Liquid supply system, ink jet recording head, ink jet recording apparatus and liquid filling method

Information

  • Patent Grant
  • 6805437
  • Patent Number
    6,805,437
  • Date Filed
    Wednesday, February 6, 2002
    22 years ago
  • Date Issued
    Tuesday, October 19, 2004
    19 years ago
Abstract
The invention prevents drawbacks resulting from the bubble generated at the downstream side of the filter, while minimizing the waste in the ink. The recording head has a sub tank for storing ink supplied from the exterior, and a liquid chamber storing the ink supplied from the sub tank and supplying ink directly to a nozzle for ink discharge. A filter is provided between the sub tank and the liquid chamber. The liquid chamber holds ink of a predetermined amount in such a manner that the ink therein is separated by gas between the filter and the liquid chamber.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an ink jet recording head, an ink jet recording apparatus employing such inkjet recording head, and a liquid supply system suitable for use therein.




2. Related Background Art




Among various recording methods in printers or the like, the ink jet recording method for forming a character or an image on a recording medium by discharging ink from a discharge port (nozzle) is widely employed in recent years because it is a non-impact recording method of now noise level capable of high-density and high-speed recording operation.




An ink jet recording apparatus is generally provided with an ink jet recording head, means for driving a carriage supporting such recording head, means for conveying the recording medium, and control means for controlling these components. An apparatus executing the recording operation under such carriage motion is called serial scan type. On the other hand, an apparatus executing the recording operation by the conveying of the recording medium only, without moving the ink jet recording head is called line type. In the ink jet recording apparatus of line type, the ink jet recording head is provided with a plurality of nozzles arranged over the entire with of the recording medium.




The ink jet recording head is provided with energy generating means for generating discharge energy to be given to the ink in the nozzle, in order to discharge therefrom an ink droplet. The energy generating means can be an electromechanical converting element such as a piezo element, an electrothermal converting element such as a heat generating resistor, an eletromagnetic wave-mechanical converting element or an electromagnetic wave-thermal converting element for converting electromagnetic wave such as electric wave or laser light into mechanical vibration or heat. Among these, a method for discharging ink droplet by thermal energy can achieve recording of high resolution because the energy generating means can be arranged at a high density. Particularly an ink jet recording head utilizing an electrothermal converting element as the energy generating means can be made compact more easily than a head utilizing the electromechanical converting element, and provides advantages of easily achieving high-density configuration and low manufacturing cost, utilizing the IC technology and the micro fabrication technology showing remarkable progress and improvement in reliability in the semiconductor area.




In the system of ink supply to the ink jet recording head, there are known so-called integral ink tank system in which an ink tank containing the ink is integrated with the ink jet recording head, so-called separated ink tank system in which the ink tank is separated from the ink jet recording head, so-called tube supply system in which the ink tank and the ink jet recording head are connected by a tube, and so-called pit-in system in which the ink tank and the ink jet recording head are provided separately but the ink jet recording head is moved to the position of the ink tank whenever required and is connected thereto for executing ink supply from the ink tank to the ink jet recording head.




When the capacity of the ink tank is increased in order to reduce the frequency of replacement thereof, the weight thereof increases. This means an increase in the weight of the carriage in the recording apparatus of serial scan type. In consideration of this fact, the ink jet recording apparatus of serial scan type requiring the ink tank of a large capacity for example for outputting a large sized recorded image often employs the tube supply system or the pit-in system. Among these, the tube supply system capable of continuous recording over a long period is often employed since, in the pit-in system, the recording operation has to be interrupted during the ink supply operation.




In the following the ink supply system of an ink jet recording apparatus of tube supply system will be explained with reference to FIG.


25


.




The ink supply system shown in

FIG. 25

is provided with a main tank


1204


containing ink therein, a supply unit


1205


on which the main tank


1204


is detachably mounted, and a recording head


1201


connected to the supply unit


1205


through a supply tube


1206


.




The supply unit


1205


is provided therein with an ink chamber


1205




c


, which is open to the air by an air communicating port


1205




g


at the upper portion and is connected at the bottom portion to the supply tube


1206


. On the supply unit


1205


, there are fixed a hollow ink supply needle


1205




a


and a hollow air introducing needle


1205




b


of which lower ends are positioned in the ink chamber


1205




c


and higher ends protrude from the upper face of the supply unit


1205


. The lower end of the ink supply needle


1205




a


is positioned lower than that of the air introducing needle


1205




b.






The main tank


1204


is provided at the bottom thereof with two connector portions composed for example of rubber stoppers for closing the interior of the main tank


1204


, whereby the ink tank singly has a hermetically closed structure. The mounting of the main tank


1204


to the supply unit


1205


is executed in such a manner that the ink supply needle


1205




a


and the air introducing needle


1205




b


respectively penetrate the connector portions and enter the interior of the main tank


1204


. Since the lower ends of the ink supply needle


1205




a


and the air introducing needle


1205




b


are positioned as explained in the foregoing, the ink in the main tank


1204


is supplied to the ink chamber


1205




c


through the ink supply needle


1205




a


and the air is introduced into the main tank


1204


through the air introducing needle


1205




b


so as to compensate the pressure decrease resulting in the main tank


1204


. When the ink is supplied into the ink chamber


1205




c


until the lower end of the air introducing needle


1205




a


is immersed in the ink, the ink supply from the main tank


1204


to the ink chamber


1205




c


is terminated.




The recording head


1201


is provided with a sub tank


1201




b


for containing ink of a predetermined amount, an ink discharge portion


1201




g


having an array of plural nozzles for ink discharge, and a flow path


1201




f


connecting the sub tank


1201




b


and the ink discharge portion


1201




g


. In the ink discharge portion


1201




g


, a face having the nozzle apertures is directed downwards, so that the ink is discharged downwards. Each nozzle in the ink discharge portion


1201




g


is provided with the aforementioned energy generating means. The sub tank


1201




b


is positioned higher than the ink discharge portion


1201




g


, and the supply tube


1206


is connected to the sub tank


1201




b


. Between the sub tank


1201




b


and the flow path


1201




f


, there is provided a filter


1201




c


having a fine mesh structure in order to prevent clogging of the nozzle resulting from the entry of fine foreign particles into the ink discharge portion


1201




g.






The area of the filter


1201




c


is so selected that the pressure loss in the ink does not exceed a tolerance value. The pressure loss in the filter


1201




c


increases as the mesh thereof is fiber or the ink flow rate through the filter is higher, but is inversely proportional to the area thereof. Since the pressure loss tends to become higher in the recent recording head of high-speed, multi-nozzle and small recording dots, the area of the filter


1201




c


is selected as large as possible to suppress the increase in the pressure loss.




Since the nozzle in the ink discharge portion


1201




g


is open to the air and directed downwards, the interior of the recording head


1201


has to be maintained at a negative pressure relative to the atmospheric pressure in order to prevent ink leakage from the nozzle. On the other hand, an excessively large negative pressure causes entry of gas into the nozzle, whereby the nozzle becomes incapable of discharging ink. Therefore, in order to maintain a suitable negative pressure in the recording head


1201


, the recording head


1201


is so positioned that the nozzle aperture face is higher, by a height H, than the ink liquid level in the ink chamber


1205




c


thereby maintaining the interior of the recording head


1201


at a negative pressure corresponding to the water head H. In this manner the nozzle can be maintained in a state filled with ink and forming a meniscus at the aperture face.




The ink discharge from the nozzle is executed by driving the energy generating means thereby pushing out the ink in the nozzle. After the ink discharge, the nozzle is filled with ink by the capillary force, from the side of the flow path


1201




f


. During the recording operation, the ink discharge from the nozzle and the ink filling into the nozzle are repeated whereby the ink is sucked from time to time from the ink chamber


1205




c


through the supply tube


1206


.




As the ink in the ink chamber


1205




c


is sucked into the recording head


1201


and the ink liquid level in the ink chamber


1205




c


becomes lower than the lower end of the air introducing needle


1205




b


, air is introduced into the main tank


1204


through the air introducing needle


1205




b


. Along with this operation the ink in the main tank


1204


is introduced into the ink chamber


1205




c


whereby the lower end of the air introducing needle


1205




b


is immersed again in the ink in the ink chamber


1205




c


. Through the repetition of such operations, the ink in the main tank


1204


is supplied to the recording head


1201


along with the ink discharge therefrom.




In the sub tank


1201




b


of the recording head


1201


, there are gradually accumulated gas entering the plastic material constituting the supply tube


1206


etc. and gas dissolved in the ink. In order to discharge useless gas accumulated in the sub tank


1201




b


, a gas discharge tube


1211


connected to a gas discharge pump


1211




a


is connected to the sub tank


1201




b


. However, in order to maintain the interior of the recording head


1201


at a suitable negative pressure, the discharge tube


1211


is provided with a valve


1211




b


, which is opened only in a gas discharging operation in such a manner that the pressure inside the recording head


1201


does not exceed the atmospheric pressure.




In order to eliminate viscosified ink clossing the ink discharge portion


1201




g


or a bubble generated from gas dissolved in the ink therein, the ink jet recording apparatus is usually provided with a recovery unit


1207


, which is provided with a cap


1207




a


for capping the nozzle face of the recording head


1201


and a suction pump


1207




c


connected to the cap


1207




a


, and which eliminates the viscosified ink or accumulated bubble from the ink discharge portion


1201




g


by activating the suction pump


1207




c


thereby forcedly sucking the ink in the ink discharge portion


1201




g.






In such suction recovery operation, a faster ink flow speed allows to effectively eliminate the viscosified ink and the bubble so that the cross section of the flow path


1201




f


is made small in order to increase the ink flow speed therein. On the other hand, the cross section of the filter


1201




c


is made as large as possible as explained in the foregoing, so that the flow path


1201




f


is made smaller in the cross section at the downstream side of the filter


1201




c.






In the foregoing, there has been explained the conventional ink supply system in case of a tube supply system, but, also in the integral head tank system, separated head tank system or pit-in system, the configuration at the downstream side of the filter of the recording head is basically same as in the above-described tube supply system, and the difference lies only in the configuration of the ink supply path from the ink tank to the recording head.




However, the aforementioned conventional configuration may be unable to completely eliminate the bubbles, thereby eventually result in deterioration of the recording quality such as by discharge failure or ink dripping resulting from the bubbles.




In the following there will be explained drawbacks of the conventional configuration shown in

FIG. 25

, when bubbles are accumulated in the ink flow path


1201




f


at the downstream side of the filter


1201




c.






A portion under the filter is reduced in the cross section of the ink flow path and constitutes a portion where the flow becomes stagnant even by the recording operation of the recording head, so that the bubbles tend to remain. Particularly in a recording head designed for multiple nozzles and a higher recording speed, the filter area has to be increased so that the ink stagnant portion increases in the ink flow, whereby the bubbles tend to remain under the filter. Particularly in case the filter and the ink flow path are positioned vertically with respect to the direction of gravity, the bubbles gather by the floating force under the filter. However, a filter portion in contact with the bubbles is incapable of filtering the ink, so that the effective filter area is inevitably decreased.




Also the ink flow path, having a small cross section, is clogged by a large bubble whereby the substantial flow resistance increases to hinder the required ink supply to the nozzle, thus eventually resulting in ink dripping or the like.




Also the bubbles in the ink discharge portion utilizing an electrothermal converting element as the energy generating means include those coming from the upstream side, namely those generated in ink passing through the filter, and those resulting from ink discharge, namely, after ink discharge by bubble generation in the ink, those not dissolved again in the ink at the extinction of the bubble and gradually accumulated in the ink. Such bubble gradually grows and may enter the nozzle or may clog the connecting portion between the nozzle and the ink discharge portion thereby resulting in discharge failure or ink dripping. Particularly in the vicinity of the ink discharge portion, fine bubbles tend to gather because the temperature in the vicinity of the heater rises to render re-dissolution of the bubbles into the ink difficult, whereby the bubble tends to grow to a size causing detrimental effect on the recording.




Furthermore, in the conventional configuration, since the cross section of the ink flow path is reduced, the generated bubbles in the ink flow path can be discharged by the recovery operation of the recording head, but the ink supply to the nozzle is hindered if the bubble grows so fast as to interrupt the flow path. In order to avoid such situation, it is necessary to discharge the bubble by executing the recovery operation frequency, but there results a drawback that the ink is wasted at each recovery operation.




On the other hand, if the cross section of the ink flow path is so increased as “not to interrupt the ink flow path by the bubble” or “to eliminate a portion where the ink flow tends to become stagnant”, the bubble becomes easily movable so that, even if the ink is strongly sucked in the suction recovery operation, there is only sucked the ink but the bubble itself merely moves upstream in the ink flow path and cannot be discharged by suction.




Also since the filter has a fine mesh structure, when the bubbles reach and are absorbed under the filter, there is formed a meniscus by the ink in the sub tank, in the space in the mesh of the filter. As a result, the bubbles under the filter cannot pass through the filter to the upstream side but are accumulated under the filter.




A filter portion under which the bubbles are accumulated cannot pass the ink, thereby reducing the effective area of the filter and increasing the ink flow resistance, whereby the ink supply amount from the sub tank to the ink flow path and the ink supply amount from the ink flow path to the ink discharge portion become unbalanced to result in a discharge failure. Also, if the bubble accumulation in the ink supply portion and the deficient ink supply from the sub tank to the ink supply portion further proceed, the ink in the ink discharge portion may result in a fatal drawback such as the ink supply to the nozzle being impossible.




Also in case the small bubbles accumulate under the filter grow to a large bubble, such large bubble moves under the filter by the vibration of the recording head in the printing operation or the like, thereby securing, though unstably, an effective filter area for ink supply from the sub tank to the ink flow path, but, in case the small bubbles accumulated under the filter do not assemble and remain as a gathered group of small bubbles, such small bubbles stick to the filter even under the vibration of the recording head in the printing operation or the like and do not easily move, whereby the effective filter area for ink supply from the sub tank to the ink flow path becomes difficult to secure. Consequently there is encountered a situation where the ink supply to the nozzle cannot be realized.




