The present application claims priority from Japanese Patent Application No. 2005-364284, filed on Dec. 19, 2005, the disclosure of which is incorporated herein by reference in its entirety.
1. Field of the Invention
The present invention relates to a liquid transporting apparatus which transports an electroconductive liquid.
2. Description of the Related Art
A recording head of an ink-jet type which jets an ink from nozzles onto a recording medium is generally used for a printer which records an image or the like by discharging (jetting) an ink onto a recording medium such as a recording paper. In such a recording head of the ink-jet type, however, the structure of an ink channel in the recording head and the structure of an actuator which generates a jetting pressure to be applied to the ink become special and complicated. Therefore, it has been difficult to minitualize the recording head by arranging a plurality of nozzles highly densely.
In view of this, the inventor of the present invention has proposed a new type of a recording head which uses, in a case that a surface of an electrode is covered by an insulating layer, a phenomenon (electrowetting phenomenon) in which a liquid repellent property (wetting angle) is changed on a surface of the insulating layer when an electric potential difference is changed between an electric potential of the surface of the insulating layer and an electric potential of the electrode (for example, see US Patent Application Publication No. US2005/219330 (corresponding to Japanese Patent Application Laid-open No. 2005-288875)). This recording head includes a plurality of individual channels formed as a plurality of grooves. Further, an individual electrode is provided to a channel-forming surface of each of the individual channels (bottom surface of each of the grooves); and in each of the individual channels, the surface of the individual electrode is covered by the insulating layer. Furthermore, since an ink in the head is in contact with a common electrode which is kept at a ground electric potential, an electric potential of the ink is always maintained at the ground electric potential. Moreover, at an upstream side of the individual channels, there is provided a pump which pressurizes the ink toward a discharge section formed in each of the individual channels at a front end (downstream end) thereof.
Here, an electric potential of the individual electrode is the ground electric potential, and when there is no electric potential difference between the ink and the individual electrode, then the liquid repellent property (wetting angle) on the surface of the insulating layer at a portion thereof sandwiched between the ink and the individual electrode is higher than a liquid repellent property on the surface of the insulating layer at an area thereof in which the insulating layer of a groove bottom surface is not provided or partially absent. Therefore, the ink cannot flow (cross) over or across the surface of the insulating layer to the discharge section, and thus the ink is not discharged from the discharge section. On the other hand, when the electric potential of the individual electrode is a predetermined electric potential which is different from the ground electric potential, there arises an electric potential difference between the ink and the individual electrode, and the liquid repellent property (wetting angle) is lowered on the surface of the insulating layer at the portion thereof sandwiched between the ink and the individual electrode (electrowetting phenomenon). As a results, the ink pressurized by the pump become movable to the discharge section while wetting the surface of the insulating layer, and the ink is discharged from the discharge section.
In the recording head described in US Patent Application Publication No. US2005/219330 as described above, during a period of time when a predetermined electric potential is applied to the individual electrode, the ink is continuously discharged from the discharge section. In other words, an amount of the ink discharged from the discharge section depends on a period of time (time duration) during which the predetermined electric potential is applied to the individual electrode. Therefore, the amount of ink discharged (ink-discharge amount) changes depending on a timing at which the electric potential is switched between the ground electric potential and the predetermined electric potential.
An object of the present invention is to provide a liquid transporting apparatus which is capable of stably discharging the ink in a predetermined (constant) amount.
According to a first aspect of the present invention, there is provided a liquid transporting apparatus which transports an electroconductive liquid, including:
a head including a channel having a channel-forming surface which is insulating and a discharge section from which the liquid is discharged, a working electrode which is arranged on the channel-forming surface, and an insulating layer which is provide on the channel-forming surface to cover the working electrode; and
a power supply which supplies an operating voltage between the liquid and the working electrode;
wherein when the operating voltage is not less than a predetermined voltage, the liquid is disposed entirely on the channel-forming surface of the channel, a meniscus of the liquid is formed in the discharge section and the liquid is prevented from being discharged from the discharge section; and
when the operating voltage is less than the predetermined voltage, a part of the liquid, which is on the surface of the insulating layer, is moved toward the discharge section and the part of the liquid is discharged from the discharge section.
