1. Field of the Invention
The present invention relates to a liquid-tight slide fastener for use at an opening of clothes, cases, bags and the like requiring water repellency or oil repellency and a method for manufacturing the liquid-tight slide fastener.
2. Description of the Related Art
Conventionally, there has been known a slide fastener having waterproof property due to lamination of a polyurethane film on the surface of a fastener tape on an opposite side to a coupling element mounting surface of a slide fastener on which coil-like coupling element rows are sewed.
As shown in
When the pair of coupling element rows 912 in the slide fastener 910 shown in
A sectional view of a slide fastener 810 shown in
When the slide fastener 910 shown in
As shown in the same figure, the bag 940 is formed so as to be easily openable and closable by sewing the slide fastener 910 from a top surface 942 of the bag 940 up to a corner portion 944 and a side surface 946 thereof. At this time, the gap (W1) at the joint portion formed by the opposing side edges of the pair of opposing liquid-tight layers 918 is small at the top surface 942 and the side surface 946 of the bag 940. However, particularly at the corner portion 944 of the bag 940, the opposing side edges of the pair of liquid-tight layers 918 become likely to open so that a gap (W2) at the joint portion is widened. In a situation where water droplets are splashed onto the bag 940, more water invades into the space portion 930 (see
Because water having invaded into the space portion 930 permeates the pair of core threads 914 and continues to invade inside of the bag 940 through the sewing yarn 915 due to the capillary phenomenon, the inside of the bag 940 is wetted gradually.
Even if, as shown in
To improve water stop performance in the above-described conventional slide fastener, a water stop flap needs to be provided at the joint portion of the slide fastener. However, if the water stop flat is provided on the slide fastener, efficiency of sewing operation for the slide fastener is deteriorated and it becomes very difficult to open/close the slide fastener.
The present invention has been made to solve these problems possessed by the prior art, and an object of the invention is to improve the water repellent and oil repellent performance of the slide fastener without providing with any special water stop flap.
To achieve the above-described object, the present invention provides a liquid-tight slide fastener in which a pair of right and left coil-like coupling element rows, through which a core thread is respectively passed, are attached by sewing along opposing side edges of a pair of right and left fastener tapes, the fastener tapes having a liquid-tight layer on one surface thereof, being characterized in that the core thread is coated with a water repellent agent or oil repellent agent.
According to a preferred embodiment, the coupling element rows or the fastener tapes are coated with the water repellent agent or oil repellent agent.
To achieve the above described object, a first method for manufacturing a liquid-tight slide fastener of the present invention comprises: a step of sewing a pair of right and left coil-like coupling element rows, through which a core thread is respectively passed, onto opposing side edges of a pair of right and left fastener tapes; a step of, with the pair of right and left coupling element rows coupled with each other, forming a liquid-tight layer on surfaces on an opposite side to surfaces of the pair of right and left fastener tapes on which the coupling element rows are sewed; and a step of cutting the liquid-tight layer along a coupling portion at which the pair of coupling element rows is coupled with each other, being characterized by further comprising a step of applying a water repellent agent or oil repellent agent to at least a portion of the core thread to settle the water repellent agent or oil repellent agent on the portion of the core thread.
According to a preferred embodiment, the manufacturing method may further comprise: a step of, when the water repellent agent or oil repellent agent is applied to the portion of the core thread, disposing a roller on surfaces on the opposite side to the surfaces of the fastener tapes, on which the coupling element rows exist; and winding a fastener chain along a peripheral surface of the roller so as to curve the fastener chain at a predetermined angle θ, thereby expanding a gap between the coupling element rows to accelerate a permeation of the water repellent agent or oil repellent agent into insides of the coupling element rows.
To achieve the above described object, a second method for manufacturing a liquid-tight slide fastener of the present invention comprises: a step of inserting a core thread coated with a water repellent agent or oil repellent agent through each of a pair of right and left coil-like coupling element rows; a step of sewing the coil-like coupling element rows, through which the core thread is respectively passed, onto opposing side edges of a pair of right and left fastener tapes; a step of, with the pair of right and left coupling element rows coupled with each other, forming a liquid-tight layer on surfaces on an opposite side to surfaces of the pair of right and left fastener tapes on which the coupling element rows are sewed; and a step of cutting the liquid-tight layer along a coupling portion at which the pair of coupling element rows is coupled with each other, being characterized by further comprising a step of, before the core thread is passed through the coil-like coupling element row, applying a water repellent agent or oil repellent agent to the core thread in advance.
