This application is based upon and claims priority under 35 USC 119 from Japanese Patent Application No. 2010-283442, filed Dec. 20, 2010.
The present invention relates to a liquid supply device.
According to an aspect of the invention, a liquid supply apparatus includes a liquid bag, a borer, and a discharge stop part. A liquid to be supplied to a supply destination is filled in the liquid bag. The liquid bag has an opening part in which a sealing film is installed. The borer has a radial shape in the cross-sectional view and has a tilt part that is tilted toward the center of the radial shape at the tip to be inserted into the opening part of the liquid bag to bore the sealing film. The discharge stop part is arranged at the opening part of the liquid bag, has elasticity, and is provided with a slit having a minus symbol shape which is pressed and extended by the insertion of the borer. The discharge stop part allows the supply to the supply destination by discharging the liquid from the liquid bag when the borer is inserted into the slit and the slit is pressed and extended. The slit gets back to the minus symbol shape to stop the discharge of the liquid when the borer is pulled off from the slit.
Exemplary embodiments of the invention will be described in detail based on the following figures, wherein:
Next, an embodiment of the liquid supply device of the present invention will be explained with reference to the drawings.
(Overall Constitution)
As shown in
The image recording part 14 is provided with liquid-drop jet units (hereinafter, referred to “ink-jet heads”) 10Y, 10M, 10C, and 10K for recording an image on the recording medium by jetting ink drops as an example of liquid-drop jet heads for jetting liquid drops. Here, the ink-jet heads 10Y, 10M, 10C, and 10K are sometimes generally called “ink-jet heads 10Y-10K.”
In addition, the ink-jet heads 10Y-10K respectively have nozzle surfaces 22Y-22K on which nozzles (not shown in the figure) are formed. These nozzle surfaces 22Y-22K have a recordable area that is about the same as or greater than the maximum width of the recording medium P on which image recording in the ink-jet recording device 1 is assumed to take place.
Moreover, the ink-jet heads 10Y-10K are arranged in parallel in the order of yellow (Y), magenta (M), cyan C, and black (K) colors from the downstream side in the conveying direction of the recording medium P, with ink drops corresponding to these respective colors being jetted in a piezoelectric mode from several nozzles to record images. Here, the constitution in which ink drops are jetted from the ink-jet heads 10Y-10K may also be a constitution in which ink jets are jetted in other modes such as the thermal mode.
In the ink-jet recording device 1, main ink tanks 21Y, 21M, 21C, and 21K (hereinafter, shown by 21Y-21K) for storing ink with each color are installed as parts for storing liquids. Ink is supplied to each ink-jet head 10Y-10K from these main ink tanks 21Y-21K. Here, as the ink that is supplied to each ink-jet heads 10Y-10K, various kinds of inks such as an aqueous ink, oily ink, and solvent system ink are usable.
The conveyance unit 16 has a drawing drum 24 for drawing out the recording medium P in the recording-medium housing part 12 one sheet by one sheet, a conveying drum 26 as a conveyer that conveys the recording medium P to the ink-jet heads 10Y-10K of the image recording part 14 and that causes the recording face (surface) to face the ink-jet heads 10Y-10K, and a feeding drum 28 for feeding the recording medium P, on which an image has been recorded, to the recording-medium discharge part 18. In addition, the drawing drum 24, conveying drum 26, and feeding drum 28 are respectively constituted so that the recording medium P is held on its peripheral surface by an electrostatic adsorption portion or a non-electrostatic adsorption portion such as absorption or adhesion.
Moreover, the drawing drum 24, conveying drum 26, and feeding drum 28, for example, are respectively provided with two respective sets of grippers 30 as holding units for sandwiching and holding the downstream side ends in the conveying direction of the recording medium P. These three drums 24, 26, and 28 can hold the recording medium P up to two sheets in this case by the grippers 30 on each peripheral surface. Furthermore, the grippers 30 are installed in two respective concave parts 24A, 26A, and 28A formed on the peripheral surfaces of each drum 24, 26, and 28.