According to the first aspect of the present invention, when the electric potential difference (operating voltage) between the liquid in the channel and the working electrode is not less than the predetermined voltage (demarcation electric potential difference) by applying, for example, a first electric potential to the working electrode by the power-supply (power-supply source, electric potential applying mechanism), then the liquid is disposed (exists) in the entire area of the channel including the surface of the insulating layer. At this time, the meniscus is formed in the discharge section, and the liquid is not discharged from the discharge section. In a case that, from this state, the operating voltage between the liquid in the liquid channel to decrease the working electrode to be less than the predetermined voltage by switching the electric potential of the working electrode, for example, from the first electric potential to a second electric potential with the power supply, then a part of the liquid, existing on the surface of the insulating layer is moved toward the discharge section, and the part of the liquid is pushed out (ejected) from the discharge section.
In this case, for example, when the operating voltage becomes less than the first voltage by the switch of the electric potential of the working electrode from the first electric potential to the second electric potential, the liquid is discharged from the discharge section in an amount which is nearly same as an amount in which the liquid moves from the surface of the insulating layer toward the discharge section. Therefore, the amount of the discharged liquid (liquid-discharge amount) is nearly constant (same) irrespective of the timing at which the electric potential is switched, thereby making it possible to stably discharge the ink in a predetermined amount.
In the liquid transporting apparatus of the present invention, when the operating voltage is less than the predetermined voltage, a liquid repellent property on the surface of the insulating layer may be more than a liquid repellent property on a first area, included in the channel-forming surface, in which the insulating layer is absent. In this case, the liquid repellent property on the insulating layer is more, than that on the first area, at an area (another area; non-coating area) which is different from the first area on the channel-forming surface. However, it is allowable that when, for example, a voltage greater than the predetermined voltage is applied between the liquid and the working electrode, the liquid repellent property on the insulating surface is lowered to be almost same as or lower (less) than the liquid repellent property on the channel-forming surface at another area different from the first area. Here, the term “almost same as or lower than” means that the liquid repellence property on the insulating layer is nearly same as that on the another area in the channel-forming area or the liquid repellent property on the insulating layer is lower than that the another area on the channel-forming area, and is a concept also including a case in which the liquid repellent property on the insulating layer is slightly higher (more) than that on the another area.
In the liquid transporting apparatus of the present invention, the power supply may supply selectively a first voltage not less than the predetermined voltage and a second voltage less than the predetermined voltage between the liquid and the working electrode. In this case, it is enough that the power supply is capable of supplying a predetermined combination of voltages, thereby simplifying the construction of the power supply.
The liquid transporting apparatus of the present invention may further include a pressure applying mechanism which applies, to the liquid in the channel, a pressure exerted toward the discharge section and being lower than a pressure by which the meniscus formed in the discharge section is destroyed. In this case, when the second electric-potential is applied to the liquid to discharge the liquid from the discharge section and then the first electric potential is applied again to the working electrode, the liquid moves rapidly onto the surface of the insulating layer by effect of the pressure applied by the pressure applying mechanism, thereby making it easy to discharge the liquid such as an ink, continuously from the same discharge section.
In the liquid transporting apparatus of the present invention, when the power supply supplies the second voltage between the liquid and the working electrode, an electric potential of the working electrode may be a ground electric potential. In this case, since the change amount in the voltage is great when the working voltage is switched between the first and second voltages, the change amount in the liquid repellent property (wetting angle), due to the voltage-switching, becomes great on the surface of the insulating layer. Accordingly, it is possible to perform a series of discharge operations assuredly.
In the liquid transporting apparatus of the present invention, the channel may include a plurality of liquid channels, and a common channel which commonly communicates with the plurality of liquid channels. In this case, it is possible to supply the liquid stably to the liquid channels via the common channel which has a substantial volume.
In the liquid transporting apparatus of the present invention, the common channel may have a common channel-forming surface which defines the common channel; a common electrode which is in a direct contact with the liquid in the common channel may be formed in the common channel-forming surface; and the power supply may maintain an electric potential of the common electrode at a predetermined electric potential. In this case, since the electric potential of the liquid in the liquid channel is maintained at the predetermined electric potential all the time, and the electric potential difference is stable between the liquid and the working electrode, thereby making it possible to perform the discharge operation of the liquid assuredly.
