This invention relates to liquid reactive materials used as liquid soluble substrates, and particularly to a method of temporarily adhering an image printed on a liquid soluble substrate to a surface, and more particularly to using liquid soluble substrates with an adhered image in games and other applications.
Available from many different suppliers, such as Gilbreth Packaging Systems, liquid soluble paper looks, feels, and tears like ordinary paper. It can be written on, used in photocopy machines, and can be coated, embossed, and printed on. Liquid soluble paper can also be laminated, corrugated, perforated, and made into envelopes, pads, or computer paper. Labels made from liquid soluble paper remove instantly with liquid without scratching or scraping, and without soggy paper or adhesive residue left behind on the surface that the label was applied. Liquid soluble paper can be printed on most web and sheet fed presses, including letterpress, flexography, and dry offset processes. Liquid soluble paper requires no special equipment and accepts water and oil-based inks. Liquid soluble paper can be coated, impregnated, sheeted, or pleated. It can also be slit, perforated, or folded—all using standard converting equipment.
Most liquid soluble paper completely disperses in hot or cold liquid, with water being the most often used liquid. Typically made of cellulose polymers and tackified resins, liquid soluble paper products are simply washed away when no longer needed. They are quickly and easily removed, from even the most inaccessible places, by utilizing a liquid sprayer, squirter, hose or other suitable device.
Although liquid soluble materials are temporary and disposable, they can be made to last for extended periods of time and are strong enough to withstand the most rigorous production processes. They can be easily fabricated into different shapes and sizes and are capable of being printed with the most demanding graphics. Many liquid soluble substrates are biodegradable and contain no preservatives, bactericides, or other harmful substances. Many are also non-toxic, tasteless, and odorless, making them safe for almost any application.
Referring now to the Figures, in which like reference numerals refer to like components thereof,
Printed on Liquid Soluble Substrate 102 are Ink Images 104. Both Liquid Soluble Substrate 102 and Ink Images 104 are shown with exaggerated depth for clarity of description. The ink used to form Ink Images 104 is typically a water insoluble ink, and may be applied to Liquid Soluble Substrate 102 in any of the ways previously described. The water insoluble ink may be solvent based, UV (ultraviolet) curable, or water-based with catalyst additives to prevent dissolvability in water. Depending upon the porosity of the substrate material and the properties of the ink used, some of the ink may be absorbed into the substrate material as part of or during the printing process.
In
After Liquid 106 has been applied and absorbed by Liquid Soluble Substrate 102, Liquid 106 is allowed to evaporate (indicated by the reverse direction of the arrows) from Liquid Soluble Substrate 102 as shown in
For different applications, variations in the substrate used can augment the success of the application. Some applications may need a substrate with a faster drying time. Others may require greater durability to hold up to light rain or high humidity which may be accomplished through a substrate with a different chemical composition or an applied surface treatment. Thicker or thinner gauges of paper may be required to better conform to the particular surface.
Liquid Soluble Substrate 102 will remain adhered to Surface 100 until such time as a sufficient quantity of liquid at a sufficient temperature and sufficient pressure and velocity for the given conditions will cause Liquid Soluble Substrate 102 to break up and dissolve, and Ink Images 104 will wash away with the liquid, restoring Surface 100 to its condition prior to the application of Liquid Soluble Substrate 102. For example, a light rainfall may not have a deteriorating effect upon an outdoor application, whereas a heavy rainfall, or wind-driven rain of sufficient volume may be enough to dissolve Liquid Soluble Substrate 102.
When Surface 100 is subject to wear and tear, general friction will also cause Liquid Soluble Substrate 102 to break down and either fade or begin to tear away (i.e., the tensile strength of Liquid Soluble Substrate 102 is such that it breaks off or rips from friction). Various types of material used for Liquid Soluble Substrate 102, such as paper or plastic, will have different tensile strengths, and based upon the traffic or wear and tear expected, a suitable material may be chosen for Liquid Soluble Substrate 102 such that the image will remain for the desired period of time.
In the example shown in
Different types of adhesives may also be employed based upon the application, such as a quicker drying adhesive, or an adhesive that more quickly dissolves when applied to a wet surface, and then dries quickly thereafter. Water-based emulsion adhesives are suitable for this purpose. A backing or release liner may be used to mask the adhesive so that the material does not stick to itself (e.g., when the substrate is in rolls or stacked in sheets one on top of the other). The release liner can be made of any suitable material that prevents the adhesive from bonding prematurely.
The person, or another person, then applies a liquid to the surface of Handbill 202 as describe above so as to not cause the liquid soluble substrate to dissolve, but applies enough liquid to allow sufficient absorption of the liquid. As discussed above, liquid may also be applied to the surface of Telephone Pole 200 prior to positioning Handbill 202. The liquid is allowed to evaporate while Handbill 202 is secured in place on Telephone Pole 200 by the person, or by the nails, tacks, or adhesive, etc.