Specifically, rotational shafts 34 are supported along rotational shafts 32 of each drum 24, 26, and 28 with respect to preset positions in the concave parts 24A, 26A, and 28A of each drum 24, 26, and 28. Several grippers 30 are fixed at an interval in the axial direction with respect to the rotational shafts 34. Therefore, with the rotation of the rotational shafts 34 in both the forward and backward directions by an actuator not shown in the figure, the grippers 30 are rotated in both the forward and backward directions along the peripheral direction of each drum 24, 26, and 28. They sandwich and hold or separate the downstream side ends in the conveying direction of the recording medium P.
In other words, the grippers 30 rotate so that their tips slightly protrude from the peripheral surfaces of each drum 24, 26, and 28, delivering the recording medium P to the gripper 30 of the conveying drum 26 from the gripper 30 of the drawing drum 24 at a delivery position 36, where the peripheral surface of the drawing drum 24 and the peripheral surface of the conveying drum 26 face each other, delivering the recording medium P to the gripper 30 of the feeding drum 28 from the gripper 30 of the conveying drum 26 at a delivery position 38, where the peripheral surface of the conveying drum 26 and the peripheral surface of the feeding drum 28 face each other.
In addition, the ink-jet recording device 1 is provided with a maintenance unit (not shown in the figure) for maintaining the ink-jet heads 10Y-10K. The maintenance unit has a cap for covering the nozzle surfaces of the ink-jet heads 10Y-10K, a receiving part for receiving liquid drops that are pre-jetted (empty jet), a cleaning part for cleaning the nozzle surfaces, a suction unit for absorbing ink in the nozzles, etc., with the maintenance unit moving to the position opposite to the ink-jet heads 10Y-10K and to perform various kinds of maintenance. Moreover, a cleaning solution, which will be mentioned later, is supplied to the maintenance unit.
Next, the image recording operation of the ink-jet recording device 1 will be explained.
The recording medium P drawn by the gripper 30 of the drawing drum 24 by one sheet out of the recording-medium housing part 12 are held and conveyed while being adsorbed to the peripheral surface of the drawing drum 24, then delivered to the gripper 30 of the conveying drum 26 from the gripper 30 of the drawing drum 24 at the delivery position 36.
The recording medium P held by the gripper 30 of the conveying drum 26 is conveyed up to an image-recording position of the ink-jet heads 10Y-10K while being adsorbed onto the conveying drum 26, and an image is recorded on the recording surface by ink drops that are jetted from the ink-jet heads 10Y-10K.
The recording medium P, on which the image has been recorded on the recording surface, is delivered to the gripper 30 of the feeding drum 28 from the gripper 30 of the conveying drum 26 at the delivery position 38. Next, the recording medium P held by the gripper 30 of the feeding drum 28 is conveyed while being adsorbed to the feeding drum 28 and is discharged to the recording medium discharge part 18. In this manner, a series of image recording operations is carried out.
The liquid supply device 40 of the present invention is connected to the main ink tanks 21Y-21K. The liquid supply device 40 supplies ink or a cleaning solution to a liquid storage tank for supplying the cleaning solution to the main ink tanks 21Y-21K and the maintenance unit.
(Liquid Supply Device)
The liquid supply device 40 includes a three-step shelf-shaped case 41 and five tank units 42Y, 42M, 42C, 42K, and 42W that are provided to the case 41. Here, the tank units 42Y, 42M, 42C, 42K, and 42W are sometimes generally called “tank units 42Y-42W.” The tank units 42Y-42W respectively exhibit approximate cubes.
The tank units 42Y, 42M, 42C, and 42K are respectively filled with yellow, magenta, cyan, and black inks, with the tank unit 42W being filled with a cleaning solution. The tank units 42Y-42W are freely attached and detached to and from the pedestal 44 of the case 41 and are exchange-type supply tanks for supplying a liquid to a supply destination.