Also, in order to avoid deterioration in the recording quality such as discharge failure or ink dripping, resulting from such bubbles, it becomes necessary to frequently repeat the recovery operation for removing the bubbles accumulating under the filter.




Such drawback is conspicuous in a recording head having a larger ink supply amount from the sub tank to the ink flow path and tending to show a larger pressure loss in the filter, namely a recording head with multiple nozzles for recording with small dots.




SUMMARY OF THE INVENTION




The object of the present invention is to provide an ink jet recording head capable of preventing drawbacks resulting from the bubbles generated at the downstream side of the filter while minimizing the waste of ink, an ink jet recording apparatus utilizing such ink jet recording head, a liquid supply system and a liquid filling method advantageously employable therein.




The above-mentioned object can be attained, according to the present invention, by a liquid supply system which is provided with a liquid supply path to a liquid holding portion holding liquid at the downstream end in the liquid supply direction, and a filter in the liquid supply path and in which the liquid can be supplied from the upstream side of the filter to the downstream side thereof in the vertical direction in the direction of gravity, the system comprising:




a member for dividing a portion of the filter in contact with the downstream side into a gas holding area and a liquid holding area;




wherein the gas held in said gas holding area is in communication with gas present between the downstream side of the filter and the liquid holding portion in the aforementioned downstream end.




In the liquid supply system of the present invention, as the downstream side of the filter secures a gas holding area for holding gas, a bubble eventually generated at the downstream side of the filter, being smaller than the gas held in the gas holding area, is eventually united with such gas. Thus it is rendered possible to avoid that the small bubbles are mixed in the liquid flow path or remain as a gathered group. Also the downstream side of the filter is divided into a gas holding area and a liquid holding area to stably secure an effective filter area, whereby the liquid supply from the upstream side of the filter can be stably executed without deficiency even when the liquid of a large amount is consumed at the downstream end of the liquid supply path.




At the downstream side of the filter, there is preferably formed a liquid connecting structure for holding the liquid, present in the downstream side of the filter, by the surface tension in the gas holding area thereby being connected across the filter with the liquid at the upstream side thereof. In this manner, the liquid smoothly moves between the upstream and downstream sides of the filter through the liquid connecting structure in case of liquid consumption at the downstream end of the liquid supply path or in case of a gas volume change in the gas holding area resulting for example from a change in the environmental temperature.




The liquid connecting structure is preferably provided in the vertical direction and is provided with a groove-shaped structure of which the upper end is in contact with the downstream face of the filter. In such case, the gap t between the groove-shaped structure and the filter is selected in a range 0≦t≦1.0 mm whereby the liquid held by the groove-shaped structure is in satisfactory contact with the filter. Also in the downstream side of the filter, the liquid supply path may be composed of a cover member constituting a lateral face thereof and a main body member constituting another face and jointed to the cover member, and the groove-shaped structure may be provided at least in the cover member. In such case, the groove-shaped structure in the cover member may be formed as a projection with a slit, protruding from a joint plane of the cover member with the main body member and adapted to hold liquid by the surface tension, whereby, even if the cover member and the main body member are jointed by an adhesive, the slit of the groove-shaped structure for holding liquid can be prevented from entry of the adhesive.




Also the liquid supply path may be so constructed as to have a first liquid chamber at the upstream side of the filter and a second liquid chamber including the aforementioned gas holding area at the downstream side of the filter. In such case, it is possible to form a valve mechanism at the upstream side of the first liquid chamber or to provide the first liquid chamber with an air communicating aperture which can be opened or closed, whereby, in case the gas is accumulated in the second liquid chamber, suction is executed from the side of the second liquid chamber in a state where the valve mechanism or the air communicating aperture is closed, thereby reducing the pressure of the first and second liquid chambers to a predetermined value, and then the valve mechanism or the air communicating aperture is opened to fill the first and second liquid chambers with liquid of respectively appropriate amounts from the upstream side, even when gas is accumulated in the first and second liquid chambers to reduce the liquid amounts therein.




It is also possible to provide the liquid supply path at the downstream side of the filter with two liquid chambers. By the gas inflation or the vapor pressure increase in the second liquid chamber, the liquid therein is pushed out to the downstream end of the liquid supply path or returned to the first liquid chamber through the filter. However, an unexpected pushing out of the liquid in the second liquid chamber to the downstream end of the liquid supply path is undesirable, and the liquid in the second liquid chamber cannot return to the first liquid chamber through the filter since, in the second liquid chamber, the filter is in contact with the gas holding area. Therefore, by forming a third liquid chamber having a liquid holding portion adjacent to the gas in the gas holding area, the liquid held in the third liquid chamber can smoothly flow in the first liquid chamber through a contact portion with the filter even in case of gas inflation or vapor pressure increase in the second liquid chamber, whereby the liquid in the second liquid chamber is not unexpectedly pushed out from the downstream end of the liquid supply path. The contact area of the liquid held in the third liquid chamber with the filter can be maintained constant regardless of the liquid amount held in the third liquid chamber by providing the third liquid chamber with a desired number of liquid holding members. The liquid holding on the liquid holding member can be achieved by utilizing the surface tension of the liquid.




According to the present invention there is also provided an ink jet recording head provided with a first liquid chamber and a second liquid chamber separated by a filter and respectively containing liquid therein, and a liquid discharge portion connected directly with the second liquid chamber and adapted to discharge the liquid supplied from the second liquid chamber, in which the liquid can be supplied from the first liquid chamber to the second liquid chamber through the filter, comprising:




a member for dividing a portion of the filter in contact with the second liquid chamber into a gas holding area and a liquid holding area;




wherein the gas held in the gas holding area is in communication with the gas present in the second liquid chamber.




Also in the ink jet recording head of the present invention, since there are provided the first and second liquid chambers separated by the filter and the member for dividing the portion of the filter in contact with the second liquid chamber into the gas holding area and the liquid holding area in a state capable of liquid supply from the first liquid chamber to the second liquid chamber and the gas held in the gas holding area is in communication with the gas present in the second liquid chamber, it is rendered possible to resolve the drawbacks resulting from the bubbles generated at the downstream side of the filter as in the aforementioned liquid supply system of the present invention, thereby enabling stable ink discharge from the discharge portion.




It is thus rendered possible to prevent deterioration in the recording quality such as discharge failure or so-called ink dripping, resulting from the bubbles, and also to reduce the number of recovery operations for eliminating the bubbles accumulated under the filter.




Also a configuration in which the liquid held in the liquid holding area is in communication with the second liquid chamber whereby the liquids in the first and second liquid chambers can reversibly move enables stable liquid discharge from the discharge portion even when the gas volume in the second liquid chamber repeats inflation and contraction.




According to the present invention, there is also provided an ink jet recording apparatus comprising:




support means for supporting the aforementioned ink jet recording head of the present invention;




suction means for forcedly sucking ink in the ink jet recording head from a liquid discharge portion thereof; and




a valve mechanism for opening or closing of a first liquid chamber of the ink jet recording head to or from the exterior thereof.




In the ink jet recording apparatus of the present invention, being provided with the suction means and the valve mechanism, the suction means is at first activated in a state where the valve mechanism is closed, to reduce the pressure in the ink jet recording head to a predetermined value, and then the valve mechanism is opened to fill the first and second liquid chambers with liquid of respectively appropriate amounts, even when gas is accumulated in the first and second liquid chambers to reduce the liquid amounts therein.




According to the present invention there is also provided a liquid filling method for use in a liquid supply system in which the first and second liquid chambers respectively holding liquid are separated by a filter while the liquid is held at the downstream side of the second liquid chamber in the liquid supply direction from the first liquid chamber to the second liquid chamber and gas is present in the gas holding area for separating the filter and the liquid in the second liquid chamber in a state capable of liquid supply from the upstream side of the filter to the downstream side thereof, the method comprising:




a step of closing the first liquid chamber from the exterior;




a step of executing suction from the downstream side of the second liquid chamber in a state where the first liquid chamber is closed, thereby reducing the pressure of the first and second liquid chambers; and




a step, after the pressure decrease of the first and second liquid chambers, of opening the first liquid chamber to the exterior.




It is thus rendered possible to fill the first and second liquid chambers with liquid of respectively appropriate amounts, even when gas is accumulated in the first and second liquid chambers to reduce the liquid amounts therein.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view showing the schematic configuration of an ink jet recording apparatus constituting a first embodiment of the present invention;





FIG. 2

is a view showing an ink supply path for a color, in the ink jet recording apparatus shown in

FIG. 1

;





FIGS. 3A

,


3


B,


3


C and


3


D are views showing the behavior of gas and ink in the liquid path of an ink supply unit, in case of gas introduction into a main tank in the ink supply path shown in

FIG. 2

;





FIG. 4

is a view showing a pressure formed by a water head on the nozzle, in the ink supply path shown in

FIG. 2

;





FIG. 5

is a detailed cross-sectional view showing the internal configuration of the recording head shown in

FIG. 2

;





FIG. 6

is a perspective view, seen from above, of the recording head shown in

FIG. 2

, in a state where an upper wall of a sub tank and a part of a filter are removed;





FIG. 7

is a cross-sectional view similar to

FIG. 5

, showing the ink flow from the sub tank to the liquid chamber;





FIG. 8

is a cross-sectional view similar to

FIG. 5

, showing the flow of ink and gas in a closed state;





FIG. 9

is a view showing the ink supply path of an ink jet recording apparatus constituting a second embodiment of the present invention;





FIG. 10

is a detailed cross-sectional view showing the internal configuration of the recording head shown in

FIG. 9

;





FIG. 11

is a perspective view, seen from above, of the recording head shown in

FIG. 9

, in a state where an upper wall of a sub tank and a part of a filter are removed;





FIG. 12

is a view showing a variation of the recording head shown in

FIG. 9

;





FIG. 13

is a lateral view showing the relationship between a groove structure and the filter in the upper end portion of a groove structure applicable in the present invention;





FIGS. 14A

,


14


B and


14


C are lateral views showing the joint structure of a filter applicable to the present invention;





FIG. 15

is a perspective view showing an example of the groove structure applicable to the present invention;





FIGS. 16

to


22


are perspective views showing other examples of the groove structure applicable to the present invention;





FIG. 23

is a chart showing the relationship between an aperture width and an ink elevation height in various forms of the groove structure applicable to the present invention;





FIG. 24

is a perspective view of a cover member constituting the groove structure of the present invention; and





FIG. 25

is a view showing an ink supply system in an ink jet recording apparatus of conventional tube supply system.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




Now the present invention will be clarified in detail by embodiments thereof, with reference to the accompanying drawings.




[First Embodiment]





FIG. 1

is a perspective view showing schematic configuration of an ink jet recording apparatus constituting a first embodiment of the present invention.




The ink jet recording apparatus shown in

FIG. 1

is a recording apparatus of serial type, capable of repeating the reciprocating motion (main scanning) of an ink jet head


201


and the conveying (sub scanning) of a recording sheet (recording medium) S such as an ordinary recording paper, a special paper, an OHP film sheet etc. by a predetermined pitch and causing the ink jet head


201


to selectively discharge ink in synchronization with these motions for deposition onto the recording sheet S, thereby forming a character, a symbol or an image.




Referring to

FIG. 1

, the ink jet head


201


is detachably mounted on a carriage


201


which is slidably supported by two guide rails and is reciprocated along the guide rails by drive means such as an unrepresented motor. The recording sheet S is conveyed by a conveying roller


203


in a direction crossing the moving direction of the carriage


202


(for example a perpendicular direction A), so as to be opposed to an ink discharge face of the ink jet head


201


and to maintain a constant distance thereto.




The ink jet head


201


is provided with plural nozzle arrays for discharging inks of respectively different colors. Corresponding to the colors of the inks discharged from the ink jet head


201


, plural independent ink tanks


204


are detachably mounted on an ink supply unit


205


. The ink supply unit


205


and the ink jet head


201


are connected by plural ink supply tubes


206


respectively corresponding to the ink colors, and, by mounting the main tank


204


on the ink supply unit


205


, the inks of respective colors contained in the main tank


204


can be independently supplied to the nozzle arrays in the ink jet head


201


.




In a non-recording area which is within the reciprocating range of the ink jet head


201


but outside the passing range of the recording sheet S, there is provided a recovery unit


207


so as to be opposed to the ink discharge face of the ink jet head


201


.




In the following there will be explained, with reference to

FIG. 2

, the detailed configuration of the ink supply system of the ink jet recording apparatus.

FIG. 2

is a view showing the ink supply path of the ink jet recording apparatus shown in

FIG. 1

, showing the path for a color for the purpose of simplicity.




At first there will be explained the recording head


201


.




Ink is supplied to the recording head


201


, from a connector insertion port


201




a


to which hermetically connected is a liquid connector provided on the end of the ink supply tube


206


. The connector insertion port


201




a


communicates with a sub tank


201




b


formed in the upper part of the recording head


201


. In the lower side of the sub tank


201




b


in the direction of gravity, there is formed a liquid chamber


201




f


for direct ink supply to a nozzle portion having plural nozzles


201




g


arranged in a parallel manner. The sub tank


201




b


and the liquid chamber


201




f


are separated by a filter


201




c


, but, at the boundary of the sub tank


201




b


and the liquid chamber


201




f


there is formed a partition portion


201




e


having an aperture


201




d


, and the filter


201




c


is provided on such partition portion


201




e.






In the above-described configuration, the ink supplied from the connector insertion port


201




a


to the recording head


201


is supplied through the sub tank


201




b


, filter


201




c


and liquid chamber


201




f


to the nozzles


201




g


. The path between the connector insertion port


201




a


to the nozzles


201




g


is maintained in a hermetically tight condition to the atmosphere.