Examples of other applications include applying the liquid soluble substrate having images printed with liquid insoluble ink on a sidewalk or tennis court for advertising purposes. Another application can be for use on a playground or parking lot for use as a temporary court or game. For example, rather than being a solid sheet or series of panels as used in billboard advertising, the liquid soluble substrate with liquid insoluble ink images could be in the form of a tape on a roll that is used to temporarily mark out the boundaries of a tennis court or basketball court. The markings can later be washed away so that the playground or parking lot is restored to its original condition for its original use.
The method and system for temporarily adhering an image to a surface of the present invention has numerous applications. For example, the method and system of the present invention could be applied in advertising to the hundreds of thousand of billboards in service in this country, as well as around the world. For extended outdoor uses, a light layer of a coating, varnish, or other surface treatment may be applied to waterproof the surface so that normal rainfall will not cause the liquid soluble substrate to dissolve, yet allow the billboard to be “erased” for a new ad by a pressurized liquid sprayer, squirter, hose, or through application of a substance that will first dissolve the surface treatment, thus allowing the liquid, or some other liquid such as water, to then dissolve the liquid soluble substrate. The coating or varnish may also be UV (ultra-violet) biodegradable such that over time, e.g., 30 days, the coating degrades, thereby allowing the substrate to dissolve with conventional application of water, or even rain of a sufficient velocity and volume.
Besides billboards, the method and system of the present invention may be applied to sidewalks, the sides and roofs of buildings, basketball courts, tennis courts, poles, trees, fences, windows, ceilings, automobiles, trucks, train cars, airplanes, and literally any other accessible surface. Special UV (ultra-violet) inks may be used for outdoor applications. Sunlight causes the UV ink to harden or cure, becoming plastic-like, and thus increasing the integrity of the image and lengthening its brilliance and durability.
In step 408, with or without pre-wetting, the liquid soluble substrate is positioned on the surface at the desired location and orientation. A liquid soluble substrate with an adhesive backing may be used for vertical or semi-vertical surfaces, whereas a horizontal or semi-horizontal surface would not require an adhesive backing, but could be used if desired. The liquid soluble substrate could also be tacked, nailed, stapled, etc. A determination is made in step 410 if an additional wetting, or the initial wetting is required. If yes (either an additional wetting or the initial wetting) then in step 412 liquid is applied to the liquid soluble substrate. If not, then control flows to step 414.
In step 414 the liquid used to wet the liquid soluble substrate and/or the surface is allowed to evaporate. As the liquid evaporates, the fibers of the liquid soluble substrate, which stretched and expanded and lifted from the surface during absorption, takes on the shape and texture of the surface as it dries and shrinks so that the substrate conforms and adheres to the surface through a mechanical interlock therewith. Once completely dried, based upon the local conditions of temperature, barometric pressure, and humidity, the liquid soluble substrate with the liquid insoluble image adheres to the surface due to cohesive forces between the two.
Step 416 determines, based upon the application, if a surface treatment needs to be applied to the liquid soluble substrate with the liquid insoluble image. Such a surface treatment may include, but is not limited to, a coating or varnish that may help to waterproof the liquid insoluble image or protect it from fading. If yes, then in step 418 the surface treatment is applied. If not, then control flows to step 420. In some applications, the surface treatment may be applied at the beginning of or during evaporating step 414.
In step 420, with or without surface treatment, the liquid insoluble image on the liquid soluble substrate is allowed to remain on the applied surface for a predetermined period of time. The time period will vary from application to application. For example, for billboard space, the advertising image placed on the billboard may be placed for a week, several weeks, or months at a time. Advertising may be placed on a tennis court surface during the course of a tournament, or for just one match. Once the time period has expired, then in step 422 the liquid soluble substrate with the liquid insoluble image is removed. A liquid is applied, typically water, at a sufficient quantity at a sufficient temperature and sufficient pressure and velocity for the given conditions to cause the liquid soluble substrate to dissolve, washing away the liquid insoluble image, and thus restoring the surface to its condition prior to the application of the liquid soluble substrate. If a coating or varnish has been applied, a substance designed to break down the coating or varnish may be applied first, followed by a removing liquid, such as water. The method of the present invention thus ends. The surface is now ready to receive a new image, and the method of the present invention may be repeated.
In one game that utilizes the present invention called Splash Tag™, typically two teams are formed, Team One and Team Two, where each team has one or more individuals who make up each team. More than two teams may be formed, in which case each team is pitted against each of the other teams. In preparation for play, members of Team One apply a plurality of targets to their bodies, preferably of a first dominant color and/or design. Members of Team Two also apply a plurality of targets to their bodies, preferably of a second dominant color and/or design in order to more readily distinguish the members of Team One from the members of Team Two. If additional teams are formed, additional dominant colors and/or designs are typically used to distinguish each member of a team from all other members of all other teams. Team Member 500 of
By way of example, Large Targets 502 may be applied to the stomach area, shown applied as Large Target 502′, and applied to the back area (not visible) of Team Member 500. Medium Targets 504 may be applied to the left and right shoulder areas, shown applied as Medium Targets 504′, and may be applied to the left and right thigh areas, shown applied as Medium Targets 504″ of Team Member 500. Small Targets 506 may be applied to the forehead area, shown applied as Small Targets 506′, and may be applied to the back of the neck (not visible) of Team Member 500.