The tank unit 42Y and the tank unit 42M are installed on the pedestal 44 at an intermediate step of the case 41. Via each corresponding pipe 46 (not shown in
Each tank unit 42Y-42W is installed above the main ink tanks 21Y-21K and the maintenance unit which is connection destinations (supply destinations) of the tank unit 42Y-42W. The ink or the cleaning solution is supplied to the destinations by water head difference.
In the case 41, operation levers 48Y, 48M, 48C, 48K, and 48W are installed in accordance with each tank unit 42Y-42W. The operation levers 48Y, 48M, 48C, 48K, and 48W, as will be mentioned, are operated in the vertical direction by the operator when the tank units 42Y-42W are exchanged.
A control panel 50 is mounted in the vicinity of the right upper part of the case 41. The control panel 50 is provided with an operation switch 52 and several display lamps 54. When the amount of ink of any of the main ink tanks 21Y-21K or the amount of cleaning solution of the maintenance unit is decreased to a preset amount, the corresponding display lamp 54 is lit and the operator is prompted to exchange the tank units 42Y-42W.
Next, since the constitution of each tank unit 42Y-42W and the mounting state on the pedestal 44 are the same, one tank unit 42Y will be explained in detail. Here, the attached letter “Y” is also appropriately omitted.
On the pedestal 44, the operation lever 48, boring part 56, lock solenoid 58, and tank detection sensor 60 are installed.
The operation lever 48 includes a grip part 62 and two lever arms 64. The grip part 62 is arranged along the longitudinal direction of the case 41. The lever arms 64 are connected to both ends in the longitudinal direction of the grip part 62. Each lever arm 64 is supported with respect to the pedestal 44 via a rotational shaft 66, with the operation lever 48 being freely rotated on the rotational shaft 66. In the lever arm 64, a long hole 68, round hole 70, and notched groove 74 for coupling with coupling pins 72, which will mentioned later, are formed. The notched groove 74 is formed along the circumference centering around the rotational shaft 66.
The boring part 56 is arranged at the position opposite to the tank unit 42 in the pedestal 44. The boring part 56 is connected to the operation lever 48 and is vertically operated in accordance with the operation position of the operation lever 48. Specifically, the boring part 56 is arranged between the lever arms 64. Side end pins 76, which are installed at both ends of the boring part 56, are inserted into the long holes 68 formed in the lever arms 64 and are connected to the operation lever 48. The boring part 56 is vertically moved along two guide parts 78 installed on the side surfaces of the boring part 56 in accordance with the rotating operation of the operation lever 48.
As will be mentioned later, if the boring part 56 is operated upward by the operation leer 48, it is inserted (put) into the tank unit 42, with the tank unit 42 being unsealed by the boring part 56, discharging the liquid (ink) from the tank unit 42.
The lock solenoid 58 is installed in the vicinity of the lever arm 64 in the pedestal 44, with the operation lever 48 being locked (fixed) so that it is not rotated. Specifically, a movable rod (not shown in the figure) of the lock solenoid 58 is inserted into the rough hole 70, which is installed in the lever arm 64, to lock the rotating operation of the operation lever 48. Here, as the round holes 70 that are installed in the lever arms 64, there are two round holes which includes the round hole 70 for locking the operation lever 48 operated upward at the position and the round hole 70 for locking the operation lever 48 operated downward at the position.
The tank detection sensor 60 is installed at the position opposite to the tank unit 42 in the pedestal 44, whether or not the tank unit 42 is placed on the pedestal 44 is detected, and an output signal is transmitted based on the detection result. In addition, a reader for reading intrinsic data of the tank unit 42 is arranged inside the pedestal 44. In case the tank unit 42 is placed on the pedestal 44, the intrinsic data of the tank unit 42 are read out by this reader. For example, a bar code is installed in the tank unit 42, with the intrinsic data being read out through a window 160 by a bar code reader 158 shown in
The tank unit 42 includes a carton unit 80 and a carton adapter 82. The face shown by A in the figure is a face (front) toward the front, the face shown by B is a back face, the face shown by C is a back face, the face shown by D is a bottom face, and the face shown by E is a top face. From the bottom face D, an opening part 84, as the inlet and outlet of a liquid, protrudes.