On the upper face of the sub tank


201




b


there is formed an aperture which is covered by a dome-shaped elastic member


201




h


. The space surrounded by the elastic member


201




h


changes volume according to the pressure in the sub tank


201




b


and has a function of adjusting the pressure in the sub tank


201




b


as will be explained later.




The nozzle


201




g


has a tubular structure of a cross-sectional width of about 20 μm and discharges ink by giving discharge energy to the ink therein, and, after the ink discharge, the interior of the nozzle is filled with ink by the capillary force thereof. Normally the ink discharge is repeated with a cycle time of 20 kHz or higher, thereby achieving fine and high-speed image formation. For supplying the ink in the nozzle


201




g


with the discharge energy, the recording head


201


is provided, in each nozzle


201




g


, with energy generation means. In the present embodiment, the energy generating means is composed of a heat generating resistor (electrothermal converting element) for heating the ink in the nozzle


201




g


, and a command from a head control unit (not shown) for controlling the drive of the recording head


201


selectively drives the heat generating resistors thereby inducing film boiling of the ink in the desired nozzle


201




g


, thereby discharging ink from the nozzle


201




g


by the pressure of a bubble formed by such film boiling.




The nozzle


201




g


is positioned with the ink discharging end (discharge port) downwards, but is not provided with a valve mechanism for opening or closing the discharge port, and the ink fills the nozzle


201




g


by forming a meniscus at the discharge port. For this purpose, the interior of the recording head


201


, particularly the interior of the liquid chamber


201




f


, is maintained at a negative pressure relative to the atmospheric pressure. However, if the negative pressure is excessively small, the meniscus at the ink discharge port may be broken in case a foreign substance or ink sticks to the end of the nozzle


201




g


, whereby ink may leak from the nozzle


201




g


. On the other hand, if the negative pressure is excessively large, the force retracting the ink into the nozzle


201




g


(or liquid chamber


201




f


) becomes stronger than the energy supplied to the ink at the discharge, thereby resulting in a discharge failure. Consequently the negative pressure in the liquid chamber


201




f


is maintained within a certain range somewhat lower than the atmospheric pressure. Such negative pressure, though dependent on the number and cross section of the nozzles


201




g


and the performance of the heat generating resistor, is preferably within a range from −20 mAq (about −0.0020 atm=−0.2027 kPa) to −200 mmAq (about −0.0200 atm=−2.0265 kPa) (wherein the specific gravity of ink being assumed equal to that of water) according to the experimental results of the present inventors.




In the present embodiment, the ink supply system


205


and the recording head


201


are connected by the ink supply tube


206


and the position of the recording head


201


relative to the ink supply unit


205


can be relatively freely selected, so that the recording head


201


is positioned higher than the ink supply unit


205


in order to maintain the interior of the recording head


201


at a negative pressure. Such height will be explained later in more details.




The filter


201




c


is composed of a metal mesh having fine holes not exceeding 10 μm and smaller than the cross sectional width of the nozzle


201




g


, in order to prevent leak of a substance that may clog the nozzle


201




g


, from the sub tank


201




b


to the liquid chamber


201




f


. The filter


201




c


has such a property that, when brought into contact with liquid on one surface thereof, each fine hole forms a meniscus of the ink by the surface tension thereof, whereby the gas flow through the filter becomes difficult. As the fine hole becomes smaller, the meniscus becomes stronger and the gas flow becomes more difficult.




In such filter


201




c


as employed in the present embodiment, the pressure required for passing gas is about 0.1 atm (10.1325 pKa: experimental value). Therefore, if gas is present in the liquid chamber


201




f


, present in the downstream side of the filter


201




c


in the ink moving direction in the recording head, the gas cannot pass the filter


201




c


by the floating force of the gas itself, and the gas in the liquid chamber


201




f


remains therein. The present embodiment utilizes this phenomenon in such a manner that the liquid chamber


201




f


is not completely filled with the ink but contains a gas layer between the ink in the ink chamber


201




f


and the filter


201




c


, and the liquid of a predetermined amount is contained in the liquid chamber


201




f


in such a manner that the gas in such gas holding area separates the ink in the liquid chamber


201




f


and the filter


201




c


. The gas in such gas holding area is so present in the liquid chamber


201




f


as to inhibit bubble movement from the nozzle


201




g


to the filter


201




c.






The minimum necessary ink amount in the liquid chamber


201




f


is an amount required for filling the nozzle


201




g


with the ink. If gas enters the nozzle


201




g


from the liquid chamber


201




f


, the nozzle


201




g


after ink discharge cannot achieve ink replenishment, thus inducing discharge failure. Consequently the interior of the nozzle


201




g


has to be always filled with the ink.




The upper surface of the filter


201




c


is in contact with the ink in the sub tank


201




b


, and the ink can communicate through the filter


201




c


only in an area where the ink on the upper surface of the filter


201




c


is in contact with that on the lower surface thereof, so that such communicable area constitutes the effective area of the filter


201




c


. As already explained in the description of the prior art, the pressure loss in the filter


201




c


depends on the effective area thereof. In the present embodiment, the filter


201




c


of a large area is positioned substantially horizontally in the operating state of the recording head


201


and the entire upper surface of the filter


201




c


is maintained in contact with the ink in order to increase the communicating area with the ink present at the lower surface of the filter, thereby maximizing the effective area thereof and reducing the pressure loss.




The pressure adjusting chamber


201




i


reduces its volume as the internal negative pressure increases, and can be composed, as in the present embodiment, of an elastic member


201




h


which is preferably composed of a rubber material or the like. The elastic member


201




h


can also be replaced by a combination of a plastic sheet and a spring. The volume of the pressure adjusting chamber


201




i


, being variable according to the ambient temperature in the operating state of the recording head


201


and the volume of the sub tank


201




b


, is selected as about 0.5 ml in the present embodiment.




In the absence of the pressure adjusting chamber


201




i


, the pressure in the sub tank


201




b


is subjected directly to the resistance by the pressure loss when the ink goes through the main tank


204


, ink supply unit


205


and ink supply tube


206


. Therefore, in case of so-called high-duty ink discharge operation such as ink discharge from all the nozzles


201




g


, the ink amount supplied to the recording head


201


becomes deficient relative to the discharged ink amount, whereby the negative pressure increases rapidly. If the negative pressure of the nozzle


201




g


exceeds the aforementioned limit value of −200 mmAq (about −2.0265 kPa), the discharge becomes stable and unsuitable for image formation.




In the recording apparatus of serial scan type as in the present embodiment, even in the image formation with a high duty ratio, the ink discharge is interrupted at the inversion of the drive of the carriage


202


(FIG.


1


). The pressure adjusting chamber


201




i


performs a function as in a capacitor of reducing the volume during the ink discharge to relax the increase in the negative pressure in the sub tank


201




b


and restoring the volume at the inversion of the movement of the carriage.




As an example, let us consider a case where the rate of change of the negative pressure with respect to the volume reduction in the pressure adjusting chamber


201




i


is K=−1.01325 kPa/ml, while the sub tank


201




b


has a volume Vs=2 ml and the supplied ink is deficient by ΔV=0.05 ml in comparison with the discharged ink. In such case, if the pressure adjusting chamber


201




i


is absent, based on the law of “PV=constant”, the negative pressure in the sub tank


201




i


changes by ΔP=Vs/(Vs+ΔV)−1=−2.47 kPa, whereby the aforementioned limit value is exceeded and the discharge becomes unstable. On the other hand, in the presence of the pressure adjusting chamber


201




i


, ΔP=K×ΔV=−0.51 whereby the increase of the negative pressure can be suppressed and the discharge can be stabilized.




As explained in the foregoing, the pressure adjusting chamber


201




i


allows to stabilize the ink discharge and to suppress the influence of the pressure loss in the ink supply path from the ink tank


204


to the recording head


201


. Therefore the ink supply tube


206


moving along with the carriage


202


can also be of a smaller diameter, thus contributing to reduce the moving load of the carriage


202


.




In the following there will be given an explanation on the ink supply unit


205


and the main tank


204


.




The main tank


204


is constructed detachably mountable on the supply unit


205


and is provided, on the bottom portion thereof, with an ink supply aperture tightly closed with a rubber stopper


204




b


and an air introducing aperture tightly closed with a rubber stopper


204




c


. The main tank


204


is singly an air-tight container, and the ink


209


is directly contained in the main tank


204


.




On the other hand, the ink supply unit


205


is provided with an ink supply needle


205




a


for deriving ink


209


from the main tank


204


, and an air introducing needle


205




b


for introducing air into the main tank


204


. The ink supply needle


205




a


and the air introducing needle


205




b


are both hollow needles and are positioned, with the front ends upwards, corresponding to the ink supply port and the air introducing port of the main tank


204


. When the main tank


204


is mounted on the ink supply unit


205


, the ink supply needle


205




a


and the air introducing needle


205




b


respectively penetrate the rubber stoppers


204




b


,


204




c


, thus entering the interior of the main tank


204


.




The ink supply needle


205




a


is connected, through a liquid path


205




c


, a shut-off valve


210


and a liquid path


205




d


, to the ink supply tube


206


. The air introducing needle


205




b


is connected, through a liquid path


205




e


, a buffer chamber


205




f


and an air communicating aperture


205




g


, to the external air. The liquid path


205




c


lowest in height within the ink supply path from the ink supply needle


205




a


to the ink supply tube


206


and the liquid path


205




e


highest in height within the path from the air introducing needle


205




b


to the air communicating aperture


205




g


are positioned same in height. The ink supply needle


205




a


and the air introducing needle


205




b


in the present embodiment are composed of thick needles of an internal diameter of 1.6 mm and have needle holes of a diameter of 11.5 mm in order to suppress the flow resistance of the ink.




The shut-off valve


210


is provided with a rubber diaphragm


210




a


which is displaced to open or close the connection between the two liquid paths


205




c


,


205




d


. On the upper surface of the diaphragm


210




a


, there is mounted a tubular spring holder


210




b


containing therein a compression spring


210




c


which serves to press the diaphragm


210




a


thereby closing the connection between the liquid paths


205




c


,


205




d


. The spring holder


210




b


is provided with a flange, engaging with a lever


210




d


to be operated by a link


207




e


of a recovery unit


207


to be explained later. By activating the lever


210




d


to lift the spring holder


210




b


against the spring force of the compression spring


210




c


, the connection between the liquid paths


205




c


,


205




d


is opened. The shut-off valve


210


is opened during the ink discharge from the recording head


201


but is closed during a stand-by state or in a non-operated state, and is opened and closed in synchronization with the recovery unit


207


during an ink filling operation to be explained later.




The above-described configuration of the ink supply unit


205


is provided for each main tank


204


, namely for each ink color, except for the lever


210




d


. The lever


210




d


is provided common to all colors and simultaneously opens or closes the shut-off valves


210


for all the colors.




In the above-described configuration, when the ink is consumed in the recording head


201


, the resulting negative pressure causes the ink to be from time to time supplied from the main tank


204


to the recording head


201


through the ink supply unit


205


and the ink supply tube


206


. At this operation, air of an amount same as that of the supplied from the main tank


204


is introduced into the main tank


204


from the air communicating aperture


205




g


through the buffer chamber


205




f


and the air introducing needle


205




b.






The buffer chamber


205




f


provides a space for temporarily holding the ink flowing out of the main tank


204


by the inflation of gas in the main tank


204


, and the lower end of the air introducing needle


205




b


is positioned at the bottom of the buffer chamber


205




f


. In case the gas in the main tank


204


expands by an increase in the ambient temperature or a decrease in the external pressure during a stand-by state or a pause of the ink jet recording apparatus, since the shut-off valve


210


is closed, the ink in the main tank


204


flows out to the buffer chamber


205




f


through the air introducing needle


205




b


and the liquid path


205




e


. On the other hand, the gas in the main tank


204


contracts for example by a decrease in the ambient temperature, the ink flowing out in the buffer chamber


205




f


returns to the main tank


204


. Also in case the recording head discharges ink while the ink is present in the buffer chamber


205




f


, at first the ink in the buffer chamber


205




f


returns to the main tank


204


and the gas is introduced into the main tank


204


after the ink in the buffer chamber


205




f


is depleted.




The volume Vb of the buffer chamber


205




f


is so selected as to satisfy the environmental use condition of the product. For example, for a product to be used within a temperature range of 5° C. (278K) to 35° C. (308K), and for a main tank


204


having a volume of 100 ml, the volume Vb is selected as 100×(308−278)/308=9.7 ml or larger.




Now there will be explained, with reference to

FIGS. 3A

to


3


D, the basic water head of the main tank


204


and the behavior of gas and ink in the liquid path of the ink supply unit


205


at the gas introduction into the main tank


204


.





FIG. 3A

shows a normal state capable of ink supply from the main tank


204


to the recording head


201


(cf. FIG.


2


). In this state, the interior of the main tank


204


is maintained air-tight except for the buffer chamber


205




f


and is maintained at a negative pressure relative to the atmospheric pressure, and the front end


209




a


of the ink remains in the liquid path


205




e


. The front end of the ink is in contact with air and is therefore at the atmospheric pressure (=0 mmAq). The liquid path


205




c


in which the front end


209




e


of the ink is positioned and the liquid path


205




e


communicating with the ink supply tube


205


(cf.

FIG. 2

) are of a same height and mutually communicate only through the ink, so that the pressure of the liquid path


205




e


is also the atmospheric pressure. This pressure is determined only by the height relationship of the front end


209




a


of the ink and the liquid path


205




c


and is influenced by the amount of ink


209


in the main tank


204


.




As the ink in the main tank


204


is consumed, the front end


209




a


of the ink gradually move toward the air introducing needle


205




b


as shown in

FIG. 3B

, and, upon reaching a position directly below the air introducing needle


205




b


, the air floats as a bubble in the air introducing needle


205




b


as shown in FIG.


3


C and introduced into the main tank


204


. In return, the ink in the main tank


204


enters the interior of the air introducing needle


205




b


, whereby the front end


209




a


of the ink returns to the original state shown in FIG.