According to a preferred embodiment, in addition to the second manufacturing method, the manufacturing method may further comprise a step of further applying the water repellent agent or oil repellent agent to the coupling element rows or the fastener tapes.
A liquid-tight slide fastener of the present invention is manufactured according to the first and second manufacturing methods of the present invention. Thus, the core thread, which is passed through the inside of each of the pair of right and left coil-like coupling element rows, is coated with the water repellent agent or oil repellent agent. Consequently, even if water or oil invades into a space portion between the liquid-tight layer and the coupling element rows through a joint portion of the liquid-tight layers made of polyurethane or the like formed on a single surface of the fastener tape, the core thread repels water or oil. Then, water or oil invading through the joint portion of the liquid-tight layers is repelled by the surface of the core thread and remains deposited in the space portion between the liquid-tight layers and coupling element rows, thereby blocking water or oil from invading further through the joint portion of the liquid-tight layers.
If the liquid-tight slide fastener is used at a corner portion of a bag, generally, the liquid-tight slide fastener is bent, so that the joint portion of the liquid-tight layers may be opened slightly or a large lateral pulling force is applied to the liquid-tight slide fastener due to existence of a content in the bag and consequently, the gap at the joint portion may be expanded. Even if the gap at the joint portion is expanded, water or oil is held in the space portion and prevented from invading further, because the core thread disposed along the space portion between the joint portion of the liquid-tight layers and the coupling element rows in the liquid-tight slide fastener of the present invention is subjected to water repellent treatment or oil repellent treatment.
According to the preferred embodiment, the coupling element rows and/or the fastener tapes are coated with a water repellent agent or oil repellent agent, in order to prevent water or oil from permeating the coupling element rows or the fastener tapes. Consequently, water or oil deposit is maintained in the space portion between the liquid-tight layer and the coupling element row, thereby preventing water or oil from further invading through the joint portion of the liquid tight layers.
By constituting the liquid-tight slide fastener in this way, predetermined water repellency can be obtained without providing a water stop flap difficult to handle at the joint portion in the liquid-tight slide fastener. Further, water repellency or oil repellency can be improved by applying a water repellent agent or oil repellent agent to an entire surface of a liquid-tight slide fastener having a top end stop, bottom end stop or separable bottom end stop.
According to the first manufacturing method, the water repellent agent or oil repellent agent cannot be, in some cases, supplied to part of the core thread due to existence of the coupling element rows. However, the water repellent effect or oil repellent effect of the core thread is compensated by the water repellent effect or oil repellent effect of the surface of the fastener tape and the coupling element rows by performing water repellent treatment or oil repellent treatment on the fastener tape and the coupling element rows as well as the core thread. Consequently, the water repellent effect or oil repellent effect of the entire liquid-tight slide fastener is improved extremely.
According to the second manufacturing method, the core thread is subjected to water repellent treatment or oil repellent treatment in advance. Consequently, the water repellent effect or oil repellent effect is exerted over the entire core thread although manufacturing efficiency is dropped slightly. As a result, a liquid-tight slide fastener which can exert further water repellent effect or oil repellent effect is obtained. The effects which the present invention exerts are considerably great.
Hereinafter, typical embodiments of a liquid-tight slide fastener of the present invention will be described in detail with reference to the accompanying drawings.
As shown in
The liquid-tight layer 18 is a resin layer made of polyurethane, polyolefin or the like and integrated with the fastener tape 16 by fusion or bonding. As the liquid-tight layer 18, layers having the surface subjected to embossing treatment as ornament may be used.
