This non-provisional patent application claims priority under 35 U.S.C. § 119(a) from Patent Application No. 201510549648.9 filed in The People's Republic of China on 31 Aug. 2015.
The present disclosure relates to liquid pumps.
A liquid pump has an impeller and a motor driving the impeller. In home appliances such as washing machines or dish washers, liquid pumps are used to pressurize and deliver water so as to introduce clean water into the appliances for cleaning the clothes or dishes in the appliances, and finally discharge the wash water out of the appliances. In a conventional existing liquid pump, when the liquid flows, especially when discharged out, the liquid probably flows to the area of windings of the motor along a housing of the liquid pump, causing short-circuit of the windings. Therefore, the existing liquid pump structure has potential electrical safety hazard.
Thus, there is a desire for a liquid pump which can effectively isolate the stator and ensures the electrical safety.
A liquid pump includes a housing, a motor fixed in the housing, and an impeller for being driven by the motor. The motor includes a stator and a rotor rotatable relative to the stator. The impeller is coupled to the rotor of the motor. The housing includes a guide wall surrounding the stator, and a guide face extending outwardly from an outer surface of the guide wall to guide a liquid flowing to the guide wall to flow in a direction away from the stator.
Preferably, the guide wall is C-shaped. A middle of the guide wall extends downwardly in a tangential direction to form the guide face. A bottom end of the guide face is spaced apart from a lower portion of the guide wall. The liquid flows downwardly along an upper portion of the guide wall and continuingly flows to be discharged to an outside along the guide face.
In comparison with the prior art, the housing of the single phase liquid pump of the present disclosure includes the guide wall. The guide wall includes the guide face extending downwardly. The water flows downwardly under the guide of the guide face, which is spaced apart from the lower portion of the guide wall and is discharged to the outside away from the stator, thus ensuring the electrical safety of the liquid pump.
It should be noted that the figures are not drawn to scale and that elements of similar structures or functions are generally represented by like reference numerals for illustrative purposes throughout the figures. It also should be noted that the figures are only intended to facilitate the description of the preferred embodiments. The figures do not illustrate every aspect of the described embodiments and do not limit the scope of the present disclosure.
Referring to
The housing 10 isolates the stator from the rotor and impeller 14, preventing water from entering the stator to cause short-circuit of the windings. The housing 10 includes a guide wall 18 for guiding water to be discharged out, and a sleeve 20 formed between the stator and the rotor. The sleeve 20 is a cylindrical structure in which the rotor is received. The sleeve 20 and the guide wall 18 define therebetween a space for receiving the stator. In this embodiment, the magnetic poles 16 of the stator are fixedly attached around the sleeve 20. An outer wall surface of the sleeve 20 is formed with a positioning portion 22 for positioning and mounting the stator.
Preferably, there are two positioning portions 22 extending along an axial direction of the sleeve 20. Each positioning portion 22 engages with one magnetic pole 16 of the stator and includes a first rib 24 and a second rib 26 perpendicular to the first rib 24. The two first ribs 24 are spacingly disposed in parallel with each other. A distance between outer wall surfaces of the two first ribs 24 is substantially equal to a spacing between the two magnetic poles 16. The two second ribs 26 are coplanar. Each second rib 26 extends perpendicularly from the outer wall surface of one corresponding first rib 24 in a direction away from the other first rib 24. Preferably, a connecting area between the second rib 26 and the first rib 24 is offset from a connecting area between the first rib 24 and the sleeve 20 by a distance. The positioning portion 22 has an overall cross-section in the form of the letter “T”. A small space is formed between the first rib 24, the second rib 26 of each positioning portion 22 and the outer wall surface of the sleeve 20
In assembly, the two magnetic poles 16 of the stator are placed at outer sides of the two positioning portion 22 and are attached around the outer wall surface of the sleeve 20 along the axial direction. The axially-extending positioning portion 22 can guide the relative movement between the magnetic poles 16 and the sleeve 20 for quick assembly. After assembled, distal ends of the two magnetic poles 16 are locked in the small spaces between the two positioning portions 22 and the outer wall surface of the sleeve 20, respectively. The first rib 24 limits the position of the magnetic pole 16 in a tangential direction, and the second rib 26 limits the position of the magnetic pole 16 in the radial direction, such that rotation or wobble of the magnetic poles 16 of the stator after assembled is prevented. This ensures coaxiality between the stator and the rotor, maintains smooth operation of the motor 12, and reduces noise.
Referring to
When the wash water is discharged out, the wash water flows downwardly along an upper portion of the arcuate guide wall 18. When flowing to the guide face 28, the wash water flows out quickly downwardly along the guide face 28 under the gravity and centrifugal force. Because the bottom end of the guide face 28 is spaced apart from the lower portion of the guide wall 18, the water will not flow to the lower portion of the guide wall 18. Rather, the water flows along the guide face 28 away from the stator and is finally discharged to an outside, thus ensuring the electrical safety of the stator. It should be understood that the guide face 28 may have a deflection angle with respect to the vertical direction, as long as the bottom end of the guide face is spaced a distance from the lower portion of the guide wall 18. Preferably, the guide face 28 deflects toward a side away from the stator, which guides the water away from the stator. Alternatively, the guide face 28 may be an inwardly-concaved arc surface, which cooperates with the upper portion of the guide wall 18 to form an S-shaped structure to guide the water away from the stator.
Preferably, the guide wall 18 forms a flange 30 at an edge thereof. The flange 30 may be perpendicular to the guide wall 18 and extends vertically upwardly a height above the guide wall 18, which blocks the water in the horizontal direction. When the water flows downwardly along the guide wall 18, the flange 30 prevents a portion of the water from flowing horizontally to splash into the space within the guide wall 18 which would affect the electrical safety of the stator. In this embodiment, the flange 30 extends to the bottom end of the guide face 28 to ensure that the water flows downwardly along the guide wall 18 and is discharged to the outside under the guide of the guide face 28. The water flow is away from the stator thus ensuring the electrical safety of the liquid pump.
Although the invention is described with reference to one or more preferred embodiments, it should be appreciated by those skilled in the art that various modifications are possible. Therefore, the scope of the invention is to be determined by reference to the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
2015 1 0549648 | Aug 2015 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
3758236 | Zimmerman | Sep 1973 | A |
4720648 | DeVries | Jan 1988 | A |
4904166 | Wasemann | Feb 1990 | A |
7034416 | Simofi-Ilyes | Apr 2006 | B2 |
7960881 | Burton | Jun 2011 | B2 |
8283824 | Vadillo | Oct 2012 | B2 |
20130011254 | Avedon | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
1950500 | Nov 1966 | DE |
38 02 890 | Aug 1989 | DE |
3802890 | Aug 1989 | DE |
0610826 | Aug 1994 | EP |
2014030464 | Feb 2014 | JP |
Number | Date | Country | |
---|---|---|---|
20170058913 A1 | Mar 2017 | US |