3


A.





FIG. 3D

shows a state where ink is accumulated in the buffer chamber


205




f


. In this state, the front end


209




a


of the ink is at a position in the middle of the height of the buffer chamber


205




f


and higher than the liquid path


205




c


by h1 (mm) so that the pressure in the liquid path


205




c


is −h1 (mmAq).




Thus, in the present embodiment, the negative pressure Pn applied to the lower end of the nozzle


201




g


(cf.

FIG. 2

) by the water head is Pn≃−9.8×(h2−h3−h4)Pa in the normal state or −9.8×(h2−h1−h3−h4)Pa in a state where the ink is accumulated in the buffer chamber


205




f


, wherein h2 (mm) is the height from the liquid path


205




c


to the upper face


209




b


in the sub tank


201




b


as shown in

FIG. 4

, h3 (mm) is the height from the filter


201




c


to the upper face


209




b


in the sub tank


201




b


and h4 (mm) is the height from the lower end of the nozzle


201




g


to the upper face


209




c


in the liquid chamber


201




f


. The value Pn is so selected as to be contained within the aforementioned negative pressure range of (−0.2027 to −2.0265 kPa).




Again referring to

FIG. 2

, the ink supply needle


205




a


and the air introducing needle


205




b


are connected to a circuit


205




h


for measuring the electrical resistance of the ink, thereby detecting the presence or absence of ink in the main tank


204


. The circuit


205




h


detects an electrically closed state in the presence of ink in the main tank


204


since a current flows in the circuit


205




h


through the ink in the main tank


204


, but an electrically open state in the absence of ink or in case the main tank


204


is not mounted. Since the detected current is very weak, the insulation between the ink supply needle


205




a


and the air introducing needle


205




b


is important. In the present embodiment, the path from the ink supply needle


205




a


to the recording head


201


is made completely independent from the path from the air introducing needle


205




b


to the air communicating aperture


205




g


, whereby it is rendered possible to measure the electrical resistance of the ink only in the main tank


204


.




In the following there will be given an explanation on the recovery unit


207


.




The recovery unit


207


serves to suck ink and gas from the nozzle


201




g


and to operate the shut-off valve


210


, and is provided with a suction cap


207




a


for capping the ink discharge face (containing aperture of the nozzle


201




g


) of the recording head


201


, and a link


207




e


for operating the lever


210




d


of the shut-off valve


210


.




The suction cap


207




a


is composed of an elastic member such as of rubber at least in a portion coming into contact with the ink discharge face, and is rendered movable between a position for tightly closing the ink discharge face and a position retracted from the recording head


201


. The suction cap


207




a


is connected to a tube having a suction pump


207




c


of tube pump type in an intermediate position thereof, and is capable of continuous suction by activating the suction pump


207




c


by a pump motor


207




d


. It is also possible to vary the suction amount by changing the revolution of the pump motor


207




d


. The present embodiment employs a suction pump


207




c


capable of reducing pressure to −0.8 atm (81.060 kPa).




A cam


207




b


for activating the suction cap


207




a


is rotated by a cam control motor


207




g


, in synchronization with a cam


207




f


for operating the link


207




e


. The timing of the cam


207




b


coming into contact with the suction cap


207




a


in the positions a to c corresponds to the timing of the cam


207




f


coming into contact with the link


207




e


in the positions a to c. In the position a, the cam


207




b


separates the suction cap


207




a


from the ink discharge face of the recording head


201


, and the cam


207




f


presses the link


207




e


to elevate the lever


210




d


, thereby opening the valve


210


. In the position b, the cam


207




g


brings the suction cap


207




a


in contact with the ink discharge face, and the cam


207




f


pulls back the link


207




e


to close the valve. In the position c, the cam


207




b


brings the suction cap


207




a


in contact with the ink discharge face, and the cam


207




f


presses the link


207




e


to open the valve.




In the recording operation, the cams


207




b


,


207




f


are maintained in a state of the position a to enable ink discharge from the nozzle


201




g


and ink supply from the main tank


204


to the recording head


201


. In a non-operating state including a stand-by state and a pause, the cams


207




b


,


207




f


are maintained in a state of the position b to prevent drying of the nozzle


201




g


and ink flow-out from the recording head


201


(particularly in case the apparatus itself is moved, the apparatus may be inclined to induce ink flow-out). The position c of the cams


207




b


,


207




f


is employed in an ink filling operation to the recording head


201


to be explained later.




In the foregoing there has been explained the ink supply path from the main tank


204


to the recording head


201


, but the configuration shown in

FIG. 2

eventually results in gas accumulation in the recording head


201


over a prolonged period.




In the sub tank


201




b


, there are accumulated gas permeating through the ink supply tube


206


and the elastic members


201




h


, and gas dissolved in the ink. The gas permeating through the ink supply tube


206


and the elastic member


201




h


can be prevented by employing a material of high gas barrier property, but such material is expensive. In the mass produced consumer equipment, it is not easy to use expensive material in consideration of the cost. In the present embodiment, the ink supply tube


206


is composed of a polyethylene tube of low cost and high flexibility, and the elastic member


201




h


is composed of butyl rubber.




On the other hand, in the liquid chamber


201




f


, there is gradually accumulated gas, because of a phenomenon that the bubble generated in the ink discharge from the nozzle


201




g


, namely the bubble generated in the ink in the nozzle


201




g


in the recording operation but thereafter not re-dissolved in the ink at the contraction of the bubble and returning to the liquid chamber


201




f


, or a phenomenon that the fine bubbles present in the ink gather to form a larger bubble by an increase of the ink temperature in the nozzle


201




g.






According to the experiment of the present inventors, in the configuration of the present embodiment, the gas accumulates by about 1 ml/month in the sub tank


201




b


and about 0.5 ml/month in the liquid chamber


201




f.






The gas accumulation in the sub tank


201




b


and the liquid chamber


201




f


reduces the ink amount therein. In the sub tank


201




b


, an ink deficiency causes exposure of the filter


201




c


to the gas to reduce the effective area thereof, thereby increasing the pressure loss thereof and eventually disabling ink supply to the liquid chamber


201




f


. Also an ink deficiency in the liquid chamber


201




f


causes exposure of the upper end of the nozzle


201




g


to the gas, thereby rendering ink supply thereto impossible. In this manner, a fatal situation arises unless each of the sub tank


201




b


and the liquid chamber


201




f


contains ink at least equal to a predetermined amount.




Therefore, by filling each of the sub tank


201




b


and the liquid chamber


201




f


with an appropriate amount of ink at a predetermined interval, the ink discharging performance can be stably maintained over a long period, even without employing the material of high gas barrier property. For example, in the present embodiment, the sub tank


201




b


and the liquid chamber


201




f


may be filled with ink every month by an amount equal to the accumulating gas amount per month plus fluctuation in the filling.




The ink filling into the sub tank


201




b


and the liquid chamber


201




f


is executed utilizing the suction operation by the recovery unit


207


. More specifically, the suction pump


207




c


is activated in a state where the ink discharge face of the recording head


201


is tightly closed by the suction cap


207




a


, thereby sucking the ink in the recording head


201


from the nozzle


201




g


. However, in simple ink suction from the nozzle


201




g


, ink of an amount approximately equal to the ink sucked from the nozzle


201




g


flows from the sub tank


201




b


into the liquid chamber


201




f


and ink of an amount approximately equal to that flowing out of the sub tank


201




b


flows from the main tank


204


into the sub tank


201




b


, so that the situation does not change much from the state prior to suction.




Therefore, in the present embodiment, in order to fill the sub tank


201




b


and the liquid chamber


201




f


separated by the filter


201




c


respectively with appropriate amounts of ink, the sub tank


201




b


and the liquid chamber


201




f


are reduced to a predetermined pressure utilizing the shut-off valve


210


, thereby setting the volumes of the sub tank


201




b


and the liquid chamber


201




f.






In the following there will be explained the ink filling operation of the sub tank


201




b


and the liquid chamber


201




f


, and the volume setting thereof.




In the ink filling operation, at first the carriage


202


(cf.

FIG. 1

) is moved to a position where the recording head


120


is opposed to the suction cap


207




a


, and the cam control motor


207




g


of the recovery unit


207


is activated to rotate the cams


207




b


,


207




f


to a state where the position b for respective contacts with the suction cap


207




a


and the link


207




e


. Thus the ink discharge face of the recording head


201


is closed by the suction cap


207




a


, and the shut-off valve


210


closes the ink path from the main tank


204


to the recording head


201


.




The pump motor


207




d


is activated in this state to execute suction by the suction pump


207




c


from the suction cap


207




a


. This suction operation sucks ink and gas, remaining in the recording head


201


, through the nozzle


201




g


, thereby reducing the pressure in the recording head


201


. The suction pump


207




c


is stopped when the suction reaches a predetermined amount, and the cam control motor


207




g


is activated to rotate the cams


207




b


,


207




f


to a state where the position c in contact with the suction cap


207




a


and the link


207




e


. Thus the ink discharge face remains in the closed state by the suction cap


207




a


but the shut-off valve


210


is opened. The suction amount of the suction pump


207




c


is so selected as to bring the interior of the recording head


201


to a predetermined pressure required for filling the sub tank


201




b


and the liquid chamber


201




f


with ink of appropriate amounts, and can be determined by calculation or by experiment.




As the internal pressure of the recording head


201


is reduced, ink flows into the recording head


201


through the ink supply tube


206


, thereby filling each of the sub tank


201




b


and the liquid chamber


201




f


with ink. The amount of ink filling corresponds to a volume required for returning the sub tank


201




b


and the liquid chamber


201




f


to the atmospheric pressure, and is determined by the volume and pressure thereof.




The ink filling into the sub tank


201




b


and the liquid chamber


201




f


is completed in about 1 second after opening the shut-off valve


210


. Upon completion of the ink filling, the cam control motor


207




g


is driven to rotate the cams


207




g


,


207




f


to a state where the position a is in contact with the suction cap


207




a


and the link


207




e


. In this manner the suction cap


207




a


is separated from the recording head


201


, and the suction pump


207




c


is activated again to suck the ink remaining in the suction cap


207




a


. As the shut-off valve


210


is open in this state, the recording head


201


can discharge ink to form a character or an image on the recording sheet S (cf. FIG.


1


). In a stand-by state or in a pause, the cam control motor


207




g


is activated again to rotate the cams


207




b


,


207




f


to a state where the position b is in contact with the suction cap


207




a


and the link


207




e


, thereby closing the ink discharge face of the recording head


201


with the suction cap


207




a


and closing the shut-off valve


210


.




Unless the ink in the sub tank


201




b


and the liquid chamber


201




f


becomes deficient over a long period, it is not necessary to frequently execute the suction operation by the recovery unit


207


, so that the chances of wasting ink can be reduced. Also the ink filling, if required in both of the sub tank


201




b


and the liquid chamber


201




f


, can be achieved in a single filling operation, thereby allowing to economize the ink.




Now, let us consider the relationship among the volume V1 of the sub tank


201




b


, the ink amount S1 to be filled therein and the pressure P1 (relative to the atmospheric pressure) therein. Based on the law “PV=constant”, the sub tank


201




b


can be filled with the ink of an appropriate amount in the filling operation, by setting a relation V1=S1/|P1|. Similarly, for the volume V2 of the liquid chamber


201




f


, the ink amount S2 to be filled therein and the pressure P2 (relative to the atmospheric pressure) therein, the liquid chamber


201




f


can be filled with the ink of an appropriate amount in the filling operation, by setting a relation V2=S2/|P2|.




Also the filter


201




c


separating the sub tank


201




b


and the liquid chamber


201




f


has a fine mesh structure and the gas flow therein is difficult in a state having a meniscus therein, as explained in the foregoing. For a pressure Pm required for gas permeation through the filter


201




c


having such meniscus, in case of suction from the nozzle


201




g


by the recovery unit


207


, the pressure P2 in the liquid chamber


201




f


becomes lower by Pm than the pressure P1 in the sub tank


201




b


since the gas has to come from the sub tank


201




f


through the filter


201




c


. Thus, by employing this relationship in determining the volumes of the sub tank


201




b


and the liquid chamber


201




f


, the condition of the filling operation can be easily determined.




In the following there will be explained specific examples of the aforementioned filling operation and the volume setting.




It is assumed that the ink filling is executed every month, and the gas accumulating amount per month is 1 ml in the sub tank


201




b


and 0.5 ml in the liquid chamber


201




f


. It is also assumed that the ink amount required in the sub tank


201




b


not to expose the filter


201




c


to gas is 0.5 ml while the ink amount required in the liquid chamber


201




f


not to expose the nozzle


201




g


to gas is 0.5 ml, and the fluctuation in the ink filling amount is 0.2 ml both in the sub tank


201




b


and the liquid chamber


201




f


. Thus the ink amount to be filled in a single filling operation is the sum of these amounts, and is 1.7 ml in the sub tank


201




b


and 1.2 ml in the liquid chamber


201




f.






The reduced pressure in the recording head


201


is selected within the ability of the recovery unit


207


. In the present embodiment, since the power limit of the suction pump


207




c


is −0.8 atm (81.060 kPa), the suction amount of the suction pump


207




c


is experimentally so determined that the pressure in the suction cap


207




a


can reach −0.5 atm (−50.6625 kPa) with a margin, and is controlled by the revolution of the pump motor


207




d.