Splash Tag™ is played in a manner similar to laser tag, paint ball, or capture the flag, or in a fashion that combines elements from two or more of these games. Each team member of Team One, Team Two, and any additional teams is equipped with one or more liquid shooting/squirting devices, such as squirt guns, squirt bottles, large capacity “super soaker” or “blaster” type squirt guns, and the like. Water is a typical, safe, and easily obtainable liquid that may be used with the shooting/squirting devices. However, any other suitable liquid compatible with the shooting/squirting devices that will react with the targets could be used.
The object of the game is for each team member to pursue and shoot liquid at the targets adhered to the body of an opposing team member, the liquid causing the targets to dissolve when hit. Once a team member has had all of his or her targets dissolved from his or her body, the team member is out of the game and cannot shoot at anyone else. A team wins when all of the team members from all of the other teams have been eliminated from the game. Team members are free to move about within the predetermined area of play in order to pursue opposing team members so as to shoot their targets, or to evade opposing team members to avoid the loss of one's own targets.
Additionally, one or more of Large Targets 502, Medium Targets 504, and Small Targets 506 corresponding to the dominant color/design designation of Team One and Team Two and any additional teams may be adhered to surfaces of objects within the predetermined area of play. For example, each team may have an area designated as their home base with targets placed on the surface of the home base. In addition to eliminating the targets from the bodies of team members, the targets placed on the surface of objects of the home base must also be eliminated. The targets may be adhered to a variety of surfaces serving as the home base, including by way of example, but not limited to, glass, concrete, brick, asphalt, plastic, vinyl, metal, wood, chain link fence, rock, and the like.
By varying the level of ink coverage and pattern of ink application, the solubility of the substrate material can be varied, both in the time it takes to dissolve, and also the amount of water required to make the target dissolve. Various surface coatings may also be applied to affect the solubility of the targets. Thus, the number of hits and amount of water applied to completely dissolve a target can be adjusted to make it harder or easier to dissolve a target. The targets may also be treated so that they glow in the dark for night-time play. Many other variations of game play and game rules may be added, such as the ability of a team member to earn back one or more of his or her targets that have been dissolved. For example, a team member may earn back a target by eliminating an opposing team member, or for eliminating one or more home base targets from an opposing team's home base.
In another embodiment of the invention, the targets may not react by dissolving when hit with the liquid, but instead react by changing color. Targets constructed with materials having thermo-chromatic or hydro-chromatic properties will change color when hit by the liquid. A thermo-chromatic material, when adhered to the body of a team member, will be at a temperature substantially the same as the skin temperature of the team member. The liquid, typically being several tens of degrees cooler than skin temperature, will cause the thermo-chromatic material to change color upon coming into contact with the thermo-chromatic material of the target. The temperature differential between the target and the liquid need only be the minimum differential at which the thermo-chromatic effect will take place. A team member is eliminated when all of the targets on the team member have changed color. Similarly, a hydro-chromatic material will change color simply when contacted by a liquid.
Many other types of games may also be played utilizing the targets of the present invention by dissolving the targets with liquid. Aspects of the various games may revolve around one or more of accuracy, speed, distance, accumulating points, eliminating opposing players, and the like. The other games may involve teams, one on one, or single individuals playing alone.
Having described the present invention, it will be understood by those skilled in the art that many and widely differing embodiments and applications of the invention will suggest themselves without departing from the scope of the present invention.
This application is a divisional patent application of application Ser. No. 10/374,753, filed on Feb. 25, 2003, now U.S. Pat. No. 6,845,982 titled “Liquid Reactive Materials And Method For Using Same In Games And Other Applications”, now allowed, which is a continuation-in-part of Application No. 60/402,201, filed on Aug. 9, 2002, entitled “Method And System For Temporarily Adhering An Image To A Surface”, which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3434717 | Schwartz | Mar 1969 | A |
3486752 | Colvin et al. | Dec 1969 | A |
4533145 | Liebman | Aug 1985 | A |
4743030 | Auer et al. | May 1988 | A |
4744113 | Kogut | May 1988 | A |
4773863 | Douglas, III | Sep 1988 | A |
5411269 | Thomas | May 1995 | A |
5549303 | Kastner | Aug 1996 | A |
5580063 | Edwards | Dec 1996 | A |
5626343 | Sanders | May 1997 | A |
5855371 | Sanders | Jan 1999 | A |
5893562 | Spector | Apr 1999 | A |
5906373 | Sanders | May 1999 | A |
6715763 | Rudell et al. | Apr 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20050098953 A1 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
60402201 | Aug 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10374753 | Feb 2003 | US |
Child | 11003116 | US |