The present disclosure relates to a liquid supplying device having a tank and a cartridge attachable to the tank.
Conventionally, there has been known a liquid supply device provided with a cartridge in which ink is stored, a sub tank connected to a recording head, and a liquid flow passage and a gas flow passage which connects the cartridge and the sub tank. The cartridge is disposed vertically above the sub tank. The liquid flow passage and the gas flow passage connect the cartridge and the sub tank in the vertical direction. The liquid flow passage and the gas flow passage are opened to the lower surface of the cartridge and the upper surface of the sub tank, respectively.
In the sub tank, the liquid flow passage extends below the gas flow passage, and the opening position of the gas flow passage is higher than the opening position of the liquid flow passage. When the cartridge is connected in a state in which there is no ink in the sub tank, such as when replacing the cartridge, the ink in the cartridge naturally drops via the liquid flow passage and is introduced into the sub tank. At this time, the air in the sub tank having the same volume as the amount of introduced ink is introduced into the cartridge via the gas flow passage (gas-liquid substitution). The gas-liquid substitution is performed until the opening of the gas flow passage is blocked, and the ink is stored in the sub tank.
When ink is ejected from the recording head at the time of executing the recording operation, the ink in the sub tank decreases and the liquid level of the ink in the sub tank decreases. As a result, since the opening of the gas flow passage is opened, ink is supplied from the cartridge into the sub tank. When the level of ink in the sub tank rises due to the introduction of the ink and the opening of the gas flow passage is blocked, the supply of ink from the cartridge is stopped. Ink is replenished from the cartridge to the sub tank so as to compensate for consumption of ink in the recording head, and the height of the liquid level of the ink in the sub tank is kept at the opening position of the gas flow passage. Therefore, by exchanging the cartridge in which the ink is empty with the cartridge filled with ink while the sub tank is disposed in a printer, the printer can be continuously used.
In the liquid supply device, the liquid flow passage is formed by an inner surface of a cylinder, which is a cylindrical surface. The capillary pressure in liquid exerted on the cylindrical surface is uniform in its circumferential direction. Since the capillary pressure is unbiased in the circumferential direction, the meniscus of liquid, which is curvature of the liquid surface, is hardly broken. If the meniscus is maintained, the liquid cannot flow in the liquid flow passage. Accordingly, the gas-liquid substitution cannot be carried out even when ink is consumed by the recording head to reduce the ink amount in the sub tank, and the sub tank therefore cannot be replenished with ink.
The disclosure has been made in view of the above problems, and an object thereof is to provide a liquid supplying device in which the gas-liquid substitution can be well performed.
According to one aspect, the disclosure provides a liquid supplying device including a tank a tank and a cartridge. The cartridge is configured to be attached to the tank and has a first storage chamber configured to store liquid. The cartridge is formed with a communicating opening in communication with the first storage chamber. The tank includes a second storage chamber configured to store the liquid, the liquid passage in communication with the second storage chamber, a gas passage in communication with the second storage chamber, a joint having a hollow cylindrical shape, and an air communication portion. The liquid passage has a first end portion connected to the second storage chamber and formed with a first opening, and a second end portion opposite to the first end portion and formed with a second opening open to an atmosphere. The gas passage has a third end portion connected to the second storage chamber and formed with a third opening, and a fourth end portion opposite to the third end portion and formed with a fourth opening open to the atmosphere. The joint has a part of the liquid passage formed with the second opening and a part of the air passage formed with the fourth opening. The air communication portion has an air communication opening allowing the second storage chamber to communicate with the atmosphere. In an attachment state where the communicating opening of the cartridge is connected to the joint, the first storage chamber has a portion positioned above the joint and the second storage chamber is positioned below the joint. At least in the first end portion, the liquid passage has a rectangular shape in a cross section taken along a plane perpendicular to an extending direction of the liquid passage.