As the pressure required for gas permeation against the meniscus in the nozzle


201




g


is experimentally −0.05 atm (−5.06625 kPa), there is generated a difference between the pressures of the suction cap


207




a


and the liquid chamber


201




f


by the resistance of the nozzle


201




g


, whereby the pressure in the liquid chamber


201




f


becomes higher than that in the suction cap


207




a


by 0.05 atm (5.06615 kPa). Similarly, as the pressure required for gas permeation against the meniscus in the filter


201




c


is experimentally −0.1 atm (−10.1325 kPa), there is generated a difference between the pressures of the liquid chamber


201




f


and the sub tank


201




b


by the resistance of the filter


201




c


, whereby the pressure in the sub tank


201




b


becomes higher than that in the liquid chamber


201




f


by 0.1 atm (10.1325 kPa). Therefore, by setting the pressure in the suction capo


207




a


at −0.5 atm (−50.6625 kPa), the pressure in the liquid chamber


201




f


becomes −0.45 atm (−45.5963 kPa) while that in the sub tank


201




b


becomes −0.35 atm (−35.4638 kPa).




In order to fill the sub tank


201




b


with ink of 1.7 ml, the volume V1 thereof is so selected that the internal pressure becomes −0.35 atm (−35.4638 kPa) when ink of 1.7 ml is sucked from the sub tank


201




b


having an internal pressure of about 1 atm (101.325 kPa). Thus, V1=1.7/0.35=4.85 ml. Similarly the volume V2 of the liquid chamber


201




f


can be determined as V2=1.2/0.45=2.67 ml.




After the internal pressure of the recording head


201


is reduced under the foregoing conditions, the shut-off valve


210


is opened whereby the ink flows into the recording head


201


in a reduced pressure state. More specifically, at first the ink flows into the sub tank


201




b


whereby the gas inflated to the volume V1 under reduced pressure is restored almost to the atmospheric pressure. The gas volume V1a in the sub tank


201




b


in such state is given by V1a=V1×(1−0.35)=3.15 ml, and the filling is terminated when ink in an amount of V1−V1a=1.7 ml is filled into the sub tank


201




b


. Similarly, in the liquid chamber


201




f


, the ink flows from the sub tank


201




b


whereby the gas inflated to the volume V2 under reduced pressure is restored almost to the atmospheric pressure. The gas volume V2a in the liquid chamber


201




f


in such state is given by V2a=V2×(1−0.45)=1.47 ml, and the filling is terminated when ink in an amount of V2−V2a=1.2 ml is filled into the liquid chamber


201




f.






Thus, by setting the volumes and reduced pressures of the sub tank


201




b


and the liquid chamber


201




f


in the above-described manner, it is rendered possible to fill the sub tank


201




b


and the liquid chamber


201




f


, separated by the filter


201




c


, with the ink of appropriate amounts in a single filling operation, so that the recording head can be properly operated over a long period even in a situation where gas is accumulated therein.




Also, as explained in the foregoing, gas of the gas holding area is present between the filter


201




c


and the upper surface of the ink in the liquid chamber


201




f


, but the gas volume in such gas holding area can be arbitrarily set by the suction pressure in the suction operation of the recovery unit


207


. Thus, the gas in the gas holding area is manageable in the volume thereof.




It is thus rendered possible to significantly improve the reliability against the discharge failure resulting from the bubble generated between the filter and the nozzle. More specifically, against the conventional drawback that the effective area of the filter changes (decreases) by the presence of the unmanageable bubbles under the filter, the present embodiment provides a configuration where the lower surface of the filter


201




c


is in contact, from the beginning, with the gas of the gas holding area in the managed portion (aperture


201




d


in

FIG. 2

) so that the effective area of the filter


201




c


scarcely changes.




Therefore, the necessary effective area of the filter


201




c


can be controlled in consideration of the above-mentioned fact in the design stage, whereby the reliability can be improved.




Also against the drawback that the bubble clogs the flow path between the filter and the nozzle, the cross sectional area of the liquid chamber


201




f


is selected sufficiently large with respect to the diameter of the bubble that can exist in the liquid chamber


201




f


, so that the ink flow cannot be hindered by the bubble in the liquid chamber


201




f.






Furthermore, against the drawback that the bubble in the liquid chamber enters the nozzle or clogs the connection between the liquid chamber and the nozzle, the cross sectional area of the liquid chamber


201




f


is selected sufficiently large as explained in the foregoing, so that the bubble generated in the liquid chamber


201




f


rises by the floating force thereof in the ink in the liquid chamber


201




f


and is united with the gas in the gas holding area, thereby being prevented from entering the nozzle


201




g


. Besides, even if the bubble generated in the liquid chamber


201




f


is united with the gas of the gas holding area, the effective area of the filter


201




c


does not change since the gas in the gas holding area is manageable as explained before.




Thus, by constructing the liquid chamber


201




f


separated from the sub tank


201




b


by the filter


201




c


in the above-described manner, it is rendered possible to significantly improve the reliability against the discharge failure resulting from the bubble generation in the liquid chamber


201




f


or from the movement of the generated bubble.




In the following there will be explained other features of the present invention.




In the configuration of the present embodiment, when the shut-off valve


210


is closed, the interior of the recording head


201


is a closed system in which the ink is held by the meniscus pressure at the surface of the nozzle


201




g


. In the following there is considered a situation where the shut-off valve


210


is closed at a low temperature and then the ambient temperature increases. In such case, in the sub tank


201




b


which is opposed to the nozzle


201




g


across the filter


201




c


, there are generated gas inflation and a rise in the vapor pressure, because of the rise in temperature and the decrease in the external pressure. Such gas inflation and the rise in vapor pressure can be absorbed by the pressure adjusting chamber


201




i.






However, the liquid chamber


201




f


, positioned at the side of the nozzle


201




g


with respect to the filter


201




c


, is not connected with a space such as the pressure adjusting chamber


201




i


, for absorbing the gas inflation or the rise in vapor pressure but has a constant volume. The liquid chamber


201




f


, being directly connected with the nozzle


201




g


, cannot contain even very small particle. Though it is theoretically possible to provide the liquid chamber


201




f


with a space similar to the pressure adjusting chamber


201




i


, the presence of a member susceptible to generate impurity or particle upon deformation, such as rubber, in the liquid chamber


201




f


is impractical in consideration of the manufacturing cost.




Therefore, the gas inflated in the liquid chamber


201




f


pushes out the ink therein to the exterior thereof. In such situation, if the ink in the liquid chamber


201




f


is even partially in contact with the filter


201




c


, for example along the wall of the liquid chamber


201




f


by the surface tension, the ink can pass through the filter


201




c


and can escape into the sub tank


201




b.






However, in case the entire surface of the filter


201




c


at the side of the liquid chamber


201




f


is exposed to the gas and is not in contact with the ink, the filter


201




c


holds the meniscus by the contact with the ink at the side of the sub tank


201




b


, so that the ink cannot escape to the sub tank


201




b


unless such meniscus is broken.




On the other hand, the meniscus is also held in the nozzle


201




g


, and, if the holding force for such meniscus at the nozzle


201




g


is smaller than that for the meniscus at the filter


201




c


, the ink leaks from the nozzle


201




g


. Moreover, the meniscus in the nozzle


201




g


, if once broken, cannot be easily restored, so that the ink in the liquid chamber


201




f


blows out by an amount corresponding to the gas inflation or increase in vapor pressure.




In the present embodiment, in order to prevent such drawback, the partition portion


201




e


provided at the boundary of the sub tank


201




b


and the liquid chamber


201




f


and supporting the filter


201




c


is so structured that the ink is securely in contact with the face of the filter


201




c


at the side of the liquid chamber


201




f


. In this manner the “force breaking the meniscus formed on the nozzle


201




g


” is made equal to or larger than the “ink moving force to the filter


201




c


” thereby preventing the ink leakage from the nozzle


201




g


. Such structure will be explained in the following with reference to

FIGS. 5 and 6

.





FIG. 5

is a cross-sectional view showing the detailed internal structure of the recording head shown in

FIG. 2

, and

FIG. 6

is a perspective view, seen from above, of the recording head shown in

FIG. 2

in a state where the upper wall of the sub tank and a part of the filter are eliminated. In

FIG. 5

, the detailed cross-sectional structure of the nozzle


201




g


is omitted.




As shown in

FIGS. 5 and 6

, in the peripheral portion of the partition portion


201




e


, there is formed a lateral wall


221




a


extending toward the sub tank


201




b


, and the filter


201




c


is in fact placed on the lateral wall


221




a


. In this manner, the ink can also be held in an area surrounded by the lateral wall


221




a


. Stated differently, the partition portion


201




e


constitutes an auxiliary liquid chamber between the sub tank


201




b


and the liquid chamber


201




f


. The height of the lateral wall


221




a


is so selected that the ink held in the partition portion


201




e


can always contact the lower surface of the filter


201




c


by the surface tension (in the drawing, for the purpose of clarity, the ink held in the area surrounded by the lateral wall


221




a


contacts, in a major portion, the lower surface of the filter


201




c


by surface tension.




Inside the area surrounded by the lateral wall


221




a


, there are provided plural ribs


221




c


,


221




d


, of which height is same as that of the lateral wall


221




a


and of which upper ends also contact the lower surface of the filter


201




c


. Thus, the ink rising along the ribs


221




c


,


221




d


by the capillary phenomenon also comes into contact with the lower surface of the filter


201




c


, thereby increasing the amount of the ink in contact with the lower surface thereof.




In the periphery of the aperture


201




d


, the lateral wall


221




a


is made lower in at least a part thereof. Such lower portion of the lateral wall


221




a


is not in contact with the filter


201




c


, and the interior of the partition portion


201




e


and the liquid chamber


201




f


mutually communicate through such portion. In this manner it is rendered possible to secure the gas holding area.




In the above-described configuration, as the ink in the liquid chamber


201




f


is consumed by the ink discharge from the nozzle


201




g


, the negative pressure in the liquid chamber


201




f


gradually increases. As the liquid chamber


201




f


communicates with the interior of the partition portion


201




c


, the negative pressure therein also increases like the negative pressure in the liquid chamber


201




f.






The negative pressure increase in the liquid chamber


201




f


and the interior of the partition portion


201




e


causes the ink to flow into the liquid chamber


201




f


from the sub tank


201




b


through the filter


201




c


. In this operation, since the ink held by


221




a


,


221




c


,


221




d


etc. in the partition portion


201




e


is in contact with the lower surface of the filter


201




c


by the surface tension, the ink flow is facilitated in such portion. Consequently, as indicated by an arrow in

FIG. 7

, the ink in the sub tank


201




b


flows from a portion, in contact with the ink, of the lower surface of the filter


201




c


into the partition portion


201




e


through the lateral wall


221




a


and the ribs


221




c


,


221




d


, and the ink thus flowing in overflows from the lateral wall


221




a


around the aperture


201




d


to enter the liquid chamber


201




f.






Now there will be explained, with reference to

FIG. 8

, the ink flow in case of gas inflation or an increase in the vapor pressure in the recording head


201


, induced for example by an increase in the ambient temperature or a decrease in the external pressure while the shut-off valve


210


(cf.

FIG. 2

) is closed.




In case of gas inflation or an increase in the vapor pressure in the liquid chamber


201




f


, the gas of a volume corresponding to such inflation or pressure increase has to either escape to the sub tank


201




b


through the filter


201




c


or push out the ink (including the ink in the partition portion


201




e


) in the liquid chamber


201




f


to the exterior, but, in practice, the latter situation takes place because it is difficult for the gas in the liquid chamber


201




f


to pass through the filter


201




c


in contact with the ink in the sub tank


201




b


as already explained before. However, in the partition portion


201




e


, the ink held by the components


221




a


,


221




c


,


221




d


etc. is in contact with the filter


201




c


by the surface tension and the ink can easily pass through the filter


201




c


in such contact portion thereof. Thus, in case of gas inflation of an increase in the vapor pressure in the liquid chamber


201




f


, the ink in the partition portion


201




e


flows into the sub tank


201




b


through the lateral wall


221




a


or the ribs


221




c


,


221




d


and the filter


201




c.






On the other hand, the sub tank


201




b


, being provided with the pressure adjusting chamber


201




i


as explained in the foregoing, can absorb the volume increase resulting from the ink flow through the filter


201




c


as a result of gas inflation or an increase in the vapor pressure in the liquid chamber


201




f.






In such situation, in order that the ink in the partition portion


201




e


is not depleted, the ink holding volume Vf in the partition portion


201




e


and the maximum gas volume increase ΔVmax in the liquid chamber


201




f


have to satisfy a relation Vf>ΔVmax. The value ΔVmax can be given by (the gas volume in liquid chamber


201




f


)×(estimated maximum temperature change ratio) in case the gas inflation or the increase in the vapor pressure in the recording head


201


is induced by a temperature increase.




Since the above-described configuration of the partition portion


201




e


allows to maintain the surface of the filter


201




c


at the side of the liquid chamber


201




f


always in contact with the ink, even in case of gas inflation or an increase in the vapor pressure in the liquid chamber


201




f


, the ink of an amount corresponding to the gas volume increase can be moved smoothly to the sub tank


201




b


through the filter


201




c


, thereby preventing the ink blow-out phenomenon from the nozzle


201




g


. Besides, as the contact of the ink with the filter


201




c


in the partition portion


201




e


is achieved by the capillary phenomenon by the lateral wall


221




a


and the ribs


221




c


,


221




d


, there cannot be generated a bubble in such contact portion. Furthermore, the effective area of the filter


201




c


remains substantially constant, because the contact between the ink and the lower surface of the filter


201




c


is made in a predetermined area.




Also in the present embodiment, the structure for contacting ink with the surface of the filter


201




c


at the side of the liquid chamber


201




f


is constructed utilizing the partition portion


201




e


in which the filter


201




c


is provided, and can therefore be realized easily and inexpensively without requiring special members or special manufacturing steps. The ribs


221




c


,


221




d


are not particularly limited in number or position, but, it is preferred to increase the number of the ribs and to reduce the gaps thereof in order to hold a larger amount of ink in the partition portion


201




e


and to contact a larger amount of ink with the filter


201




c.