According to the first embodiment, with the pair of right and left coupling element rows 12 coupled with each other, the liquid-tight layer 18 is formed on the surface of the fastener tape 16 (surface side to the surface on which the coupling element rows 12 are sewed), and thereafter, the liquid-tight layer 18 is cut to two sections along the coupling portion at which the pair of right and left coupling elements 12 are coupled with each other, so that the opposing side edges of the pair of right and left liquid-tight layers 18 make firm contact with each other. However, an extremely slight gap (W1) is formed between the opposing side edges of the pair of right and left liquid-tight layers 18. Because this gap (W1) is extremely small, water droplets are repelled by the water repellency of the liquid-tight layer 18 and some extent of the water repellent performance can be obtained.
Further, according to this embodiment, at least the surface of the core thread 14 is coated with the water repellent agent. Consequently, even when water invades into the space portion 30 formed between the pair of fastener tapes 16 and the coupling element rows 12 through the slight gap (W1) in the pair of liquid-tight layers 18, water never penetrates to the rear side of the slide fastener through the core thread 14 due to the water repellency effect that the core thread 14 passed through the coupling element row 12 repels water but is collected in the vicinity of the space portion 30. As a result, water collected in the space portion 30 prevents more water from invading through the joint portion and thus, it is not necessary to provide any water stop flap at the joint portion of the liquid-tight layers 18, thereby ensuring a predetermined water repellent performance.
According to this embodiment, not only the surface of the core thread 14 is coated with the water repellent agent but also the coupling element rows 12 and/or the fastener tapes 16 are also coated with the water repellent agent. This configuration more effectively prevents penetration of water from the space portion 30 through the coupling element rows 12 and/or the fastener tapes 16, thereby further improving the water repellent performance. Particularly, it is more advantageous that both the coupling element rows 12 and the fastener tapes 16 are coated with the water repellent agent in order to prevent water penetration.
Further, the water repellent performance can be improved by coating the core thread 14 with an oil repellent agent which repels oil. Like the application of the water repellent agent described above, the oil repellent performance can be further improved by coating the coupling element rows 12 and/or the fastener tapes 16 with an oil repellent agent.
In the above description, the embodiment has been explained in which the liquid-tight layer 18 is cut along the coupling portion of the coupling element rows 12 into two sections after forming the liquid-tight layer 18. However, this indicates a preferred embodiment, and other formation means for the liquid-tight layer 18 may be used. For example, with the right and left fastener stringers 17 separated from each other, the liquid-tight layer 18 is formed on the respective fastener stringers. In this case, it is preferable to select a material capable of bearing heat treatment for the liquid-tight layer 18.
Next, a method for manufacturing the liquid-tight slide fastener 10 will be described with reference to
Upon manufacturing the liquid-tight slide fastener 10, the molded coil-like coupling element rows 12 and the core thread 14 obtained by knitting fibers such as polyester are prepared in advance. In step S100 “Insert the core thread into the coupling element row” (hereinafter described like S100 by omitting the detail description) shown in
In next S102 “Sew the coupling element rows on the fastener tape”, the pair of right and left coil-like coupling element rows 12 through which the core thread 14 is passed in S100 are sewed along the opposing side edges of the pair of right and left fastener tapes 16. Then, the coupling element rows 12 of the pair of fastener stringers 17 are coupled with each other so as to form the fastener chain 19.
In next S104 “Form the liquid-tight layer on the fastener tape”, the liquid-tight layer made of a polyurethane film or the like is integrated by bonding or fusion with the surface of the fastener chain 19 on a side on which the coupling element row 12 is not sewed. Consequently, in the fastener chain 19, the common liquid-tight layer 18 is bonded integrally to the pair of right and left fastener tapes 16.
In next S106 “Apply water repellent agent or oil repellent agent”, the fastener chain 19 after the liquid-tight layer 18 is joined in S104 is wound along the peripheral surface of a guide roller (not shown) and guided and then passed continuously within a container filled with a water repellent agent or oil repellent agent, so that the fastener chain 19 is dipped in the water repellent agent or oil repellent agent. In this processing of S106, the water repellent agent or oil repellent agent is efficiently applied to the entire surfaces of the coupling element rows 12, the core thread 14, the sewing yarn 15, the fastener tape 16 and the liquid-tight layer 18 which constitute the fastener chain 19.