According to another aspect, the disclosure provides an image recording apparatus including a liquid supplying device and a recording portion. The liquid supplying device includes a tank and a cartridge configured to be attached to the tank and comprising a first storage chamber configured to store liquid. The cartridge is formed with a communicating opening in communication with the first storage chamber. The recording portion is configured to eject the liquid supplied from the tank. The tank includes a second storage chamber, a liquid passage, a gas passage, a joint, and an air communication portion. The second storage chamber is configured to store the liquid. The liquid passage is in communication with the second storage chamber. The liquid passage has a first end portion connected to the second storage chamber and formed with a first opening, and a second end portion opposite to the first end portion and formed with a second opening open to an atmosphere. The gas passage is in communication with the second storage chamber. The gas passage has a third end portion connected to the second storage chamber and formed with a third opening, and a fourth end portion opposite to the third end portion and formed with a fourth opening open to the atmosphere. The joint has a hollow cylindrical shape. The joint has a part of the liquid passage formed with the second opening and a part of the air passage formed with the fourth opening. The air communication portion has an air communication opening allowing the second storage chamber to communicate with the atmosphere. In an attachment state where the communicating opening of the cartridge is connected to the joint, the first storage chamber has a portion positioned above the joint and the second storage chamber is positioned below the joint. At least in the first end portion, the liquid passage has a rectangular shape in a cross section taken along a plane perpendicular to an extending direction of the liquid passage.
According to another aspect, the disclosure provides a liquid supplying device including a tank and a cartridge. The cartridge is configured to be attached to the tank and having a first storage chamber configured to store liquid. The cartridge is formed with a first communicating opening and a second communicating opening each in communication with the first storage chamber. The tank includes a second storage chamber configured to store the liquid, a liquid passage in communication with the second storage chamber, a gas passage in communication with the second storage chamber, a first joint having a hollow cylindrical shape, a second joint having a hollow cylindrical shape, and an air communication portion. The liquid passage has a first end portion connected to the second storage chamber and formed with a first opening, and a second end portion opposite to the first end portion and formed with a second opening open to an atmosphere. The gas passage has a third end portion connected to the second storage chamber and formed with a third opening, and a fourth end portion opposite to the third end portion and formed with a fourth opening open to the atmosphere. The first joint has a part of the liquid passage formed with the second opening. The second joint has a part of the air passage formed with the fourth opening. The air communication portion has an air communication opening allowing the second storage chamber to communicate with the atmosphere. In an attachment state where the first communicating opening is connected to the first joint and the second communicating opening is connected to the second joint, the first storage chamber has a portion positioned above both of the first joint and the second joint, and the second storage chamber is positioned below both of the first joint and the second joint. At least in the first end portion, the liquid passage has a rectangular shape in a cross section taken along a plane perpendicular to an extending direction of the liquid passage.
The particular features and advantages of the disclosure will become apparent from the following description taken in connection with the accompanying drawings, in which:
Hereinafter, embodiments of the disclosure will be described. It is noted that the embodiments described below are merely examples of the disclosure and the embodiments of the disclosure can be appropriately modified without changing the scope of the disclosure. Further, on the basis of the posture (the posture of
Hereinafter, the multifunction machine 10 and the ink supplying device 15 according to the first embodiment will be described.
[Entire Configuration of Multifunction Machine 10]
As illustrated in
As illustrated in
[Feeding Tray 20, Discharge Tray 21]
As illustrated in
[Feeding Unit 16]
The feeding unit 16 feeds the sheet 28 supported by the feeding tray 20 to a conveying path 38. As illustrated in
Hereinafter, the rotation of the feeding roller 25, the conveying roller 34, and the discharge roller 36 related to the conveyance of the sheet 28 in a conveying direction 38A for conveying the sheet 28 is indicated as “normal rotation”.
[Conveying Path 38]
As illustrated in
[Pair of Conveying Rollers 45]
As illustrated in
[Pair of Discharge Rollers 46]
As illustrated in
[Recording Unit 24]
As illustrated in
As illustrated in
The recording head 39 and the four sub tanks 100 provided in the ink supplying device 15 are connected by four ink tubes 32. The recording head 39 is connected to a control board (not illustrated) by a flexible flat cable 33.
The four sub tanks 100 are a magenta sub tank 100M, a cyan sub tank 100C, a yellow sub tank 100Y, and a black sub tank 100B. The magenta sub tank 100M, the cyan sub tank 100C, the yellow sub tank 100Y, and the black sub tank 100B are collectively referred to as sub tanks 100, unless it is particularly necessary to distinguish in this specification.
The four ink tubes 32 include a yellow ink tube 32Y, a cyan ink tube 32C, a magenta ink tube 32M, and a black ink tube 32B. The yellow ink tube 32Y, the cyan ink tube 32C, the magenta ink tube 32M, and the black ink tube 32B are collectively referred to as ink tubes 32 unless it is particularly necessary to distinguish in this specification. The four ink tubes 32 are bundled together.