The liquid pack 86, for example, includes a liquid housing part 92 exhibiting an approximately cubic shape and made of polyethylene and has an opening part 84 acting as an inlet and outlet of a liquid to the liquid housing part 92. The opening part 84 is made of a resin material and exhibits an approximately cylindrical shape. Part of the liquid housing part 90[sic; 92] is provided with a funnel-shaped part 94 formed in a funnel shape so that it is extended to the opening part. In the opening part 84, a collar part 96, which is stretched out of the outer periphery of the opening part, is formed at the connection position with the funnel-shaped part 94. The opening part 84 and the funnel-shaped part 94 are installed at a position offset to one side (front side) from the center on one face of six faces of the liquid housing part 92.
Air holes other than the opening part 84 are not installed in the liquid pack 86, with the liquid pack 86 being collapsed at the time of discharge of the liquid.
The carton adapter 82 is made of a thin sheet metal, with bottom plate 98, side plates 100, and front plate 102 being formed at a right angle to each other so that four faces of the front, both side faces, and the bottom face of six faces of the carton unit 80 are enclosed.
The bottom plate 98 is provided with a support face 104, which supports the bottom face of the carton unit 80 (that is, supports the bottom face of the liquid pack 86), and a step-difference face 108 installed so that a step is formed downward on the support face 104 via a tilt part 106. An aperture part 110 for passing the opening part 84 of the liquid pack 86 is formed in the step-difference face 108.
The aperture part 110 includes a part opened in a rectangular shape (hereinafter, referred to “rectangular aperture part”) 112 and a part opened in a semicircular shape (hereinafter, referred to “semicircular aperture part”) 114. The rectangular aperture part 112 is formed so that it is larger than the cross section of the collar part 96 of the opening part 84 of the liquid pack 86 and passes through the opening part 84. The semicircular aperture part 114 is formed so that it is smaller than the cross section of the collar part 96 and hooks the collar part 96 of the opening part 84 passed from the rectangular aperture part 112 to prevent the opening part 84 from being slipped from the opening part 110. In addition, two click parts 116 are formed between the rectangular aperture part 112 and the semicircular aperture part 114 so that the click parts are protruded in the passing direction of the opening part 84. Here, the semicircular opening part has been a semicircular shape, however it may be any shape that runs along the shape of the opening part 84 and is held to hook the collar part 96 of the opening part 84 so that slipping of the opening part 84 from the aperture part 110 is prevented. Shapes other than the semicircular shape may also be adopted.
After the opening part 84 is passed from the rectangular aperture part 112, the opening part 84 is moved (slid) up to the semicircular aperture part 114 while pulling out said opening part downward so that the collar part 96 of the opening part 84 does not climb over the click parts 116. At the position where the collar part 96 of the opening part 84 climbs over the click parts 116, the opening part 84 is prevented from being pulled out downward, with the collar part 96 of the opening part 84 being pressed against two click parts 116, holding the opening part 84 by the semicircular aperture part 114 and two click parts 116.
Therefore, the carton adapter 82 holds the opening part 84 of the liquid pack 86 by the holding parts (semicircular aperture part 114 and click parts 116) of the step-difference face 108 installed downward in the gravity direction to the support face 104 while supporting the bottom face of the carton unit 80 (that is, the bottom face of the liquid pack 86) by the support face 104. With this constitution, since a portion exhibiting a funnel shape is formed at the periphery of the opening part 84 of the liquid pack 86, precisely, since the shape of the funnel-shaped part 94 installed at the periphery of the opening part 84 of the liquid pack 86 is maintained, the discharging of a liquid from the liquid pack can be improved. Here, “funnel shape” means a shape in which the liquid bag at the periphery of the opening part has a gradient toward the opening part, with the internal liquid being guided to the opening part, when the opening part is set downward in the gravity direction.