Time for keeping the fastener chain 19 dipped in the water repellent agent or oil repellent agent is 1 second to several seconds. Although an example of using a fluorinated water repellent/oil repellent agent as the water repellent agent has been indicated below, the present invention is not restricted to the water repellent/oil repellent agent.
In next S108 “Apply water repellent agent or oil repellent agent”, the fastener chain 19 after dipped in the container filled with the water repellent agent or oil repellent agent in S106 is pulled out of the container and passed through a dry chamber continuously so as to dry the water repellent agent or oil repellent agent applied on the entire surface of the fastener chain 19. The dry condition at this time is about two minutes under 110° C.
After the drying of the water repellent agent or oil repellent agent is completed, the fastener chain 19 is passed through the heat treatment chamber continuously so as to execute heat treatment on the dried water repellent agent or oil repellent agent. In this heat treatment, fusion and settlement are carried out between the water repellent agent or oil repellent agent and all base materials such as the coupling element row 12, the core thread 14, the sewing yarn 15, the fastener tape 16 and the liquid-tight layer 18. Upon the fusion and settlement, the water repellent agent or oil repellent agent is oriented perpendicularly to the surface of the base material, so that the water repellent agent or oil repellent agent adheres to the surface of the coupling element rows 12, the core thread 14, the sewing yarn 15, the fastener tape 16 and the liquid tight layer 18.
This heat treatment is carried out for about 1 minute under 170° C. different from the aforementioned drying time. However, if the fastener chain 19 is dyed, the color may be faded if the temperature of the heat treatment is long. In that case, the treatment time is increased by lowering the heat treatment temperature appropriately.
In next S110 “Divide the liquid-tight layer by cutting”, the fastener chain 19 after the heat treatment is completed in S108 is taken out and the single unit liquid-tight layer 18, which joins the pair of right and left fastener stringers 17, is divided into two sections by cutting it with a cutter in the length direction along the coupling portion at which the pair of coupling element rows 12 are coupled with each other.
In case of dividing the liquid-tight layer 18 by cutting after the water repellent agent or oil repellent agent is applied, the aforementioned gap (W1) between the opposing side edges of the pair of right and left liquid-tight layers 18 can be decreased as compared with a case of forming the liquid-tight layer on each of the right and left fastener stringers 17. The gap is generated when the coupling element rows 12 are coupled with each other by operating the slider 20 in the completed liquid-tight slide fastener.
Next, in S112 “Attach the end stops such as top end stop and bottom end stop”, a predetermined portion of the coupling element row 12 is cut and removed in the fastener chain 19 in which the division of the liquid tight layer 18 by cutting is completed in S110, thereby to form a space portion of the coupling element row 12. Then, the slider 20 is mounted on the coupling element rows 12 through the space portion and the end stops such as the top end stop, bottom end stop and releasable bottom end stop are mounted on the fastener tape 16 in accordance with the length of the liquid-tight slide fastener 10. Thereafter, in S114 “Cut”, the fastener tape 16 is cut to a predetermined length so as to complete the liquid-tight slide fastener 10.
In the method for manufacturing the liquid-tight slide fastener 10 shown in
In the method for manufacturing the liquid-tight slide fastener 10 shown in
The liquid-tight slide fastener 10 shown in
Next, the detail in the vicinity of the top end stop 32 will be described with reference to
Next, the detail in the vicinity of the separable bottom end stop 34 will be described with reference to
In the meantime, in an ordinary liquid-tight slide fastener in which the pair of right and left fastener stringers 17 do not need to be separated completely, a bottom end stop (not shown) composed of a single member is attached to the bottom end of the right and left fastener stringers 17 in pair. To improve the water repellent performance in the vicinity of the separable bottom end stop 34 shown in
Next, an example of carrying out water repellent finish treatment continuously to the fastener chain 19 of the liquid-tight slide fastener 10 shown in
To carry out application, drying, fusion and settlement of the water repellent agent or oil repellent agent 62 continuously, as shown in
When carrying out the treatment shown in
When the fastener chain 19 is wound around the outer periphery of the roller 60B so as to be curved, the gap between the coupling elements outside is opened slightly with respect to the guide roller 60B due to a difference in curvature radius. Then, the water repellent agent or oil repellent agent 62 penetrates the inside of the coupling element rows 12 through an opening in the coupling element rows 12, thereby accelerating permeation of the water repellent agent or oil repellent agent 62 to the core thread 14 and sewing yarn 15 which are hidden inside the coupling element rows 12.