The flexible flat cable 33 electrically connects the control board, on which the control unit is mounted, and the recording head 39. The flexible flat cable 33 transmits a control signal, which is output from the control unit, to the recording head 39.
As illustrated in
[Platen 42]
As illustrated in
[Cover 48]
As illustrated in
As illustrated in
[Ink Supplying Device 15]
As illustrated in
[Ink Cartridge 50]
As illustrated in
As illustrated in
The cartridge main body 51 has a substantially rectangular parallelepiped box shape. The cartridge main body 51 has a substantially rectangular shape as viewed from the up-down direction 7 and the front-rear direction 8. The cartridge main body 51 has a protruding portion 65 protruding downward at the front end portion of the cartridge main body 51. The cartridge main body 51 has an upper wall 54, a sub-lower wall 55, a right wall 56 (see
On the upper wall 54, an abutment portion 64 protruding upward is provided at the central portion in the front-rear direction 8. The abutment portion 64 is a portion that abuts against a lock lever 79 (to be described later) of the housing case 71.
The upper surface of the sub-lower wall 55 that defines the bottom surface of the first storage chamber 53 is inclined downward toward the protruding portion 65 in the front-rear direction 8.
The joint receiving portion 52 has a cylindrical shape extending rearward from the portion surrounding the communication port 61 in the cartridge main body 51. The joint receiving portion 52 is a portion into which a joint 102 (to be described later) of the sub tank 100 is inserted.
The joint receiving portion 52 is provided with a plug member 62 capable of closing the communication port 61, and a spring 63 which urges the plug member 62 rearward. As illustrated in
[Housing Case 71]
The housing case 71 has a rectangular parallelepiped box shape having an open front end. The housing case 71 has an upper wall 72, a lower wall 73, a right wall 74, a left wall 75, a rear wall 76, and three partition walls 77. The upper wall 72, the lower wall 73, the right wall 74, the left wall 75, and the rear wall 76 define an internal space 78 that has an open front end. The three partition walls 77 are walls parallel to the right wall 74 and the left wall 75, and partition the internal space 78 into four spaces. Each of the four ink cartridges 50 can be mounted or attached in each of the partitioned four spaces.
[Lock Lever 79]
As illustrated in
[Sub Tank 100]
As illustrated in
[Liquid Flow Passage 103 and Gas Flow Passage 104]
As illustrated in
The liquid flow passage 103 has a first opening 131, a second opening 132, a vertical portion 133 as an example of a first vertical portion, and a horizontal portion 134 as an example of a first horizontal portion. The first opening 131 is an opening which is formed on one end side (a rear end side) of the liquid flow passage 103 and communicates with the second storage chamber 105. The first opening 131 is opened along the up-down direction 7. The second opening 132 is an opening which is formed on the other end side (a front end side) opposite to the one end side of the liquid flow passage 103 and is opened to the outside or atmosphere. The second opening 132 is opened along the front-rear direction 8. The second opening 132 is positioned inside the first storage chamber 53 of the ink cartridge 50 in the attachment state of the ink cartridge 50. The vertical portion 133 is a portion extending upward (an example of a vertical direction) from the first opening 131 in the liquid flow passage 103. The horizontal portion 134 is a portion extending rearward (an example of a horizontal direction) from the second opening 132 in the liquid flow passage 103. The upper end portion of the vertical portion 133 is connected to the rear end portion of the horizontal portion 134.
The gas flow passage 104 has a first opening 141, a second opening 142, a vertical portion 143 as an example of a second vertical portion, and a horizontal portion 144 as an example of a second horizontal portion. The first opening 141 is an opening which is formed on one end side (a rear end side) of the gas flow passage 104 and allows communication between the gas flow passage 104 and the second storage chamber 105. The first opening 141 is opened along the up-down direction 7. The second opening 142 is an opening which is formed on the other end side (a front end side) opposite to the one end side of the gas flow passage 104, and is opened to the outside or atmosphere. The second opening 142 is opened along the front-rear direction 8. The second opening 142 communicates with the first storage chamber 53 of the ink cartridge 50 in a state where the ink cartridge 50 is attached to the sub tank 100. The vertical portion 143 is a portion extending upward (an example of the vertical direction) from the first opening 141 in the gas flow passage 104. The horizontal portion 144 is a portion extending rearward (an example of the horizontal direction) from the second opening 142 in the gas flow passage 104. The upper end portion of the vertical portion 143 is connected to the rear end portion of the horizontal portion 144.