In the liquid transporting apparatus of the present invention, the predetermined electric potential may be a ground electric potential. In this case, when the first voltage is applied as the operating voltage, the electric potential difference is substantial between the liquid and the working electrode, thereby making it possible to perform a series of discharge operations assuredly.
In the liquid transporting apparatus of the present invention, each of the liquid channels may have a liquid channel-forming surface; and each of the liquid channels may be defined by a first liquid repellent area which has a liquid repellent property not less than a liquid repellent property of the liquid channel-forming surface. In this case, the liquid does not move crossing over or across the first liquid repellent area, between adjacent liquid channels. Further, since there is no need to provide a partition wall which partitions the liquid channels, it is possible to increase the arrangement density of the liquid channels (it is possible to arrange the liquid channels highly densely), thereby realizing the minitualization of the apparatus.
In the liquid transporting apparatus of the present invention, a second liquid repellent area having a liquid repellent property more than that of the channel-forming surface of the channel may be formed on a surface, of the head, which is continued to the discharge section and which faces outside the head. In this case, the liquid discharged from the discharge section is prevented, by the second liquid repellent area, from being adhered to the surface, of the head, which is continued to the discharge section. Therefore, the meniscus in the discharge section becomes stable.
In the liquid transporting apparatus of the present invention, a portion of the channel, which is continued to the discharge section, may be tapered toward the discharge section. In this case, when the ink discharged from the discharge section is made to adhere to some sort of medium, it is possible to limit (restrict) a portion, of the discharge section, which makes contact with the medium first, to be small. Therefore, it is possible to make the liquid adhere accurately to the medium at a desired position thereof.
In the liquid transporting apparatus of the present invention, a throttle, in which a channel area is narrowed locally, may be provided on the channel at a portion thereof on a side opposite to the discharge section with the working electrode being interposed between the throttle and the discharge section. In this case, a channel resistance is great in the throttle at the upstream side thereof (side opposite to the discharge section). Accordingly, when the second voltage is applied to the working electrode, it is possible to move the liquid in even larger amount from the surface of the insulating layer toward the discharge section, and to increase an amount of the liquid discharged in one discharge operation.
In the liquid transporting apparatus of the present invention, the working electrode and the insulating layer may be arranged in the channel-forming surface at an area thereof continued to the discharge section. In this case, it is possible to discharge the liquid from the discharge section assuredly.
In the liquid transporting apparatus of the present invention, the head may be provided with a cover member which covers the liquid in the channel to shield the liquid in the channel from an atmosphere outside the head. In this case, it is possible to suppress the drying of the liquid by the cover member.
In the liquid transporting apparatus of the present invention, each of the working electrode and the insulating layer may be formed to be zigzag shaped at a portion thereof on a side opposite to the discharge section. In this case, a border line (an outline) of each of the working electrode and the insulating layer at a side opposite to the discharge section is formed in a zigzag form in which two straight lines having mutually opposite direction of inclination (two types of straight lines which are inclined in mutually opposite directions) are arranged alternately in a width direction of the channel. Therefore, when the liquid repellent property on the surface of the insulating layer is lowered to be less than the liquid repellent property on the channel-forming surface at the another area thereof, the liquid moves rapidly from the upstream side (side opposite to the discharge section) onto the surface of the insulating layer.
In the liquid transporting apparatus of the present invention, the insulating layer may be formed of a fluororesin. In this case, it is possible to make the liquid repellent property on the insulating layer to be sufficiently higher when the operating voltage is less than the predetermined voltage, and to lower the liquid repellent property on the insulating layer sufficiently when the operating voltage is not less than the predetermined voltage.
In the liquid transporting apparatus of the present invention, an air hole, which communicates the liquid inside the channel with the atmosphere outside the head, may be formed in the cover member. In this case, it is possible to prevent the pressure inside the cover member from being depressurized accompanied with the transporting of the liquid, thereby transporting the liquid smoothly.