The fastener chain 19 coming out of the dipping bath 64 is sandwiched between the guide roller 60C and the pinch roller 61 so as to remove the excessive water repellent agent or oil repellent agent 62. The fastener chain 19 is further wound around the peripheral surface of the roller 60C so as to change the direction of movement and then, fed into the drying chamber 66 and the heat treatment chamber 67. The drying chamber 66 executes drying treatment under a condition suitable for drying of the water repellent agent or oil repellent agent 62 corresponding to the type of the water repellent agent or oil repellent agent 62. The heat treatment chamber 67 executes heat treatment under a condition suitable for fusion or settlement of the water repellent agent or oil repellent agent 62 corresponding to the type of the water repellent agent or oil repellent agent 62.
It is recommendable to use a roller wound with elastic silicon rubber for the outer peripheral surface of the pinch roller 61. The fastener chain 19 sufficiently impregnated with the water repellent agent or oil repellent agent 62 is sandwiched and pressed with the guide roller 60C and the pinch roller 61, whereby the water repellent agent or oil repellent agent 62 is allowed to permeate the coupling element rows 12, the core thread 14, the sewing yarn 15 and the inside of the fastener tape 16 uniformly.
By continuously executing impregnation, drying and heat treatment of the water repellent agent or oil repellent agent 62, the water repellent agent or oil repellent agent can be effectively applied to the surfaces of the coupling element rows 12, the core thread 14, the sewing yarn 15 and the fastener tape 16. Then a predetermined water repellent effect or oil repellent effect can be applied to the liquid-tight slide fastener 10.
In the previous description using
Because the method for manufacturing the liquid-tight slide fastener 10 described below can adopt the treatment process shown in
In S100 to S104, the same treatment as the same steps described previously is carried out.
In S106 “Apply the water repellent agent or oil repellent agent”, treatment of applying the water repellent agent or oil repellent agent is carried out on mainly the core thread 14 sewed onto the fastener chain 19 including the liquid-tight layer 18 with a dispenser or by local shower or spraying.
Although it is necessary to apply the water repellent agent or oil repellent gain to at least the core thread 14 in this example, this includes applying the water repellent agent or oil repellent agent to not only the core thread 14 but also the coupling element rows 12, the sewing yarn 15 or a part of the fastener tape 16.
In S108 “Settle the water repellent agent or oil repellent agent”, the water repellent agent or oil repellent agent applied to the core thread 14 is dried by continuously passing the fastener chain 19 in which at least the core thread 14 is supplied with the water repellent agent or oil repellent agent through a drying chamber (not shown) or heat treatment chamber. The drying time is about 2 minutes at 110° C. as described above.
Next, the fusion and settlement treatments accompanying cross-linkage and orientation are carried out by executing heat treatment on the dried water repellent agent or oil repellent agent. Consequently, at least the effective water repellent agent or oil repellent agent adheres to the core thread 14, thereby ensuring a desired water repellent effect or oil repellent effect. The settlement treatment (heat treatment) for the water repellent agent or oil repellent agent is carried out for about 1 minute at 170° C. as described above.
Because in S112 to S114, the same treatments as the steps described above are carried out, description thereof is omitted.
The description based on
Next, another method for manufacturing the liquid-tight slide fastener 10, different from the method for manufacturing the liquid-tight slide fastener 10 shown in
That is, upon manufacturing the liquid-tight slide fastener 10 as shown in
According to this embodiment, it is permissible to apply the water repellent agent or oil repellent agent to only the core thread 14 or the water repellent agent or oil repellent agent 62 to the coupling element rows 12, the fastener tape 16 and the sewing yarn 15 independently so as to further improve the water repellent performance or oil repellent performance. The treatment of applying the water repellent agent or oil repellent agent 62 to the coupling element rows 12, the fastener tape 16 and the sewing yarn 15 may be carried out after the liquid-tight layer is formed on the fastener chain (after the process of S208 described later) like the first embodiment.