[Tank Main Body 101]
The tank main body 101 has an approximately rectangular parallelepiped outer wall. The tank main body 101 has a substantially T shape (see
As illustrated in
As illustrated in
A cylindrical inner tubular portion 114 extending in the front-rear direction 8 is provided at the front end portion and the upper portion of the tank main body 101. The inside of the inner tubular portion 114 communicates with an opening formed by the front wall 113, the two front bent side walls 111 positioned on the left and right sides, and the front upper wall 108. A rear end portion of the joint 102 can be attached to the inner tubular portion 114. In the attachment state in which the joint 102 is attached to the inner tubular portion 114, the inside of the inner tubular portion 114 communicates with the inside of the joint 102.
[Wide-Width Portion 150 and Narrow-Width Portion 151]
As illustrated in
As illustrated in
[Vertical Wall 115 and Horizontal Wall 116]
As illustrated in
The vertical wall 115 extends in the up-down direction 7 and positioned between the front wall 113 and the bent upper wall 130 in the front-rear direction 8. The vertical wall 115 connects the two front bent side walls 111 positioned on the left and right sides, and partitions the space defined by the front wall 113, the front upper wall 108, the bent upper wall 130, and the two front bent side walls 111 into the front and rear parts. The lower end position of the vertical wall 115 is the position of the first opening 131 of the liquid flow passage 103 in the up-down direction 7, and the position of the first opening 141 of the gas flow passage 104 in the up-down direction 7. The lower end level of the vertical wall 115 in the up-down direction 7 is equal to the lower end level of the front end of the rear upper wall 107. That is, the upper surface of the second storage chamber 105 is defined by a virtual plane passing through the lower end position of the vertical wall 115 and parallel to the horizontal plane, and the lower surface of the rear upper wall 107.
The horizontal wall 116 extends forward from the upper end of the vertical wall 115. The horizontal wall 116 extends to the inside of the inner tubular portion 114. The horizontal wall 116 connects the two front bent side walls 111 positioned on the left and right sides, and connects the inner surface of the inner tubular portion 114 in the left-right direction 9. The horizontal wall 116 partitions the space defined by the front upper wall 108 and the two front bent side walls 111, and the space defined by the inner tubular portion 114, into the upper and lower parts.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
[First Rib 117]
As illustrated in
[Joint 102]
As illustrated in
[Joint Main Body 118]
As illustrated in
[Partition Wall 127 and Second Rib 128]
As illustrated in
The partition wall 127 is a wall that expands in the left-right direction 9 inside the joint main body 118. The partition wall 127 extends rearward from the distal end portion 123. The internal space of the joint main body 118 is partitioned into an upper part and a lower part by the partition wall 127.
The second rib 128 protrudes downward from the central portion of the partition wall 127 in the left-right direction 9. The second rib 128 extends rearward from the distal end portion 123. There is a gap between the second rib 128 and the inner surface of the joint main body 118.
The horizontal portion 134 of the liquid flow passage 103 in the joint 102 is defined by the inner surface of the joint main body 118 and the lower surface of the inner wall 119. The cross section of the horizontal portion 134 of the liquid flow passage 103 in the joint 102 has a substantially semicircular shape. More precisely, in the cross section of the horizontal portion 134, the semicircular upper portion is divided into right and left sides by the second rib 128, and the semicircular lower portion is connected without being divided into the right and left sides. The horizontal portion 144 of the gas flow passage 104 in the joint 102 is defined by the inner surface of the joint main body 118 and the upper surface of the inner wall 119. The cross section of the horizontal portion 144 of the gas flow passage 104 in the joint 102 has a semicircular shape.
[Plug Member 120 and Spring 121]
The plug member 120 is a cylindrical member, and is positioned outside the main body portion 124 of the joint main body 118. The plug member 120 is movable in the front-rear direction 8 along the main body portion 124. The front end portion of the spring 121 is fixed to the rear end portion of the plug member 120, and the rear end portion thereof abuts against a buffer tank 90 (to be described later) of the atmospheric communication portion 70 and the outer tubular portion 122 of the joint main body 118. The spring 121 urges the plug member 120 forward. In the state in which no external force is applied, the plug member 120 is positioned at the front end portion of the joint main body 118, and closes the upper opening portion 125 and the lower opening portion 126. When a rearward external force greater than the elastic force of the spring 121 is applied to the plug member 120, the plug member 120 moves rearward, and the upper opening portion 125 and the lower opening portion 126 are opened. When the ink cartridge 50 is attached, the joint receiving portion 52 of the ink cartridge 50 abuts against the plug member 120. The plug member 120 abutting against the joint receiving portion 52 moves rearward by an external force applied when the ink cartridge 50 is attached.