In the liquid transporting apparatus of the present invention, an inner surface of the cover member which defines the air hole may be coated by a fluororesin. In this case, it is possible to prevent the liquid from entering into the air hole due to a capillary effect.
The liquid transporting apparatus of the present invention may be a printer. In this case, since the number of mechanically driven components is small, it is possible to simplify the structure of the printer, and to provide a printer which is capable of discharging the liquid with high density.
Next, an embodiment of the present invention will be explained below. This embodiment is exemplified by a printer, which performs recording by transporting an ink onto a recording paper, as a liquid transporting apparatus of the present invention. In the following explanation, frontward, rearward, left, and right directions in
As shown in
Next, the recording head 1 will be explained. As shown in
An ink channel 13 which is extended along a horizontal plane, and through which the electroconductive ink flows is formed in the head body 10. The ink channel 13 includes a common channel 14 and a plurality of individual channels 15 (liquid channels). The common channel 14 is formed by the upper surface of the substrate 11 and the box member 12, and is extended in the left and right direction. The individual channels 15 are formed on or in the upper surface of the substrate 11, at a front-end side portion of the upper surface, and are branched from the common channel 13 and extend in a frontward direction. Discharge sections 16 are provided on the individual channels 15, respectively, each at front end thereof. As shown in
As shown in
As shown in
The common electrode 17 and the individual electrodes 18 as explained above are formed in or on the upper surface of the substrate 11 by a method such as a screen printing, a sputtering method, a vapor deposition method, or the like.
Insulating layers 19 made of a material such as a fluororesin are arranged on the upper surface (bottom surface 23), of the substrate 11, each at an area thereof in which one of the individual electrodes 18 is arranged, and covers entirely a surface of one of the individual electrodes 18. As shown in
When the electric potential difference between the ink and the individual electrode 18 is not less than a predetermined electric potential difference ΔV (demarcation electric potential difference, first electric potential difference, predetermined voltage), then the liquid repellent property on the surface of the insulating layer 19 is almost same as or lower than a liquid repellent property on an area (non-coating area, first area) which is included in the bottom surface 23 as the channel-forming surface of the individual channel 15, and in which the insulating layer 19 is not formed. On the other hand, when the electric potential difference between the ink and the individual electrode 18 is less than the demarcation electric potential difference ΔV, then the liquid repellent property on the surface of the insulating layer 19 is more than the liquid repellent property on the non-coating area of the bottom surface 23. This will be explained in further detail in the following explanation of the driver IC 20.
Next, the driver IC 20 (electric potential applying mechanism, power supply) will be explained below. As shown in
An action of the recording head 1, when the driver IC 20 switches the electric potential of the individual electrode 18 between the first electric potential V and the ground electric potential, will be explained with reference to FIGS. 4 to 7. In
The first electric potential V is set such that a difference between the first electric potential V and the electric potential of the ink is not less than the demarcation electric potential difference ΔV described above. In other words, when the first electric potential V is applied by the driver IC 20 to a certain individual electrode or electrodes 18 in a certain individual channel 15 among the individual channels 15, the electric potential difference between the ink at the ground electric potential and the individual electrode 18 becomes not less than the demarcation electric potential difference ΔV. At this time, the liquid repellent property on the surface of the insulating layer 19 is almost same as or lower than the liquid repellent property on the non-coating area, of the bottom surface 23 as the channel-forming surface of the individual channel 15, in which the insulating layer 19 is not formed. In this case, as shown in
When the driver IC 20 switches from a state in which the first electric potential V is applied to a certain individual electrode 18, to a state in which the ground electric potential is applied to the certain individual electrode 18, the electric potential difference between the ink and the certain individual electrode 18 becomes zero, and becomes less than the demarcation electric potential difference ΔV (second voltage). Therefore, the liquid repellent property on the surface of an insulating layer 19 corresponding to the certain individual electrode 18 becomes more than the liquid repellent property on the non-coating area of the bottom surface 23. In this case, as shown in
Next, the controller 3 will be explained below. The controller 3 includes a central processing unit (CPU), a Read Only Memory (ROM) in which various computer programs and various data for controlling the printer 100 are stored, and a Random Access Memory (RAM) which temporarily stores data to be processed in the CPU. The controller 3 controls the driver IC 20 to discharge the ink from a predetermined discharge section 16, based on a printing data which is inputted by an external input device such as a PC (personal computer). In addition, the controller 3 controls the paper feeding mechanism (omitted in the diagram) which feeds the recording paper P. Thus, the controller 3 controls various operations of the printer 100.