In the liquid pack 86 of this embodiment, the funnel-shaped part 94 has been installed in advance. However, even if the funnel-shaped part 94 is not aggressively installed in the liquid pack 86, since the holding parts (semicircular aperture part 114 and click parts 116) for holding the opening part 84 are installed downward in the gravity direction to the support face 104 for supporting the bottom face of the carton unit 80 (that is, the bottom face of the liquid pack 86) in the carton adapter 82, a portion exhibiting a funnel shape is formed at the periphery of the opening part 84 of the liquid pack 86, improving the ability to discharge a liquid from the liquid pack 86.
In addition, in this embodiment, the liquid pack 86 has been loaded into the carton adapter 82 after being housed in the carton 88. However, even if the liquid pack 86 is directly loaded into the carton adapter 82 without using the carton 88, since the holding parts (semicircular aperture part 114 and click parts 116) for holding the opening part 84 are installed downward in the gravity direction to the support face 104 for supporting the bottom face of the liquid pack 86 in the carton adapter 82, a portion exhibiting a funnel shape is formed at the periphery of the opening part 84 of the liquid pack 86, improving the discharge of a liquid from the liquid pack 86.
The reason why the liquid pack 86 is loaded into the carton adapter 82 after being housed in the carton 88 is that handling in the state in which the liquid pack 86 is housed in the carton 88 is easier than that in the state of having only the liquid pack 86, with the liquid pack 86 being easily loaded into the carton adapter 82. Another reason is that a step difference between the support face 104 and the holding parts is easily generated, the face for protruding only the funnel-shaped part from the aperture 90 of the carton 88 is easily formed, and a portion exhibiting a funnel shape with a better discharge property is formed, compared with the case in which the liquid pack 86 is not housed in the carton 88 but is mounted in the carton adapter 82 with only the liquid pack 86 being contained.
As shown in
The boring part 56 includes a base part 124, a cap part 128 that is installed in a concave part 126 of the base part 124 and that is opened upward, a receiving part 130 that is installed in the cap part 128, and a borer 132 that is arranged in the receiving part 130.
The cap part 128 is fixed to the base part 124 with a screw 134. A hole is installed in advance at the center of the bottom face of the cap part 128. In addition, a hole smaller than the hole of the cap part 128 by one turn is also installed in advance at the center of the bottom face of the concave part 126 of the base part 124.
The receiving part 130 is made of a rubber material, exhibits an approximately tubular shape, and is provided with a tube part 136 and a bracket part 138 extending outward from one end of the tube part 136. The other end of the tube part 136 is closely stuck to the bottom of the concave part 126 of the base part 124, with the bracket part 138 being closely stuck to the bottom of the cap part 128. One end of the pipe 46 for connecting with a supply destination of a liquid is connected to the hole formed in the concave part 126 of the base part 124. The base part of the borer 132 is mounted at the end surface of the pipe 46, with the borer 132 being fixed in a state in which its tip is pointed upward.
The borer 132 is formed by combining two sheets of plates at a right angle to each other. Specifically, one plate among two sheets of plates has a groove extending from its base part and the other plate has a groove extending from its tip. These groves are mutually inserted into the other plates and combined to form the borer 132. After combining, each plate is fixed by welding or using an adhesive. As shown in
As shown in
At the inner side from the seal part 122 in the opening part 84 of the liquid pack 86, a sealing film 144 for sealing the liquid in the liquid pack 86 is mounted.