[Attachment State of Ink Cartridge 50]
As illustrated in
[Layout of Ink Cartridge 50 and Sub Tank 100]
The layout of the ink cartridge 50 and the sub tank 100 will be described. The layout will be described on the assumption that the ink cartridge 50 is attached to the housing case 71, and the ink cartridge 50 and the sub tank 100 are in the use posture as illustrated in
As illustrated in
A portion above the protruding portion 65 of the first storage chamber 53 is positioned above the horizontal portion 134 of the liquid flow passage 103 and above the horizontal portion 144 of the gas flow passage 104. The second storage chamber 105 is positioned below the horizontal portion 134 of the liquid flow passage 103 and above the horizontal portion 144 of the gas flow passage 104. The lower portion of the first storage chamber 53 and the upper portion of the second storage chamber 105 are positioned on a line extending in the front-rear direction 8. The volume of the first storage chamber 53 is larger than the volume of the second storage chamber 105.
The horizontal portion 144 of the gas flow passage 104 is positioned above the horizontal portion 134 of the liquid flow passage 103.
As illustrated in
[Atmospheric Communication Portion 70]
As illustrated in
[Buffer Tank 90]
As illustrated in
As illustrated in
The lower wall 73 of the housing case 71 is positioned above the upper wall 91 of the buffer tank 90. The upper wall 91 of the buffer tank 90 supports the lower wall 73 of the housing case 71. Therefore, the upper wall 91 of the buffer tank 90 can support the ink cartridge 50 housed in the housing case 71 via the lower wall 73 of the housing case 71.
[Buffer Chambers 97]
The internal space defined by the upper wall 91, the lower wall 92, the two side walls 93, and the rear wall 95 is partitioned as four buffer chambers 97 by the three partition walls 94. The four buffer chambers 97 are communicatively connected to the four sub tanks 100, respectively. The four buffer chambers 97 are spaces which can store air sent to the first storage chamber 53 as the ink in the first storage chamber 53 is supplied to the second storage chamber 105 by the gas-liquid substitution. The four buffer chambers 97 are positioned above the recording unit 24.
As illustrated in
[Communication Flow Passage 145]
As illustrated in
[Atmospheric Communication Passage 147]
As illustrated in
[Operation in Embodiment]
First, the flow of ink and air at the time of initial introduction in which the ink cartridge 50 is initially attached to the empty sub tank 100 will be described.
In a state (a previous state) before the initial introduction illustrated in
As illustrated in
As the gas-liquid substitution progresses, the liquid level of the ink in the second storage chamber 105 rises. When the liquid level of the ink rises to reach the lower end position of the vertical wall 115, the first opening 141 of the gas flow passage 104 is closed. Then, since the gas-liquid substitution cannot be performed, the supply of ink from the first storage chamber 53 to the second storage chamber 105 is stopped. In this way, ink is supplied at the time of initial introduction.
Next, the flow of ink and air when the printing operation is executed by the printer unit 11 in the attachment state of the ink cartridge 50 will be described.
When ink is ejected from the recording head 39 at the time of executing the recording operation, the ink in the second storage chamber 105 is sucked from the communication port 129 to the recording head 39. As the ink decreases, the liquid level of the ink in the second storage chamber 105 descends. Thus, the first opening 141 of the closed gas flow passage 104 is opened. When the first opening 141 of the gas flow passage 104 is opened, the gas-liquid substitution is executed as described above, and ink is supplied from the first storage chamber 53 to the second storage chamber 105. Ink is supplied from the first storage chamber 53 to the second storage chamber 105 so as to compensate for the consumption of ink in the recording head 39, and the height of the liquid level of the ink in the second storage chamber 105 is kept at the position of the first opening 141 of the gas flow passage 104.
When the ink in the first storage chamber 53 becomes empty, by replacing the empty ink cartridge 50 with another ink cartridge 50 filled with ink, the multifunction machine 10 can continuously execute the recording operation.