Next, a series of ink discharge operations by the recording head 1 will be explained below. Firstly, when the printing data is not inputted to the controller 3 from the external input device such as PC, then as shown in
In the stand-by state, when the printing data is inputted to the controller 3 from the external input device, the controller 3 controls the driver IC 20 to discharge the ink from a discharge section 16 of a predetermined individual channel 15. As shown in
Further, after the ink has been discharged in the predetermined amount from the discharge section 16, the meniscus is formed again at the discharge section 16. When the meniscus of the ink is formed, the ink is not discharged any more. After this, when the driver IC 20 switches the electric potential of the individual electrode 18 from the ground electric potential to the first electric potential V, the liquid repellent property on the surface of the insulating layer 19 becomes almost same as or lower than the liquid repellent property on the non-coating area of the bottom surface 23, and the ink flows from the upstream side of the individual channel 15 to the surface of the insulating layer 19. In other words, the ink is returned to a state (stand-by state) in which the ink exists over the entire surface of the individual channel 15 including the surfaces of the insulating layers 19.
According to the printer 100 of this embodiment, the following effect is achieved. The ink-discharge amount of the ink discharged from the discharge section 16 is same as the amount of the part of the ink which moves from the surface of the insulating layer 19 toward the discharge section 16 when the electric potential of the individual electrode 18 is switched from the first electric potential V to the ground electric potential. Consequently, since the ink-discharge amount becomes almost constant (fixed) irrespective of a timing at which the electric potential of the individual electrode 18 is switched, thereby making it possible to discharge the ink stably in a predetermined amount.
The electric potential (second electric potential) applied to the individual electrode 18 when discharging the ink is the ground electric potential. Therefore, it is possible to obtain a substantial change amount by which the electric potential difference is changed between the ink and the individual electrode 18 before and after switching the electric potential of the individual electrode. Accordingly, it is possible to increase the change amount in the liquid repellent property (wetting angle) on the surface of the insulating layer 19, and to perform the series of discharge operations assuredly.
The common electrode 17 is formed in the substrate 11 on the upper surface, which is the channel-forming surface of the common channel 14, at the rear-side portion of the upper surface. In the common channel 14, since the ink is in contact with the common electrode 17 all the time, the electric potential of the ink is stable, and the ink is discharged assuredly. The electric potential of the common electrode 17 (third electric potential) is the ground electric potential. Therefore, when the first electric potential V is applied to the individual electrode 18, the electric potential difference between the ink and the individual electrode 18 is substantial. Accordingly, it is possible to perform the series of discharge operations assuredly.
Next, an explanation will be given about modifications in each of which various changes are made to the embodiment. Parts or components of the modifications, which are same in construction as those in the embodiment, will be assigned with same reference numerals and any explanation therefor will be omitted as appropriate.
A pressure may be applied all the time to the ink in the ink channel 13. For example, it is allowable that, by arranging ink tank 2 such that an ink level in the ink tank 2 is always arranged at a position higher than an ink level in the ink channel 13 of the recording head 1, the head pressure of the ink tank 2 acts all the time to the ink in the ink channel 13, and a pressure directed to the discharge sections 16 is applied to the ink. Alternatively, as shown in
In this case, however, the pressure applied to the ink is set to be lower than a pressure with which the meniscus is destroyed, so as to prevent the ink from being leaking out due to the destruction of the meniscus in the discharge section 16, when the first electric potential V is applied to the individual electrode 18. The pressure to be applied to the ink is set appropriately by adjusting, for example, a height of the position at which the ink tank is arranged, a discharge pressure of the pump, a degree of inclination (angle of inclination) of the ink channel 13, or the like.