The position of the aperture


201




d


can be arbitrarily selected in the partition portion


201




e


, but, in order that the entire periphery of the aperture


201




d


can be utilized as a lateral wall for generating capillary phenomenon, it is preferable to form the aperture


201




d


in a position separated from the internal wall of the sub tank


201




b


or the liquid chamber


201




f


thereby forming the partition portion


201




e


as a kind of corridor structure having the aperture


201




d


at the center. Also in case a small ink holding amount is enough in the partition portion


201




e


, it is also possible to form the partition portion


201




e


as a flat plate shape for supporting the filter


201




c


in a planar manner and to generate the capillary phenomenon directly in such supporting area.




[Second Embodiment]





FIG. 9

is a view showing the ink supply path in an ink jet recording apparatus constituting a second embodiment of the present invention, while

FIG. 10

is a cross-sectional view showing the detailed internal structure of the recording head shown in

FIG. 9

, and

FIG. 11

is a perspective view, seen from above, of the recording head shown in

FIG. 9

in a state where the upper wall of the sub tank and a part of the filter are eliminated. In

FIG. 10

, the detailed cross-sectional structure of the nozzle


301




g


is omitted.




The ink jet recording apparatus of the present embodiment is also an ink jet recording apparatus of serial scan type as in the first embodiment, and has an entire configuration similar to that shown in FIG.


1


. Also the present embodiment is similar to the first embodiment in forming a color image by discharging inks of plural colors, but

FIG. 9

shows, as in

FIG. 2

, the ink supply path for a color only.




In the present embodiment, the configuration of the recording head


301


is different from that in the first embodiment. However, it is similar to the first embodiment in other aspects, such as that the ink supply to the recording head


301


is executed from a main tank


304


through an ink supply unit


305


and an ink supply tube


306


, and that a recovery unit


307


having a suction cap


307




a


and a suction pump


307




b


is provided for forcedly sucking ink from a nozzle


301




g


of the recording head


301


at the ink filling into the recording head


301


or at the elimination of viscosified ink etc. from the recording head


301


. Also the configuration of the main tank


304


, ink supply unit


305


, ink supply tube


306


and recovery unit


307


is similar to that in the first embodiment. Therefore, in the following, the description will omit these same or similar aspects and will be concentrated on the recording head


301


.




The recording head


301


is provided with a sub tank


301




b


having a connector inserting port


301




a


in which the liquid connector of the ink supply tube


306


is connected and a pressure adjusting chamber


301




i


, a liquid chamber


301




f


provided gravitationally below the sub tank


301




b


and serving to directly supplying the nozzle


301




g


with ink, and a filter


301




c


provided between the sub tank


301




b


and the liquid chamber


301




f


. In the liquid chamber


301




f


, a gas holding area is formed between the ink in the liquid chamber


301




f


and the filter


301




c


, by the liquid chamber


301




f


, filter


301




c


and a liquid chamber groove structure


301




j


, for securing gas so as to intercept the bubble movement from the nozzle


301




g


to the filter


301




c


, and also a predetermined amount of ink is stored.




On the internal lateral wall of the liquid chamber


301




f


, there is provided the liquid chamber groove structure


301




j


formed along the ink supply direction from the sub tank


301




b


to the liquid chamber


301




f


, namely along the vertical direction and extending from the bottom of the liquid chamber


301




f


to a position almost touching the filter


301




c


. The liquid chamber


301




f


has a substantially rectangular transversal cross section, and the aforementioned groove structure


301




i


is provided on both longitudinal ends in the cross section of the liquid chamber


301




f


. The groove structure


301




j


, to be explained later in more details, has such a dimension and a shape that the ink in the liquid chamber


301




f


can be held by surface tension in the groove structure


301




j


and can thus be contacted with the lower surface of the filter


301




c


. Thus the ink in the liquid chamber


301




f


is connected with the ink in the sub tank


301




b


through the groove structure


301




j


and the filter


301




c


. Consequently, the minimum necessary ink amount to be accumulated in the liquid chamber


301




f


is an amount required for filling the nozzle


301




g


with ink, also for securing the gas of desired amount by the gas holding area formed by the liquid chamber


301




f


, filter


301




c


and groove structure


301




j


, and for connecting with the ink in the sub tank


301




b


through the groove structure


301




j


and the filter


301




c


. Also since the groove structure


301




j


holds the ink by the surface tension, the gas in the gas holding area cannot enter the groove structure


301




j


by breaking the surface tension of the ink.




Based on such configuration of providing the liquid chamber


301




f


with the groove structure


301




j


, contacting the upper surface of the filter


301




c


with the ink in the sub tank


301




b


, forming the gas holding area on the lower surface to hold the gas of the desired amount, and in an adjacent position contacting the ink with the filter


301




c


utilizing the groove structure


301




j


and the surface tension, the ink achieves connection through the filter


301




c


in a portion thereof in contact with the ink on the upper and lower surfaces. The area of such ink connection in the filter


301




c


constitutes the effective area thereof. In the present embodiment, the groove structure


301




j


is provided in plural units on each of the longitudinal ends of the liquid chamber


301




f


in the lateral cross section thereof, thereby increasing the effective area of the filter


301




c


and reducing the pressure loss therein.




In the above-described configuration, as the ink in the liquid chamber


301




f


is consumed by the ink discharged from the nozzle


301




g


, the negative pressure in the liquid chamber


301




f


gradually increases. The ink in the liquid chamber


301




f


is connected with the ink in the sub tank


301




b


through the groove structure


301




j


and the filter


301




c


, and the ink can easily move in such connecting portion. Therefore, when the negative pressure in the liquid chamber


301




f


increases, the ink in the sub tank


301




b


flows into the liquid chamber


301




f


through the portion of the filter


301




c


where the lower surface is in contact with the ink, and through the groove structure


301




j.






In case of a long standing in this state, gas is accumulated in the recording head


301


to induce various drawbacks as in the first embodiment, but, against such gas accumulation, the present embodiment can maintain the ink discharging performance in stable manner over a long period, as in the first embodiment, by filling the ink from the main tank


304


into the sub tank


302




b


and the liquid chamber


301




f


. The ink filling from the main tank


304


into the sub tank


301




b


and the liquid chamber


301




f


and the setting of the volumes thereof are similar to those in the first embodiment, but the ink filling condition and the specific numbers of the respective volumes are different from those in the first embodiment since, in the present embodiment, the ink in the sub tank


301




b


is in contact with that in the liquid chamber


301




f


through the groove structure


301




j


and the filter


301




c.






In the following there will be explained specific examples of the aforementioned ink filling operation into the sub tank


301




b


and the liquid chamber


301




f


and of the volume setting.




It is assumed, as in the first embodiment, that the ink filling is executed every month, and the gas accumulating amount per month is 1 ml in the sub tank


301




b


and 0.5 ml in the liquid chamber


301




f


. It is also assumed that the ink amount required in the sub tank


301




b


not to expose the filter


301




c


to gas is 0.5 ml while the ink amount required in the liquid chamber


301




f


not to expose the nozzle


301




g


to gas is 0.5 ml, and the fluctuation in the ink filling amount is 0.2 ml both in the sub tank


301




b


and the liquid chamber


301




f


. Thus the ink amount to be filled in a single filling operation is the sum of these amounts, and is 1.7 ml in the sub tank


301




b


and 1.2 ml in the liquid chamber


301




f


. The suction pump


307




c


is capable of pressure reduction to 0.8 atm (81.060 kPa).




The reduced pressure in the recording head


301


under these conditions is selected, within the power limit of the suction pump


307




c


, by the suction amount of the suction pump


307




c


so as to realize a pressure of −0.6 atm (−60.795 kPa) in the suction cap


307




a.






As the pressure required for gas permeation against the meniscus in the nozzle


301




g


is experimentally −0.05 atm (−5.06625 kPa), the pressure in the liquid chamber


301




f


becomes higher than that in the suction cap


307




a


by 0.05 atm (5.06625 kPa) as in the first embodiment. Similarly, as the pressure required for gas permeation against the meniscus in the filter


301




c


is experimentally −0.1 atm (−10.1325 kPa), the pressure in the sub tank


301




b


becomes higher than that in the liquid chamber


301




f


by 0.1 atm (10.1325 kPa). Therefore, by setting the pressure in the suction cap


307




a


at −0.6 atm (−60.795 kPa), the pressure in the liquid chamber


301




f


becomes −0.55 atm (−55.72875 kPa) while that in the sub tank


301




b


becomes −0.45 atm (−45.59625 kPa).




In order to fill the sub tank


301




b


with ink of 1.7 ml, the volume V1 thereof is so selected that the internal pressure becomes −0.45 atm (−45.59625 kPa) when ink of 1.7 ml is sucked from the sub tank


301




b


having an internal pressure of about 1 atm (101.325 kPa). Thus, V1=1.7/0.45=3.78 ml. Similarly the volume V2 of the liquid chamber


301




f


can be determined as V2=1.2/0.55=2.18 ml.




After the internal pressure of the recording head


301


is reduced under the foregoing conditions, the shut-off valve


310


of the ink supply unit


305


is opened whereby the ink flows into the recording head


301


in a reduced pressure state. More specifically, at first the ink flows into the sub tank


301




b


whereby the gas inflated to the volume V1 under reduced pressure is restored almost to the atmospheric pressure. The gas volume V1a in the sub tank


301




b


in such state is given by V1a=V1×(1−0.45)=2.08 ml, and the filling is terminated when ink in an amount of V1−V1a=1.7 ml is filled into the sub tank


301




b


. Similarly, in the liquid chamber


301




f


, the ink flows from the sub tank


301




b


whereby the gas inflated to the volume V2 under reduced pressure is restored almost to the atmospheric pressure. The gas volume V2a in the liquid chamber


301




f


in such state is given by V2a=V2×(1−0.55)=0.98 ml, and the filling is terminated when ink in an amount of V2−V2a=1.2 ml is filled into the liquid chamber


301




f.






Thus, by setting the volumes and reduced pressures of the sub tank


301




b


and the liquid chamber


301




f


in the above-described manner, it is rendered possible to fill the sub tank


301




b


and the liquid chamber


301




f


, separated by the filter


301




c


, with the ink of appropriate amounts in a single filling operation, so that the recording head can be properly operated over a long period even in a situation where gas is accumulated therein.




Also, in the present embodiment, the effective area of the filter


301




c


remains substantially constant, because, on the lower surface of the filter


301




c


, there are substantially fixed the area holding the ink by surface tension in cooperation with the groove structure


301




j


and the area in contact with the gas of the gas holding area.




Therefore, the necessary effective area of the filter


301




c


can be controlled in consideration of the above-mentioned fact in the design stage, whereby, as in the first embodiment, there can be significantly improved the reliability against the discharge failure resulting from the bubble generation in the liquid chamber


301




f


or the movement of generated bubble.




The groove structure


301




j


in the present embodiment functions similarly to the partition portion


201




e


(cf.

FIG. 5

) in the first embodiment. More specifically, in case the ambient temperature rises while the shut-off valve


310


of the ink supply unit


305


is closed to maintain the interior of the recording head


301


in a closed system in which the ink is held by the meniscus pressure at the surface of the nozzle


301




g


, the groove structure


301




j


serves to regulate the pressure increase resulting from the gas inflation or the increase in the vapor pressure in the liquid chamber


301




f.






In case of gas inflation or an increase in the vapor pressure in the liquid chamber


301




f


while the recording head constitutes a closed system, the ink in the liquid chamber


301




f


is pushed out to the exterior by the gas volume corresponding to such inflation or increase in the vapor pressure. As the ink held by the groove structure


301




j


is in contact with the filter


301




c


and the ink can easily pass through the filter


301




c


in such contact portion, there is realized a condition that the “force required for breaking the meniscus formed in the nozzle


301




g


” is equal to or larger than the “force required for ink movement in the filter


301




c


”, whereby the ink in the liquid chamber


301




f


flows into the sub tank


301




b


through the groove structure


301




j


and the filter


301




c


. On the other hand, in the sub tank


301




b


, as in the first embodiment, the gas inflation or the increase in vapor pressure in the sub tank


301




b


resulting from the ambient temperature and the volume increase resulting from the ink flow from the liquid chamber


301




f


are absorbed by the pressure adjusting chamber


301




i.






As explained in the foregoing, the groove structure


301




j


of the present embodiment allows to always maintain the ink in contact also with the surface of the filter


301




c


at the side of the liquid chamber


301




f


. Therefore, even in case of gas inflation or an increase in the vapor pressure in the liquid chamber


301




f


, the ink of an amount corresponding to the gas volume increase can be moved smoothly to the sub tank


301




b


through the filter


301




c


, thereby preventing the ink blow-out phenomenon from the nozzle


301




g


. Also the groove structure


301




j


is not particularly limited in number or position, but it is preferred to increase the number of the groove structure and to reduce the gap thereof in order to hold a larger amount of ink and to contact a larger amount of ink with the filter


301




c.






The present embodiment shows a configuration where the liquid chamber


301




f


is provided with the groove structure


301




j


for contacting the ink with a part of the lower surface of the filter


301




c


, but such groove structure


301




j


may also be combined with the structure shown in the first embodiment.

FIG. 12

is a cross-sectional view showing the internal structure of the recording head in such case.




In a recording head


401


shown in

FIG. 12

, a partition portion


401




e


supporting a filter


401




c


is constructed in a similar manner as in the first embodiment. More specifically, the partition portion


401




e


is provided on the upper surface thereof with plural ribs


421




c


, and the filter


401




c


is supported thereon, whereby a desired gas holding area is formed. Also a groove structure


401




j


is formed on the internal lateral wall of a liquid chamber


401




f


, as shown in FIG.


10


.