As shown in
If the sealing film 144 is broken through by the borer 132, the liquid in the liquid pack 86 starts to flow out downward. The liquid is guided up to the pipe 46 through a space 150, which is secured by an outer wall surface 146 of the borer 132 and an inner wall surface 148 of the slit, pressed and extended in a rectangular shape, and is supplied to the main ink tank 21 as a connection destination through the pipe 46. Compared with the case in which the borer 132 is constituted from a hollow needle, such as an injection syringe, with a liquid being discharged via the hollow part, a flow passage wall, which hinders the discharge of the liquid, is not formed in the flow passage (space 150) for discharging the liquid, and the liquid does not remain in the vicinity of the opening part. In other words, it can be said that the flow passage (space 150), which is secured by the outer wall surface 146 of the borer 132 and the inner wall surface 148 of the slit, allows complete discharge of the liquid.
Here, as shown in
Here, the end surface of the opening part 84 of the liquid pack 86 is closely stuck to the bracket part 138 of the boring part 56, so the liquid is not exuded to the cap part 128.
If the borer 132 is operated downward from the state of
Here, in case the slit 142 of the seal part 122, for example, is formed in a “Y” letter shape or plus symbol shape other than the minus symbol shape, when the borer 132 is pulled off, a mutual meshing state is formed at the intersection of the slit 142, leaking no remaining liquid from the gap. For this reason, the slit 142 of the seal part 122 has been formed in the minus symbol shape.
As mentioned above, since the tip of the borer 132 is provided with the tilt part 140 that is tilted toward the center, even if the alignment precision of the opening part 84 to the position of the borer 132 is relatively rough, the borer 132 is guided to the opening part 84 and inserted. Namely, since the container for housing the liquid is constituted from the liquid pack 86 having no fixed shape, even if the position of the opening part 84 of the liquid pack 86 is difficult to be regulated with good precision, the borer 132 is reliably inserted into the opening part 84 by installing the tilt part 140 at the tip of the borer 132. In other words, compared with a borer having no tilt part, which is a hollow part such as an injection syringe and is tilted toward the tip center, even if the alignment of the opening part 84 of the bag of the liquid pack 86 to the borer 132 is not applied with good precision, the borer 132 can be favorably inserted into the opening part 84 of the liquid pack 86.
In an initial state of
Next, as shown in
Next, as shown in
Next, as shown in
In the tank unit 42, the surface to which the opening part 84 of the liquid pack 86 is exposed is the bottom face, and the tank unit 42 is mounted on the pedestal 44 so that the opening part 84 of the liquid pack 86 is arranged downward. The tank unit 42 is mounted from the arrow A direction of
At the inner side of the pedestal 44, the stopper 154 is installed to regulate the movement to the inner side of the tank unit 42. As mentioned above, the borer 132 is arranged below the pedestal 44 and is freely moved in the vertical direction at a position opposite to the opening part.
As shown in
Next, as shown in
In addition, in
Moreover, in
Furthermore, in
As mentioned above, the coupling pins 72 are installed on the side surfaces of the tank unit 42 (precisely, carton adapter 82), and as shown in
In other words, if the operation lever 48 is at the upper position, since the motion of the operation lever 48 is fixed by the lock solenoid 58, an operator can mechanically release the coupled state, and the tank unit 42 cannot be removed.
Specifically, if the operation lever 48 is at the upper position and the boring part 56 is at the position where it is inserted into (put into) the tank unit 42, the notched grooves 74 of the lever arms 64 are coupled with the coupling pins 72 of the tank unit 42, preventing the slipping of the boring part 56 from the tank unit 42.
More specifically, the operation lever 48 for operating the boring part 56 is constituted so that the coupling pins 72 installed in the tank unit 42 are coupled with the operation lever 48 that is locked except for the case in which the tank unit 42 is attached and detached to and from the pedestal. Therefore, in a state in which the boring part 56 is inserted into the tank unit 42, the slipping of the tank unit 42 from the boring part 56 due to an unexpected movement can be prevented. Thereby, the drying out of the liquid attached to the boring part 56 is prevented.
Here, as shown in
The foregoing description of the exemplary embodiment of the present invention has been provided for the purpose of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and various will be apparent to practitioners skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling other skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2010-283442 | Dec 2010 | JP | national |