[Technical Effect of First Embodiment]
With the ink supplying device 15 according to the first embodiment, since the first storage chamber 53 and the second storage chamber 105 are connected to each other via the gas flow passage 104 and the liquid flow passage 103, ink in the first storage chamber 53 can be supplied to the second storage chamber 105 by the gas-liquid substitution. Since the first storage chamber 53 is disposed above the second storage chamber 105, ink is supplied from the first storage chamber 53 to the second storage chamber 105 in accordance with the decrease in the ink in the second storage chamber 105. Since the joint 102 has a cylindrical shape, even if the joint 102 swings when the joint 102 is connected to the communication port 61 of the ink cartridge 50, a gap is hard to be generated between the joint 102 and the ink cartridge 50, and the sealing property of the liquid flow passage 103 and the gas flow passage 104 is good. Further, since the shape of the cross section of the liquid flow passage 103 is rectangular at one end side (the first opening 131 side), the inner surface of the liquid flow passage 103 is a prismatic surface, and the capillary force acting on the ink is not uniform along the circumferential direction of the liquid flow passage 103. On the prismatic surface, since the capillary force is relatively large at the corner portion, a deviation occurs in the capillary force in the circumferential direction of the liquid flow passage 103. Therefore, the meniscus formed on the prismatic surface due to the capillary force is easily broken as compared to the case of a cylindrical surface. The ink from the first storage chamber 53 does not clog in the liquid flow passage 103, and the ink easily flows along the liquid flow passage 103. Accordingly, the gas-liquid substitution is favorably performed between the sub tank 100 and the ink cartridge 50.
Further, since the cross-sectional shape of the liquid flow passage 103 is semicircular on the ink cartridge 50 side, meniscus is hard to be formed in the liquid flow passage 103. Therefore, ink easily flows along the liquid flow passage 103.
Further, since the cross-sectional shape of the gas flow passage 104 is rectangular on the second storage chamber 105 side, even if ink enters the gas flow passage 104 from the second storage chamber 105 side, the meniscus is hardly formed in the ink. Accordingly, the ink from the second storage chamber 105 cannot stay in the gas flow passage 104, and the passage of air through the gas flow passage 104 is not hindered. Therefore, the gas-liquid substitution is carried out satisfactorily.
Further, since the ink cartridge 50 is attachable to and detachable from the sub tank 100 in the front-rear direction 8, operability in replacing the ink cartridge 50 is good.
Further, since the liquid flow passage 103 and the gas flow passage 104 are opened downward with respect to the second storage chamber 105, the ink in the second storage chamber 105 is hard to flow backward into the liquid flow passage 103 and the gas flow passage 104.
Further, since the height of the first opening 131 of the liquid flow passage 103 is the same as the height of the first opening 141 of the gas flow passage 104, the liquid flow passage 103 is prevented from being immersed in the ink stored in the second storage chamber 105 up to the height of the first opening 141 of the gas flow passage 104. Since the opening area of the first opening 141 of the gas flow passage 104 is larger than the opening area of the first opening 131 of the liquid flow passage 103, the larger capillary force is generated in the liquid flow passage 103 than in the gas flow passage 104, and the ink easily flows along the liquid flow passage 103.
Further, the capillary force is hard to occur in the gas flow passage 104, and the ink is hard to flow backward to the gas flow passage 104.
Further, since the first rib 117 is provided on the front bent side wall 111 which defines the second storage chamber 105, the ink supplied along the liquid flow passage 103 does not scatter toward the gas flow passage 104, and the ink easily flows through the second storage chamber 105 along the first rib 117. Accordingly, the gas flow passage 104 is hard to be blocked by the ink.
In addition, since the second rib 128 is provided in the horizontal portion 134 of the liquid flow passage 103, the meniscus is hardly formed in the ink that has entered the horizontal portion 134 of the liquid flow passage 103. Therefore, the ink easily flows along the liquid flow passage 103.
According to the multifunction machine 10 of the first embodiment, the ink from the first storage chamber 53 does not clog in the liquid flow passage 103, and the ink easily flows along the liquid flow passage 103. Accordingly, the gas-liquid substitution is satisfactorily performed between the sub tank 100 and the ink cartridge 50.
Hereinafter, an ink supplying device 215 according to the second embodiment and a multifunction machine 10 having the ink supplying device 215 mounted thereon will be described with reference to
As illustrated in
The ink cartridge 250 is provided with the first storage chamber 253, and a first communication port 261 and a second communication port 262 that cause the first storage chamber 253 to communicate with the outside. The first communication port 261 and the second communication port 262 are opened downward.