Next, in S202 “Settle the water repellent agent or oil repellent agent”, the applied water repellent agent or oil repellent agent is dried. Subsequently, the heat treatment is carried out on the dried water repellent agent or oil repellent agent 62 so as to execute the fusion and settlement treatment accompanying cross-linkage and orientation. Consequently, the effective water repellent agent or oil repellent agent adheres to the surface of material of the core thread 14 and the like as described above.
Next, in S204 “Insert the core thread through coupling element rows”, the core thread 14 coated with water repellent agent or oil repellent agent is passed through the central portion of the coil-like coupling element row 12.
Next in S206 “Sew the coupling element rows onto fastener element columns”, the pair of right and left coil-like coupling element rows 12 through which the core thread 14 is passed are sewed along the opposing side edges of the pair of right and left fastener tapes 16 using the sewing yarn 15.
In subsequent S208, S210, S212, and S214, the liquid-tight slide fastener 10 is completed through the same process as S104, S110, S112, and S114 in the first embodiment.
Available examples of the aforementioned water repellent agent include a fluorine compound, a silicone compound, an acrylic water repellent agent, a silicone complex water repellent agent, a paraffin compound, an ethyleneurea compound, a zirconium compound, a fatty acid amide compound, a methylol amide compound, an alkyl urea type water repellent agent and a fatty amide type water repellent agent.
Available examples of the aforementioned fluorine base compound water repellent agent include polypentadecafluorooctyl acrylate, polytrifluoroethyl acrylate, tetrafluoroethylene-hexafluoropropylene copolymer, perfluoro lauric acid, polytetrafluoroethylene, perfluoro n-alkylacrylate, polyvinylidene-fluoride, pentadecanebutyl ethyl metaacrylate, and hexafluoropropylene.
Available example of other fluorine base compound water repellent agents include a copolymer composed of two or more kinds of olefins containing fluorine atoms, and a copolymer of a hydrocarbon monomer and olefin containing fluorine atoms. In the meantime, preferably, the water repellent agent is applied to woven or knitted fabric together with a binder resin from viewpoints of intensifying the durability of water repellency. The type of the binder resin will be described elsewhere later.
Examples of the silicone base compound include a silicone base water repellent agent composed of polydimethyl siloxane, methylhydrogen polysiloxane, various modified silicons such as amino modified, epoxy modified, carboxyl modified, quaternary ammonium salt modified, higher alkyl modified, and fluorine modified silicons, or methyl hydrogen polysiloxane together with hardening accelerating catalyst of aromatic series such as toluene, xylene, n-hexane, and n-heptane. The silicone base water repellent agent has such advantages: (1) a large angle of contact with water and excellent water repellency, (2) ability of wetting the base material easily so as to form a uniform film due to small surface tension, (3) excellent air permeability, and (4) excellent durability and excellent washing resistance and dry-cleaning resistance.
As the silicone base water repellent agent, available is a room temperature curing silicone emulsion composition which is hardened under room temperature by removing water to provide an elastomer-like hardened material. Examples of the composition include a silicone emulsion composed of hydroxyl-group-containing diorganopolysiloxane stabilized on anion basis, colloid silica and hardening catalyst, described in Japanese Patent Application Laid-Open (JP-A) No. 58-118853 or 60-96650, and a silicone emulsion composed of titanium catalyst and alkoxy-group-containing diorganopolysiloxane stabilized on ion basis or non-ion basis, described in JP-A-7-150045.
Further, a cross-linking agent may be used together for the aforementioned compound in order to improve the durability of the water repellent agent or oil repellent agent. Examples of the cross-linking agent include a melamine resin, a block isocyanate resin, and an imine resin.
To improve the durability of the water repellent agent or oil repellent agent, a binder resin may be contained together with the aforementioned compound. Examples of the binder resin include an acrylic resin, an urethane resin, and a silicone resin.
