to indicate that substantially all of the dose of medicament has been delivered. For example, a blue light may be emitted for a period of time, such as between about 1 and 10 seconds to alert the user that substantially all of the dose has been aerosolized and inhaled. Delivery of the entire dose may be predefined as when at least about 95% of the dose is delivered, more preferably 98% and most preferably when more than 99% of the dose is aerosolized. To receive the dose, the user may take several inhalations or a single inhalation depending on the volume of liquid drug to be delivered and the user's breathing capacity. Each inhalation may be monitored by the device, with feedback provided to the user via indicator 116, to insure proper delivery to the lungs. In some embodiments, the operation of the end of dose indicator may be delayed for a period, such as up to about 5 seconds after substantially all of the dose has been delivered, thus providing a “chaser” of air into the lungs. This chaser may serve to clear the upper airway and maximize the amount of the dose that is transported to the user's lungs.
In some embodiments, a cover 126 may be coupled with the fluid receiving chamber 114 and/or housing 108 to seal the fluid receiving chamber 114 and the vibratable mesh 112 when in a closed position. The cover 126 operates to prevent pathogens or other contaminants from entering the fluid receiving chamber 114. The cover 126 may operate to expose the fluid receiving chamber 114 and vibratable mesh 112 when in an open position. Cover 126 may include a sliding mechanism (not shown) such that the cover 126 may be moved from an open position to a closed position and back by sliding the cover 126 within or on a track. In some embodiments, the cover 126 is hinged such that the cover 126 may be flipped open and closed. A latching mechanism (not shown) may be included to maintain cover 126 in a closed position.
In some embodiments, one or both of conduit 102 and aerosol generator 104 are removably coupled with housing 108.
In some embodiments, the method may further include providing an indication using an indicator mechanism coupled with the conduit of the state of the flow parameter relative to the predefined desired range at block 1006. In some embodiments, the method may further include providing an indication that the liquid medicament is ready to be aerosolized and providing an indication that substantially all of the liquid medicament has been aerosolized. The method may optionally include receiving an input via an input device of the aerosolization device to set the predefined desired range of the flow parameter. In some embodiments, the method may further include moving a cover that is coupled with the conduit to expose the chamber and vibratable mesh for receiving the liquid medicament. In some embodiments, the method may optionally include receiving a tip of a dispenser within the aerosol generator and receiving a volume of liquid medicament from the dispenser on the mesh. The tip may be maintained a distance above the mesh such that an outer surface of the tip does not contact the received volume of liquid medicament. In some embodiments, the method may also include attaching the conduit and aerosol generator to a housing. For example, the conduit and aerosol generator may be slid into and secured within an opening the housing.
Prevention of contamination due to a user coughing or sneezing into the conduit using an aerosolization device having a vibratable mesh that is laterally offset from an inner wall of the conduit as described in
It will be apparent to those skilled in the art that various modifications and variations can be made in the method and system of the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention include modifications and variations that are within the scope of the appended claims and their equivalents.
This application claims the benefit of U.S. Provisional Application No. 62/019,781, filed on Jul. 1, 2014, entitled “LIQUID NEBULIZATION SYSTEMS AND METHODS,” the entire disclosure of which is hereby incorporated by reference, for all purposes, as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
3789843 | Armstrong et al. | Feb 1974 | A |
4564129 | Urban et al. | Jan 1986 | A |
5060642 | Gilman | Oct 1991 | A |
5164740 | Ivri | Nov 1992 | A |
5320094 | Laube et al. | Jun 1994 | A |
5333106 | Lanpher et al. | Jul 1994 | A |
5347998 | Hodson et al. | Sep 1994 | A |
5363842 | Mishelevich et al. | Nov 1994 | A |
5364838 | Rubsamen | Nov 1994 | A |
5479920 | Piper et al. | Jan 1996 | A |
5515842 | Ramseyer et al. | May 1996 | A |
5544646 | Lloyd | Aug 1996 | A |
5586550 | Ivri et al. | Dec 1996 | A |
5655520 | Howe et al. | Aug 1997 | A |
5672581 | Rubsamen et al. | Sep 1997 | A |