The sub tank 200 is provided with a tank main body 201, a liquid flow passage 203, a gas flow passage 204, a first joint 221, and a second joint 222. A second storage chamber 205 is formed in the tank main body 201. The tank main body 201 is provided with an atmospheric communication port 206 that causes the second storage chamber 205 to communicate with the outside, and a communication port 229 that causes the second storage chamber 205 to communicate with the recording head 39 via the ink tube 32.
The liquid flow passage 203 extending in the up-down direction 7 is formed inside the first joint 221. The liquid flow passage 203 has a first opening 231 and a second opening 232. The first opening 231 is formed at the lower end side (an example of a first end portion) and in communication with the second storage chamber 205. The second opening 232 is formed at the upper end side (an example of a second end portion opposite to the first end portion) and is opened to the outside. The gas flow passage 204 extending in the up-down direction 7 is formed inside the second joint 222. The gas flow passage 204 has a first opening 241 and a second opening 242. The first opening 241 is formed on the lower end side (an example of a third end portion) and in communication with the second storage chamber 205. The second opening 242 is formed on the upper end side (an example of a fourth end portion opposite to the third end portion) and is opened to the outside.
In the attachment state of the ink cartridge 50, the first joint 221 is connected to the first communication port 261 of the ink cartridge 250, and the second joint 222 is connected to the second communication port 262 of the ink cartridge 250. In the attachment state, the liquid flow passage 203 and the gas flow passage 204 communicate with the first storage chamber 253. In the attachment state, the first storage chamber 53 has a portion positioned above the first joint 221 and the second joint 222, and the second storage chamber 205 is positioned below the first joint 221 and the second joint 222.
As illustrated in
The liquid flow passage 203 has a lower portion 233 of the lower end side positioned inside the tank main body 201, and an upper portion 234 of the upper end side positioned in the upper part from the lower portion 233. The lower portion 233 of the liquid flow passage 203 is defined by the walls positioned inside the tank main body 201. The upper portion 234 of the liquid flow passage 203 is defined by the inner surface of the first joint 221. The cross-sectional shape of the lower portion 233 of the liquid flow passage 203 is rectangular, and the cross-sectional shape of the upper portion 234 of the liquid flow passage 203 is circular. The external shape of the upper portion of the first joint 221 that partitions the upper portion 234 of the liquid flow passage 203 is a cylindrical shape.
The gas flow passage 204 has a lower portion 243 of the lower end side positioned inside the tank main body 201, and an upper portion 244 of the upper end side positioned on in the upper part from the lower portion 243. The lower portion 243 of the gas flow passage 204 is defined by the walls positioned inside the tank main body 201. The upper portion 244 of the gas flow passage 204 is defined by the inner surface of the second joint 222. The cross-sectional shape of the lower portion 243 of the gas flow passage 204 is a rectangular shape, and the cross-sectional shape of the upper portion 244 of the gas flow passage 204 is a circular shape. The external shape of the upper portion of the second joint 222 that partitions the upper portion 244 of the gas flow passage 204 is a cylindrical shape.
With the ink supplying device 215 according to the second embodiment, since the first storage chamber 253 and the second storage chamber 205 are connected to each other via the gas flow passage 204 and the liquid flow passage 203, ink in the first storage chamber 253 can be supplied to the second storage chamber 205 by the gas-liquid substitution. Since the first storage chamber 253 is disposed above the second storage chamber 205, ink is supplied from the first storage chamber 253 to the second storage chamber 205 when the ink in the second storage chamber 205 is decreased.
The first joint 221 and the second joint 222 each have a cylindrical shape, and specifically, the external shapes of the upper portion of the first joint 221 and the upper portion of the second joint 222 are cylindrical. Accordingly, even if the first joint 221 and the second joint 222 swing or pivot in a state where the first joint 221 and the second joint 222 are connected respectively to the first communication port 261 and the second communication port 262, a gap is hard to be formed between the first joint 221, the second joint 222, and the ink cartridge 250. As a result, the sealing property between the first joint 221, the second joint 222 and the ink cartridge 250 shows good quality.