Presence of such ribs


421




c


on the upper face of the partition portion


401




e


achieves ink holding between the ribs


421




c


thereby contacting ink with the lower surface of the filter


401




c


as explained in the first embodiment, in addition to that by the groove structure


401




j


. As a result, the contact area with ink increases on the lower surface of the filter


401




c


, thereby enabling more smoothly the ink movement from the sub tank


401




b


to the liquid chamber


401




f


and that from the liquid chamber


401




f


to the sub tank


401




b


in case of gas inflation or an increase in the vapor pressure in the liquid chamber


401




f


. In the manner that the structure provided in the liquid chamber


401




f


for contacting the ink with a part of the lower surface of the filter


401




c


is called the liquid chamber groove structure


401




j


, the plural ribs


421




c


on the partition portion


401




e


can be called the partition portion groove structure.




[Other Embodiments]




In the following there will be explained the detailed structures applicable to the foregoing embodiments.




(Positional Relationship of Filter and Groove Structure)





FIG. 13

is a lateral view showing the positional relationship between the groove structure and the filter in the upper end portion of the groove structure. In

FIG. 13

, the filter


501




c


is supported at the periphery thereof, and a gap t is present between the filter


501




c


and the groove structure


501




h


. The groove structure


501




h


herein collectively means a structure capable of holding the ink by the surface tension thereof and contacting it with the lower surface of the filter


501




c


, and more specifically indicates the plural ribs on the partition portion in the first embodiment, or the groove structure in the liquid chamber or the plural ribs on the partition portion in the second embodiment. The term “groove structure” in the following description has the same meaning.




As indicated by a hatched area in

FIG. 13

, the ink is held by the surface tension between the filter


501




c


and the groove structure


501




h


. An increase in the gap t between the filter


501




c


and the groove structure


501




h


reduces the surface tension, whereby the ink holding state by the surface tension between the filter


501




c


and the groove structure


501




h


can no longer be maintained and becomes broken for example by the weight of the ink itself or by vibration.




In the following there will be shown the result of investigation by the present inventors on the relationship of the gap t and the ink holding state between the filter


501




c


and the groove structure


501




h.






In this investigation, the recording head of the foregoing embodiments was provided with a groove structure


501




h


of a depth (lateral length thereof in

FIG. 13

) of 2 mm and an aperture width (groove width) of 0.5 mm, and ink of a surface tension of 35 mN/m was filled according to the foregoing embodiments. There was experimented the presence of ink leakage from the nozzle when the temperature of the recording head was changed from 5° C. to 60° C. The obtained results are shown in Table 1.














TABLE 1











Head Driven






Gap t (mm)




Head Still State




State

























0




No ink leakage




No ink leakage






0.5




No ink leakage




No ink leakage






0.8




No ink leakage




No ink leakage






1.0




Ink leakage from




No ink leakage







some nozzles






1.2




Ink leakage from




Ink leakage from







all nozzles




some nozzles














In Table 1, the temperature rise in the “head still state” means the ambient temperature change around the recording head from 5° C. to 60° C. On the other hand, in the temperature rise in the “head driven state”, the ink jet recording apparatus mounted with the recording head was operated at 5° C. and the recording head was brought to 60° C. by temperature increase under ink discharge.




In the experiment, in the “head still state”, the ink leakage started from t=1.0 mm. On the other hand, in the “head driven state”, the ink leakage did not occur at t=1.0 mm, presumably because, in such state, the ink in the liquid chamber is consumed to generate an ink flowing force from the sub tank to the liquid chamber through the filter


501




c


, whereby the ink holding state between the filter


501




c


and the groove structure


501




h


could be maintained.




Based on these results, the ink leakage does not occur, for the gap t between the filter


501




c


and the groove structure


501




h


, in a condition 0≦t≦1.0 mm, preferably 0≦t≦0.8 mm.




The filter can be jointed for example by fusion.

FIG. 14A

is a lateral view of the vicinity of the groove structure


501




k


prior to the jointing of the filter


501




c


by fusion. As shown in

FIG. 14A

, a support face


532


for the filter


501




c


is provided with fusion ribs


532




a


. The fusion jointing of the filter


501




c


can be achieved by placing the filter


501




c


on the fusion ribs


532


and pressing the


501




c


to the support face


532


with an unrepresented fusing hone thereby fusing and crushing the ribs


532




a


.

FIG. 14B

shows a state after fusion jointing of the filter


501




c


. In such fusion jointed state of the filter


501




c


, thereby may be generated a gap between the filter


501




c


and the groove structure


501




k


because of the remainder of the fusion ribs


532




a


or the deformation in the filter


501




c


, though depending on the fusing condition, shape of fusion ribs


532




a


and shape of the filter


501




c


. Particularly in case the distance between the filter


501




c


and the groove structure


501




k


is large, such gap changes by the surface irregularity of the filter


501




c


after the fusion jointing. In order to minimize such gap (within the aforementioned range of t), it is possible, as shown in

FIG. 14C

, to cause the groove structure


501




k


to protrude from the support face


532




a


by about 0.1 mm toward the filter


501




c


, thereby maintaining the filter


501




c


and the groove structure


501




k


always in contact.




The above-mentioned method for controlling the gap between the filter


501




c


and the groove structure


501




k


is applicable not only in case of the fusion jointing of the filter


501




c


but also in other jointing methods. However, in case of jointing with adhesive, attention is necessary in using adhesive of a low viscosity since such adhesive may flow into the groove structure


501




k


to deteriorate the function thereof.




(Shape of Groove Structure)




The ink lifting force F by the surface tension in the groove structure is given by:








F=L×T×


cos θ






wherein T is the surface tension of ink, θ is the contact angle of ink in the groove structure, and L is the circumferential length of the ink contact area in the groove structure.




The weight W of the lifted ink is given by:








W=Si×hi×ρ×g








wherein hi is the height of lifted ink, ρ is density of ink, g is the acceleration of gravity and Si is the cross section of the ink contact area in the groove structure.




Since F=W, there can be obtained a relationship L×T×cos θ=Si×hi×ρ×g which can be deformed as








hi=L/Si×


(


T


cos θ/ρ


g


)  (1)






Consequently, for a height d of the groove structure, the ink held by the groove structure can reach the upper end thereof by the surface tension by so selecting the groove structure as to satisfy a condition d≦hi, whereby the ink can be contacted with the lower surface of the filter.




Now let us consider a recessed groove structure


601




k


as shown in

FIG. 15

, having a height d, a depth e and an aperture width f and composed of two rectangular pillars


601




n


positioned in contact with a wall portion


601




m


. Applying the equation (1) to such structure, there can be obtained:












hi


=



(


2

e

+
f

)

/
ef

×

(

T





cos






θ
/
pg


)











=


(


1
/
e

+

2
/
f


)

×

(

T





cos






θ
/
pg


)










(
1
)













On the other hand, let us consider a recessed groove structure


611




k


as shown in

FIG. 16

, having a height d, a depth e and an aperture width f and composed of two rectangular pillars


611




n


in a position separated by a distance j from a wall portion


611




m


. Applying the equation (1) to such structure, there can be obtained:












hi


=



(

2

e

)

/
ef

×

(

T





cos






θ
/
pg


)











=


2
/
f

×

(

T





cos






θ
/
pg


)










(
3
)













Based on the foregoing, hi is proportional to a constant A=L/S unless the contact angle of the ink in the groove structure is varied.





FIGS. 17

to


22


show variations in the shape of the groove structure.




A groove structure


621




k


shown in

FIG. 17

has a groove shape of wedge-shaped cross section. A groove structure


631




k


shown in

FIG. 18

has a groove shape of semi-oval cross section. A groove structure


641




k


shown in

FIG. 19

is cylindrical, of which hollow portion serves to hold the ink by surface tension. A groove structure


661




k


shown in

FIG. 21

has a star-shaped cross section, and a portion where ink contact faces mutually cross at an acute angle serves to hold the ink by the surface tension. The groove structure


661




k


having the star-shaped cross section can be considered as a group of wedge-shaped groove structures, and the depth e and the aperture width f are defined in the recessed portion. Also

FIGS. 20 and 22

show groove structures


651




k


,


671




k


formed as a component including plural holes (hollow portions) of circular or star-shaped cross section. A structure for contacting the ink with the lower surface of the filter can also be formed by placing a component as shown in

FIG. 20

or


22


immediately under the filter. In the foregoing there have been explained various forms of the groove structure, and the shape, number, installing position and combination of such groove structure can be arbitrarily changed within a range not departing from the scope of the present invention.




Table 2 shows the ink lifting height hi (maximum height of groove structure) in some of the aforementioned variations, with a depth e=2 mm, in which the constant A and the aperture width f is changed from 0.3 mm to 2.0 mm by every 0.2 mm.














TABLE 2











Shape of








groove





Aperture width f (mm)





















structure




A (m


−1


)




0.3




0.5




0.8




1.0




1.2




1.4




1.6




1.8




2.0
























Wedge type




5099




40




24




15




12




10




9




8




7




7






Semi-oval




3808




29




17




11




9




8




7




7




6




6






type






Recessed




3000




21




13




9




7




6




6




5




5




4






type






Rectangular




1000




20




12




7




6




5




4




4




3




3






pillar type














In the groove structure of “rectangular pillar type”, the value A is determined for an aperture width b=1.6 mm. Also in the “semi-oval type”, the depth e is defined as a half of the longer diameter and the aperture width f is defined as the shorter diameter.





FIG. 23

is a chart showing the relationship between the aperture width f and the ink lifting height hi. Referring to

FIG. 23

, in the “rectangular pillar type”, the ink lifting height hi is 3 mm for f=2.0 mm and 4 mm for f=1.6 mm. The value hi=3 mm corresponds to a gas thickness at least required in the gas holding area under the filter. Also in consideration of the dimensional fluctuation in the components, there is required hi=4 mm. The constant A in such state is A=1250 m


−1


. As indicated by the equation (3), the depth of the groove structure of “rectangular pillar type” does not influence the ink lifting height, so that the constant A of such structure can be considered as the lower limit of that in other groove structures influenced by the depth. Thus, if the gas in the gas holding area is thicker, there can be employed the groove structure of “wedge” or “recessed” type with a small aperture width f. Therefore, in order to realize the present invention, the constant A is preferably at least equal to 1000 m


−1


, more preferably at least equal to 1250 m


−1


.




A small bubble, if trapped in a corner portion of the groove structure, hinder the ink movement in the groove structure. In order to avoid such bubble trapping, the ink moving portion of the groove structure and the vicinity thereof is preferably cut off or rounded at the edge. Also the corner portion of the filter is preferably cut off or rounded in order to prevent bubble trapping in such portion.




(Liquid Chamber Cover)




As shown in

FIG. 10

, a lateral face of the liquid chamber


301




f


may be composed of a cover member


701


separate from other portions. In the example shown in

FIG. 10

, the cover member


701


constitutes a face where the groove structure


301




j


is provided.

FIG. 24

is a perspective view of such cover member


701


.




As shown in

FIG. 24

, the liquid chamber cover


701


is provided, on a face thereof constituting the internal wall of the liquid chamber


301




f


(cf. FIG.


10


), with grooves structures


710


having vertical slits


711


in protruding manner and in a number corresponding to the number of the liquid chambers


301




f


. Thus, in a state where the liquid chamber cover


701


is jointed to the main body


720


(cf.

FIG. 10

) constituting the main part of the liquid chamber


301




f


, the groove structures


710


are positioned in the respectively corresponding liquid chambers


301




f


. The vertical slit


711


serves as a structure for holding the ink in the liquid chamber


301




f


by the surface tension. Also at the base portion of each groove structure, there is formed a lateral slit


712


. On the other hand, in case a face of the liquid chamber main body


720


where the liquid chamber cover


701


is to be jointed also constitutes a part of a lateral face of the liquid chamber


301




f


in combination with the liquid chamber cover


701


, such face of the liquid chamber main body


720


is also provided with slits matching the vertical slit


711


and the lateral slit


712


of the groove structure


710


of the liquid chamber cover


701


. The groove structure


710


of the liquid chamber cover


701


and the slits of the liquid chamber main body


720


constitute the liquid chamber groove structure


301




j


(cf. FIG.


10


). The groove structures


710


of the liquid chamber cover may be mutually different in the respectively different liquid chambers


301




f.






In the following there will be explained the jointing process for the liquid chamber main body


720


and the liquid chamber cover


701


in case of jointing with adhesive, with reference to

FIGS. 10 and 24

.




A particle such as dust present in the liquid chamber


301




f


may move the nozzle


301




g


and cause clogging thereof. In order to prevent such situation, the liquid chamber main body


720


and the liquid chamber cover


701


are sufficiently rinsed with alkali, solvent or purified water prior to the jointing of the liquid chamber cover


701


. Then adhesive is applied on a joint face of the liquid chamber main body


720


with the liquid chamber cover


701


. It is necessary to avoid particle generation also in this step. The present embodiment employs heat settable adhesive of epoxy type but any adhesive capable of resisting ink and providing sufficient sealing and adhesion strength may be employed. Then the cover


701


is pressed to the liquid chamber main body


720


and the adhesive is set by heating in a heating oven. In the present embodiment, the heat setting was executed for 5 hours at 105° C.




After the pressing of the liquid chamber cover


701


, when the temperature is raised in the heating over, the viscosity of the adhesive temporarily lowers and the adhesive starts to flow. If the vertical slit


711


of the liquid chamber cover


701


is close to the jointing face, the flowing adhesive may enter and fill the vertical slit


711


. In the present embodiment, the intrusion of the adhesive into the vertical slit


711


can be prevented by forming the groove structure


710


in such a manner that the vertical slit


711


protrudes from the jointing face of the liquid chamber cover


701


. The experiment of the present inventors confirmed that the flowing adhesive did not enter the vertical slit


711


if the base portion thereof protrudes by 2 mm or greater from the jointing face of the liquid chamber cover


701


. Also by forming lateral slit


712


at the base portion of the groove structure


710


, the flowing adhesive can be retained in such lateral slit


712


whereby more effectively reducing the movement of the adhesive to the vertical slit


711


.




In the foregoing, the present invention has been explained by preferred embodiments thereof, but the present invention is not limited to such embodiments and is applicable to various liquid supply systems adapted to hold liquid in the negative pressure state and including the liquid supply path having a filter therein.