5743250 | Gonda | Apr 1998 | A |
5758637 | Ivri | Jun 1998 | A |
5884620 | Gonda et al. | Mar 1999 | A |
5915378 | Lloyd et al. | Jun 1999 | A |
5938117 | Ivri | Aug 1999 | A |
5941240 | Gonda et al. | Aug 1999 | A |
6014970 | Ivri | Jan 2000 | A |
6085740 | Ivri et al. | Jul 2000 | A |
6085753 | Gonda et al. | Jul 2000 | A |
6098615 | Lloyd et al. | Aug 2000 | A |
6109261 | Clarke et al. | Aug 2000 | A |
6131567 | Gonda et al. | Oct 2000 | A |
6205999 | Ivri et al. | Mar 2001 | B1 |
6312665 | Modi | Nov 2001 | B1 |
6408854 | Gonda et al. | Jun 2002 | B1 |
6427682 | Klimowicz et al. | Aug 2002 | B1 |
6467476 | Ivri et al. | Oct 2002 | B1 |
6534701 | Isozaki | Mar 2003 | B2 |
6540153 | Ivri | Apr 2003 | B1 |
6540154 | Ivri et al. | Apr 2003 | B1 |
6629646 | Ivri | Oct 2003 | B1 |
6640804 | Ivri et al. | Nov 2003 | B2 |
6647987 | Gonda et al. | Nov 2003 | B2 |
6655379 | Clark | Dec 2003 | B2 |
6681762 | Scheuch et al. | Jan 2004 | B1 |
6688304 | Gonda et al. | Feb 2004 | B2 |
6755189 | Ivri et al. | Jun 2004 | B2 |
6814071 | Klimowicz et al. | Nov 2004 | B2 |
6921020 | Ivri | Jul 2005 | B2 |
6926208 | Ivri | Aug 2005 | B2 |
6978941 | Litherland et al. | Dec 2005 | B2 |
7028686 | Gonda et al. | Apr 2006 | B2 |
7032590 | Loeffler et al. | Apr 2006 | B2 |
7040549 | Ivri et al. | May 2006 | B2 |
7066398 | Borland et al. | Jun 2006 | B2 |
7083112 | Ivri | Aug 2006 | B2 |
7100600 | Loeffler et al. | Sep 2006 | B2 |
7108197 | Ivri | Sep 2006 | B2 |
7131440 | Sonntag | Nov 2006 | B2 |
7174888 | Ivri et al. | Feb 2007 | B2 |
7185651 | Alston et al. | Mar 2007 | B2 |
7195011 | Loeffler et al. | Mar 2007 | B2 |
7219664 | Ruckdeschel et al. | May 2007 | B2 |
7364571 | Schinazi et al. | Apr 2008 | B2 |
7448375 | Gonda et al. | Nov 2008 | B2 |
7451760 | Denyer et al. | Nov 2008 | B2 |
7600512 | Lee et al. | Oct 2009 | B2 |
7628339 | Ivri et al. | Dec 2009 | B2 |
7683029 | Hindle et al. | Mar 2010 | B2 |
7748382 | Denyer et al. | Jul 2010 | B2 |
7819115 | Sexton et al. | Oct 2010 | B2 |
7891358 | Kolb et al. | Feb 2011 | B2 |
7913688 | Cross et al. | Mar 2011 | B2 |
8082918 | Jansen et al. | Dec 2011 | B2 |
8950394 | Patton et al. | Feb 2015 | B2 |
9004061 | Patton et al. | Apr 2015 | B2 |
20010037805 | Gonda et al. | Nov 2001 | A1 |
20010039948 | Sexton et al. | Nov 2001 | A1 |
20030019493 | Narayan et al. | Jan 2003 | A1 |
20030047620 | Litherland et al. | Mar 2003 | A1 |
20040134494 | Papania et al. | Jul 2004 | A1 |
20050011514 | Power | Jan 2005 | A1 |
20060239930 | Lamche et al. | Oct 2006 | A1 |
20070113841 | Fuchs | May 2007 | A1 |
20070163572 | Addington et al. | Jul 2007 | A1 |
20080029083 | Masada et al. | Feb 2008 | A1 |
20080060641 | Smith et al. | Mar 2008 | A1 |
20080233053 | Gross et al. | Sep 2008 | A1 |
20090056708 | Stenzler et al. | Mar 2009 | A1 |
20090157037 | Iyer et al. | Jun 2009 | A1 |
20090301472 | Kim et al. | Dec 2009 | A1 |
20100075001 | Succar et al. | Mar 2010 | A1 |
20100078015 | Imran | Apr 2010 | A1 |
20100089395 | Power | Apr 2010 | A1 |
20100204602 | Addington | Aug 2010 | A1 |
20100319686 | Schennum | Dec 2010 | A1 |
20110114089 | Andersen et al. | May 2011 | A1 |
20110168170 | Patton et al. | Jul 2011 | A1 |
20110168172 | Patton et al. | Jul 2011 | A1 |
20110226242 | Von Hollen et al. | Sep 2011 | A1 |
20120048268 | Hyun et al. | Mar 2012 | A1 |
20120291776 | Van Der Mark | Nov 2012 | A1 |
20130269684 | Patton | Oct 2013 | A1 |
20130269694 | Patton et al. | Oct 2013 | A1 |
20140041653 | Patton et al. | Feb 2014 | A1 |
20140116426 | Mullinger | May 2014 | A1 |
Number | Date | Country |
---|---|---|
2283887 | Feb 2011 | EP |
2724741 | Apr 2014 | EP |
2033816 | Apr 1995 | RU |
2232023 | Jul 2004 | RU |
2427392 | Aug 2011 | RU |
9111050 | Jul 1992 | WO |
199822290 | May 1998 | WO |
2003030829 | Apr 2003 | WO |
2004028608 | Apr 2004 | WO |
2006062449 | Jun 2006 | WO |
2007047948 | Apr 2007 | WO |
2008058941 | May 2008 | WO |
Entry |
---|
Partial Supplemental European Search Report dated Feb. 12, 2018 for European Patent Application No. 15814881.4; 9 pages. |
International Patent Application No. PCT/US2015/037505, “International Search Report and Written Opinion” dated Sep. 29, 2015, 10 pages. |
International Patent Application No. PCT/US2015/037505, “International Preliminary Report on Patentability” dated Jan. 12, 2017, 8 pages. |
EP 15814884.1 received an Extended European Search Report, dated Jun. 14, 2018, 9 pages. |
RU2017103012 received an Office Action dated Dec. 5, 2018, 10 pages. |
CN Application No. CN201580046705.X received an Office Action dated Aug. 20, 2018, 6 pages. |
Brazil Application No. BR112016030883-2 received an Office Action dated May 5, 2020, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20160001019 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
62019781 | Jul 2014 | US |