The cross-linking agent and the binder resin may be used mixedly, and in such a case, a treatment fluid may be a mixed liquid of a polyfluoroalkyl-group-containing acrylic copolymer and an aminoplasto resin or polyfunctional-block-isocyanate-containing urethane resin.
To find out whether or not the water repellent agent or oil repellent agent adheres to the surface of the slide fastener, for example, the angle of contact can be calculated from the shape of droplet by falling an appropriate amount of droplets onto a place where the water repellent agent may adhere to the base material. The angle of contact refers to an angle formed between the surface and the tangent line in the vicinity of the surface of droplet, and it can be said that the larger this angle, the better water repellency is present. The water repellency is clarified by comparing a test piece to which actually the water repellent agent adheres with a test piece to which no repellent agent adheres. In the test piece to which no water repellent agent adheres, the angle of contact is less than 30°. If it is recognized that the water repellent agent adheres or the water repellent agent might adhere according to this method, whether or not any material adheres to the surface can be detected by analysis.
Next, water repellent performance of the liquid-tight slide fastener 10 of the present invention will be described according to a precipitation test method B (shower test) using an artificial precipitation apparatus.
First, a fixing jig for the test piece for use in the precipitation test method B will be described by using
As shown in
As shown in
Upon executing the precipitation test method B, the test piece 86 of the liquid-tight slide fastener is cut out and its mass (M0) prior to the test is weighed in advance. Then, the test piece 86 is sandwiched at a predetermined position between the opening member 84 and the water storage member 82. At the same time, absorbent paper for use in measuring the mass of water passing the test piece 86 by absorbing water deposited inside the water storage member 82 after the test is ended is prepared and an initial mass (M1) of the absorbent paper is weighed in advance.
Next, the fixing jig 80 in which the test piece 86 is sandwiched is placed on the angle fixing device 88 and set at an angle of 45° and then, disposed at a position 2000 mm below the spray nozzle 90. Next, the amount of rainfall is set to 100 mm/h by adjusting the water amount control valve 94 while observing a precipitation gauge. Then, sprinkling of water to the fixing jig 80 is started and the sprinkling of water is stopped after 15 minutes elapse.
After the water sprinkling is ended, first, the test piece 86 is detached from the fixing jig 80 and the mass (M2) of the test piece 86 after the test is measured. By immersing the absorbent paper in water deposit 96 (see
Next, by calculating the amount of permeation (g)=(M2−M1)+(M3−M1), the amount of permeation of water according to the precipitation test method B is calculated.
As a sample of the conventional fastener provided with a polyurethane film, a test piece having a chain width of 5.8 mm, in which no water repellent agent was applied to the core thread, the coupling element rows, the sewing yarn and the fastener tape, was taken and the amount of water permeation was measured (test piece (1) for comparison)).
As Example 1 of the liquid-tight slide fastener of the present invention, the test piece (1) having the chain width of 5.8 mm, in which the fluorinated water repellent/oil repellent agent was applied to the core thread, coupling element rows, sewing yarn, fastener tape and polyurethane liquid-tight layer according to the impregnation method, was used so as to measure the amount of water permeation (test piece (2) of Example 1).
Further, as Example 2 of the present invention, a test piece in which a fluorinated water repellent/oil repellent agent is applied to all surfaces except a polyurethane liquid-tight layer, was used so as to measure the amount of water permeation (test piece (3) of Example 2).
As a result of the precipitation test, when the polyurethane film provided fastener of the conventional test piece (1) was used, an average value of the permeation amount was 1.99 g. As for the test piece (2) of Example 1 of the present invention in which the fluorinated water repellent/oil repellent agent was applied to all surfaces including the liquid-tight layer, an average value of the water permeation was 0.018 g. Further, as for the test piece (3) of Example 2 of the present invention in which the fluorinated water repellent/oil repellent agent was applied to all surfaces except the liquid-tight layer, an average value of the water permeation was 0.021 g.
Particularly, in the liquid-tight slide fastener of the test piece (2) of Example 1 of the present invention, as shown in
Number | Date | Country | Kind |
---|---|---|---|
2007-029012 | Feb 2007 | JP | national |