Also in the application of such liquid supply system to the ink jet recording apparatus, the ink supply system to the recording head is not limited to the tube supply system explained in the foregoing embodiments but can also be the pin-in system, with similar effects. It is also applicable to the recording head of head tank integral system, by using the sub tank as the main ink tank. In such case, the recording head of head tank integral type itself is constituted as the ink supply system. More specifically, the sub tank is provided with an air communicating aperture to be opened or closed by an unrepresented valve mechanism, and, at the ink filling into the liquid chamber, such air communicating aperture is closed and the interior of the recording head is reduced to a desired pressure by the suction from the nozzle, and then the air communicating aperture is opened, whereby an appropriate amount of ink is supplied into the liquid chamber.




Also in the foregoing embodiments, there have been explained the ink jet recording apparatus of serial scan type, but the present invention is likewise applicable to an ink jet recording apparatus mounted with an ink jet recording head of line type, having the nozzle array over the entire width of the recording medium.




As explained in the foregoing, the present invention provides the configuration in which the filter and the liquid are separated by gas of the gas holding area at the downstream side of the filter, thereby avoiding the drawback, in case the bubble is generated at the downstream side of the filter, in the liquid supply from the upstream side of the filter to the downstream side thereof, induced by such bubble. Particularly in the ink jet recording head and in the ink jet recording apparatus, it is rendered possible to prevent defective ink discharge resulting from the deficient ink supply to the downstream side of the filter, thereby significantly improving the reliability on the ink discharge. Also at the downstream side of the side, there is provided a structure for holding the liquid, present at the downstream side of the film across the gas of the gas holding area, by the surface tension for connecting such liquid with the liquid at the upstream side of the filter, or a liquid chamber for so holding the liquid as to contact it with a part of the downstream face of the filter, whereby the liquid held in the downstream side of the filter can escape to the upstream side through the filter in case of inflation of the gas in the gas holding area, so that the unexpected liquid flow-out from the downstream end of the liquid supply path or from the discharge portion in case of the ink jet recording head.




Also the liquid filling method of the present invention allows to fill the first and second liquid chambers with the liquid of respectively appropriate amounts even in case the liquid amounts therein decrease by the gas accumulation therein.



Claims
  • 1. A liquid supply system which is provided with a liquid supply path to a liquid holding portion holding liquid at the downstream end in the supply direction of liquid and a filter in the liquid supply path and in which the liquid can be supplied from the upstream side of the filter to the downstream side thereof in the vertical direction in the direction of gravity, the system comprising:a member for dividing a portion downstream of the filter into a gas holding area and a liquid holding area, wherein the gas held in said gas holding area is in communication with gas present between the downstream side of the filter and the liquid holding portion in said downstream end.
  • 2. A liquid supply system according to claim 1, wherein the gas held in said gas holding area communicates with the liquid in said liquid holding portion thereby enabling reversible movement of the liquid at the upstream side of said filter and the liquid at the downstream side of said filter.
  • 3. A liquid supply system according to claim 1, wherein the gas present between the downstream side of said filter and the upstream side of the liquid holding portion at said downstream end is so positioned as to inhibit movement of a bubble from said liquid holding portion to said filter.
  • 4. A liquid supply system according to claim 1, further comprising:a liquid connection structure, for holding, at the downstream side of said filter in said liquid supply path, the liquid present at the downstream side of said filter across the gas of said gas holding area by the surface tension of said liquid and connecting said liquid with the liquid at the upstream side of said filter.
  • 5. A liquid supply system according to claim 4, wherein said liquid connecting structure includes a groove-shaped structure portion which is provided along the vertical direction and of which the upper end is almost in contact with the face of said filter at the downstream side thereof.
  • 6. A liquid supply system according to claim 5, wherein the gap between said groove-shaped structure portion and said filter is within a range of 0 S t S 1.0 mm.
  • 7. A liquid supply system according to claim 5, wherein said groove-shaped structure portion has a cross section of recessed shape.
  • 8. A liquid supply system according to claim 5, wherein said groove-shaped structure portion has a cross section of wedge shape.
  • 9. A liquid supply system according to claim 5, wherein said groove-shaped structure portion has an arc-shaped liquid holding surface.
  • 10. A liquid supply system according to claim 5, wherein said groove-shaped structure portion has a member in which plural hollowing portions for holding liquid are formed, and said member is provided at the downstream side of said filter.
  • 11. A liquid supply system according to claim 5, wherein said groove-shaped structure portion satisfies a relation L/S≧1000 wherein L is the circumferential length of an area in contact with the liquid in said groove-shaped structure portion and S is the cross section of an area in contact with the liquid in said groove-shaped structure portion.
  • 12. A liquid supply system according to claim 5, wherein surrounding portion of said groove-shaped structure portion is cut off or rounded.
  • 13. A liquid supply system according to claim 5, wherein said groove-shaped structure portion is integrally constructed with a member constituting said liquid supply path at the downstream side of said filter.
  • 14. A liquid supply system according to claim 5, wherein, at the downstream side of said filter, said liquid supply path includes a cover member constituting a lateral face of said liquid supply path and a main body member constituting another face of said liquid supply path and jointed to said cover member, and said groove-shaped structure portion is provided at least on said cover member.
  • 15. A liquid supply system according to claim 14; wherein said cover member and said main body member are jointed with adhesive, and the groove-shaped structure portion provided on said cover member is provided as a protruding portion with a slit, protruding from the adhered face of said cover member with said main body member and holding the liquid by the surface tension thereof.
  • 16. A liquid supply system according to claim 15, wherein said protruding portion is provided with a groove for receiving said adhesive between the adhered face of said cover member with said main body member and said slit.
  • 17. A liquid supply system according to any of claims 1 to 16, wherein said liquid supply path has a first liquid chamber at the upstream side of said filter and a second liquid chamber including the gas of said gas holding area at the downstream side of said filter.
  • 18. A liquid supply system according to claim 17, wherein said first liquid chamber includes pressure adjusting means for absorbing pressure variation in said first liquid chamber.
  • 19. A liquid supply system according to claim 17, further comprising, at the upstream side of said first liquid chamber in said liquid supply path, a valve structure to be opened at the normal liquid supply state and to be closed at the liquid filling into said second liquid chamber by suction from said downstream end.
  • 20. A liquid supply system according to claim 17, wherein said first liquid chamber includes an air communication aperture which can be opened and closed and is to be closed at the liquid filling into said second liquid chamber by suction from said downstream end.
  • 21. A liquid supply system according to claim 17, further comprising, at the downstream side of said filter in said liquid supply path, a third liquid chamber for holding the liquid in such a manner that the liquid is in contact with a part of the surface of said filter at the downstream side thereof.
  • 22. A liquid supply system according to claim 21, wherein said third liquid chamber includes a structure for holding the liquid by the surface tension thereof in contact with the surface of said filter at the downstream side thereof.
  • 23. A liquid supply system according to claim 22, wherein the structure for causing the liquid of said third liquid chamber to contact the surface of said filter at the downstream side thereof includes at least a rib so provided that the front end thereof is in contact with the surface of said filter at the downstream side thereof.
  • 24. A liquid supply system according to claim 21, wherein the amount of the liquid that can be held in said third liquid chamber is larger than the amount of change in the volume of the gas in said gas holding area anticipated in the environment of use.
  • 25. A liquid supply system according to claim 21, wherein said third liquid chamber is so provided as to surround an aperture connecting said filter and said second liquid chamber.
  • 26. An ink jet recording head provided with a first liquid chamber and a second liquid chamber separated by a filter and respectively containing liquid therein, and a liquid discharge portion connected directly with said second liquid chamber and adapted to discharge the liquid supplied from said second liquid chamber, in which the liquid can be supplied from said first liquid chamber to said second liquid chamber through said filter, comprising:a member for dividing a portion downstream of the filter in contact with said second liquid chamber into a gas holding area and a liquid holding area, wherein the gas held in said gas holding area is in communication with the gas present in said second liquid chamber.
  • 27. An ink jet recording head according to claim 26, wherein the liquid held in said liquid holding area communicates with the liquid in said liquid chamber thereby enabling reversible movement of the liquid in said first liquid chamber and the liquid in said second liquid chamber.
  • 28. An ink jet recording head according to claim 26, wherein the gas present in said gas holding area is so positioned as to inhibit movement of a bubble from said liquid discharge portion to said filter.
  • 29. An ink jet recording head according to claim 26, further comprising a liquid connection structure for holding the liquid present in said second liquid chamber across the gas of said gas holding area by the surface tension of said liquid and connecting said liquid, with the liquid in said first liquid chamber through said filter.
  • 30. An ink jet recording head according to claim 29, wherein said liquid connecting structure includes a groove-shaped structure portion which is provided along the liquid supply direction from said first liquid chamber to said second liquid chamber and of which the upper end is almost in contact with the surface of said filter at the downstream side thereof.
  • 31. An ink jet recording head according to claim 30, wherein the gap between said groove-shaped structure portion and said filter is within a range of 0≦t≦1.0 mm.
  • 32. An ink jet recording head according to claim 30, wherein said groove-shaped structure portion has a cross section of recessed shape.
  • 33. An ink jet recording head according to claim 30, wherein said groove-shaped structure portion has a cross section of wedge shape.
  • 34. An ink jet recording head according to claim 30, wherein said groove-shaped structure portion has an arc-shaped liquid holding surface.
  • 35. An ink jet recording head according to claim 30, wherein said groove-shaped structure portion has a member in which plural hollowing portions for holding liquid are formed, and said member is provided at the downstream side of said filter.
  • 36. An ink jet recording head according to claim 30, wherein said groove-shaped structure portion satisfies a relation L/S≧1000 wherein L is the circumferential length of an area in contact with the liquid in said groove-shaped structure portion and S is the cross section of an area in contact with the liquid in said groove-shaped structure portion.
  • 37. An ink jet recording head according to claim 30, wherein surrounding portion of said groove-shaped structure portion is cut off or rounded.
  • 38. An ink jet recording head according to claim 30, wherein said groove-shaped structure portion is integrally constructed with a member constituting said second liquid chamber.
  • 39. An ink jet recording head according to claim 30, wherein said second liquid chamber includes a cover member constituting a lateral face of said second liquid chamber and a main body member constituting another face of said second liquid chamber and jointed to said cover member, and said groove-shaped structure portion is provided at least on said cover member.
  • 40. An ink jet recording head according to claim 39, wherein said cover member and said main body member are jointed with adhesive, and the groove-shaped structure portion provided on said cover member is provided as a protruding portion with a slit, protruding from the adhered face of said cover member with said main body member and holding the liquid by the surface tension thereof.
  • 41. An ink jet recording head according to claim 40, wherein said protruding portion is provided with a groove for receiving said adhesive between the adhered face of said cover member with said main body member and said slit.
  • 42. An ink jet recording head according to claim 26, wherein said first liquid chamber includes pressure adjusting means for absorbing pressure variation in said first liquid chamber.
  • 43. An ink jet recording head according to claim 26, further comprising a connecting portion to which a liquid supply means to said first liquid chamber is detachably connected.
  • 44. An ink jet recording head according to claim 26, further comprising, between said first liquid chamber and said second liquid chamber, a third liquid chamber for holding the liquid in such a manner that the liquid is in contact with a part of the surface of said filter at the side of said second liquid chamber.
  • 45. An ink jet recording head according to claim 44, wherein said third liquid chamber includes a structure for holding the liquid by the surface tension thereof in contact with the surface of said filter.
  • 46. An ink jet recording head according to claim 45, wherein the structure for causing the liquid of said third liquid chamber to contact the surface of said filter includes at least a rib so provided that the front end thereof is in contact with the surface of said filter at the side of said second liquid chamber.
  • 47. An ink jet recording head-according to claim 44, wherein the amount of the liquid that can be held in said third liquid chamber is larger than the amount of change in the volume of the gas in said gas holding area anticipated in the environment of use.
  • 48. An ink jet recording head according to claim 44, wherein said third liquid chamber is so provided as to surround an aperture connecting said filter and said second liquid chamber.
  • 49. A liquid filling method for use in a liquid supply system in which first and second liquid chambers respectively holding liquid are separated by a filter while liquid is held at the downstream side of said second liquid chamber in the liquid supply direction from said first liquid chamber to said second liquid chamber, a member is provided for separating a contact portion of the downstream side of said filter into a gas holding area and a liquid holding area in a state capable of liquid supply from the upstream side of said filter to the downstream side thereof in the vertical direction of gravity, and the gas held in said gas holding area is in communication with the gas present between the downstream side of said filter and the upstream side of the second liquid chamber, the method comprising:a step of closing the first liquid chamber from the exterior; a step of executing suction from the downstream side of said second liquid chamber in a state where said first liquid chamber is closed, thereby reducing the pressure of said first and second liquid chambers; and a step, after the pressure reduction of said first and second liquid chambers, of opening said first liquid chamber to the exterior.
Priority Claims (2)
Number Date Country Kind
2001-033681 Feb 2001 JP
2001-280665 Sep 2001 JP
US Referenced Citations (5)
Number Name Date Kind
5457485 Moriyama et al. Oct 1995 A
5485187 Okamura et al. Jan 1996 A
6158855 Saikawa Dec 2000 A
6250752 Tajima et al. Jun 2001 B1
6631982 Sasaki et al. Oct 2003 B2
Foreign Referenced Citations (4)
Number Date Country
683050 Nov 1995 EP
884185 Dec 1998 EP
887190 Dec 1998 EP
1043161 Oct 2000 EP
Non-Patent Literature Citations (4)
Entry
U.S. Published Application No. 2002/109758, dated Aug. 15, 2002.
U.S. Published Application No. 2002/113851, dated Aug. 22, 2002.
U.S. Published Application No. 2002/118249, dated Aug. 29, 2002.
U.S. Published Application No. 2002/118263, dated Aug. 29, 2002.