Since the shape of the cross section of the liquid flow passage 203 has a rectangular shape at the lower end side, the inner surface of the liquid flow passage 203 is a prismatic surface, and the capillary force in the ink is uneven along the circumferential direction of the liquid flow passage 203. On the prismatic surface, since the capillary force relatively increases at the corner portion, a deviation occurs in the capillary force in the circumferential direction of the liquid flow passage 203. Therefore, the meniscus formed on the prismatic surface due to the capillary force is easily broken as compared to a case where the meniscus is formed on a cylindrical surface. Since the ink from the first storage chamber 253 does not clog in the liquid flow passage 203 and the ink easily flows along the liquid flow passage 203, the gas-liquid substitution is favorably performed between the sub tank 200 and the ink cartridge 250.
In the ink supplying device 15 according to the first embodiment, the liquid flow passage 103 has a vertical portion 133 and a horizontal portion 134, and the gas flow passage 104 has a vertical portion 143 and a horizontal portion 144. The direction in which the liquid flow passage 103 extends is not limited, and the liquid flow passage 103 may have, for example, at least one of the vertical portion 133 and the horizontal portion 134. Similarly, the direction in which the gas flow passage 104 extends is not limited, and the gas flow passage 104 may have, for example, at least one of the vertical portion 143 and the horizontal portion 144.
In the first embodiment, the liquid flow passage 103 and the gas flow passage 104 are partitioned by the inner wall 119 that partitions the internal space partitioned by the outer wall of the joint main body 118, but the liquid flow passage 103 and the gas flow passage 104 may be the internal spaces of each of the two tubular portions. In this case, the joint 102 is a member in which the two tubular portions are integrally formed.
In the first embodiment, since the cross section of the internal space in the joint 102 is circular and the internal space is partitioned by the internal wall 119, the cross section of the liquid flow passage 103 in the joint 102 has a semicircular shape. However, the cross-sectional shape of the liquid flow passage 103 is not limited to a semicircular shape, and may be a rectangular shape.
In the first embodiment, the cross-sectional shape of the gas flow passage 104 is rectangular at the first opening 141, and in the second embodiment, the cross-sectional shape of the gas flow passage 204 is rectangular at the first opening 241. However, the cross-sectional shapes of the gas flow passages 104 and 204 may be circular or semicircular.
In the first embodiment, the position of the first opening 141 of the gas flow passage 104 in the up-down direction 7 is the same as the position of the first opening 131 of the liquid flow passage 103 in the up-down direction 7, and similarly, in the second embodiment, the position of the first opening 241 of the gas flow passage 204 in the up-down direction 7 is the same as the position of the first opening 231 of the liquid flow passage 203 in the up-down direction 7. However, the positions of the first openings 141 and 241 of the gas flow passages 104 and 204, and the positions of the first openings 131 and 231 of the liquid flow passages 103 and 203 may not be the same, or either one of them may be positioned at a position higher than the other. Further, in the first embodiment, the opening area of the first opening 141 of the gas flow passage 104 is larger than the opening area of the first opening 131 of the liquid flow passage 103, but the opening areas of the first opening 141 and first opening 131 may be equal. The opening area of the first opening 131 of the liquid flow passage may be larger than the opening area of the first opening 141 of the gas flow passage 104.
In the first embodiment, the area of the cross section of the gas flow passage 104 is enlarged or expanded as approaching the first opening 141 of the gas flow passage 104. That is, the area of the cross section of the gas flow passage 104 is enlarged or expanded toward the first opening 141 of the gas flow passage 104. Alternatively, the area of the cross section of the gas flow passage 104 may be the same irrespective of the position in the extending direction of the gas flow passage 104.
In the first embodiment, the sub tank 100 is provided with the second rib 128 that protrudes from the partition wall 127 of the inner wall 119 of the joint 102, but the second rib 128 may protrude from the inner surface of the joint main body 118 as the outer wall of the joint 102. Further, the inner wall 119 may have only the partition wall 127, and may not have the second rib 128.
Further, in the second embodiment, the cross-sectional shapes of the upper portion 234 of the liquid flow passage 203 and the upper portion 244 of the gas flow passage 204 may not be circular, but may be, for example, rectangular.
Number | Date | Country | Kind |
---|---|---|---|
2017-037755 | Feb 2017 | JP | national |
This application is a continuation of U.S. patent application Ser. No. 15/904,599, filed Feb. 26, 2018, which claims priority from Japanese Patent Application No. 2017-037755, filed Feb. 28, 2017. The entire content of the priority applications is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 15904599 | Feb 2018 | US |
Child | 17384990 | US |