At this time, when the ink is discharged from the discharge section 16 upon switching the electric potential of the individual electrode 18 from the first electric potential V to the ground electric potential and then the electric potential of the individual electrode 18 is switched once again to the first electric potential V, the ink moves rapidly to the surface of the insulating layer 19 by the action of the pressure applied by the pressure applying mechanism. Consequently, it becomes easy to discharge the ink continuously from one (same) discharge section 16.
Alternatively, it is allowable that a pressure directed toward a side opposite to the discharge sections 16 (directed in the rearward direction) is applied to the ink in the ink channel 13 by, for example, making the ink level in the ink tank 2 to be lower than the ink level in the ink channel 13. In this case, in a state in which the first electric potential V is applied to the individual electrodes 18 (in other words, a state in which the ink is not discharged from the discharge sections), it is possible to prevent the meniscus of the ink formed in the discharge sections 16 from being moving forward, due to a impurity or the like adhered around the discharge sections 16, to dirty or stain the recording paper P.
In the first modification, the ink tank 2 which exerts a positive pressure or a negative pressure to the ink, the pump 30 which pressurizes or depressurizes the ink, and the inclined ink channel 13 correspond to the pressure applying mechanism in the invention of this patent application. However, the pressure applying mechanism of the present invention is not limited to the construction including the ink tank 2, the pump 30 and the inclined ink channel.
Specifically, for example, when dimension of the discharge sections 16 is 70 μm×20 μm, it is preferable that a pressure due to a water head difference in a range of −50 mm to +50 mm (about −500 Pa to +500 Pa) is applied to the ink in the ink channel 13.
As shown in
As shown in
As shown in
A head body 10E may be provided with a member which shields the ink in the individual channels 15 from the atmosphere. For example, as shown in
As shown in
As shown in
As shown in
It is allowable that the individual electrodes 15 are not be partitioned by the partition walls 21 (see
In the embodiment described above, the driver IC 20 applies one of the first electric potential V (first electric potential) and the ground electric potential (second electric potential) to the individual electrodes 18. However, it is allowable that the driver IC 20 applies, in addition to these two electric potentials, still another electric potential to the individual electrodes 18.
Further, in the embodiment described above, the common electrode 17 is kept at the ground electric potential all the time. However, the common electrode 17 may be kept at an electric potential other than the ground electric potential. Furthermore, the electric potential of the individual electrode 18 at the time of discharging the ink may be an electric potential other than the ground electric potential. However, the electric potential difference between the ink and the individual electrode 18 when the ink is not discharged is required to be greater than the electric potential difference when the ink is discharged. In other words, the electric potential (third electric potential) of the common electrode 17 is set to an electric potential close to the electric potential (second electric potential) of the individual electrode 18 when the ink is discharged, than to the electric potential (first electric potential) of the individual electrode 18 when the ink is not discharged.
In the embodiment described above, in a state that the first electric potential V is not applied to the individual electrode 18, the liquid repellent property on the surface of the insulating layer 19 is higher than the liquid repellent property on the non-coating area of the upper surface (bottom surface 23) of the substrate 11. However, it is allowable that a coating film made of a insulating (non-electroconductive) material having the liquid repellent property lower than the liquid repellent property of the insulating layer 19 is formed by forming, in the area of the bottom surface 23 in which the insulating layer 19 is not formed, thereby increasing the liquid repellent property on the surface of the insulating layer 19 to be higher than the liquid repellent property on the area, of the bottom surface 23, in which the insulating layer 19 is not formed.
Each of the embodiment and the modifications thereof as explained above is an example in which the present invention is applied to a printer which performs recording by transporting the ink to a recording paper. However, the present invention is also applicable to other liquid transporting apparatuses which transport a liquid other than ink. For example, the present invention is also applicable to an apparatus which forms a wiring pattern by transferring an electroconductive liquid in which metallic nano-particles are dispersed, an apparatus which manufactures DNA chips by using a solution in which DNA is dispersed, an apparatus which manufactures a display panel by using a solution in which an EL (electro luminescence) fluorescent material such as an organic compound is dispersed, an apparatus which manufactures a color filter for liquid crystal display by using a liquid in which pigments for the color filter are dispersed, and the like.
Further, a liquid used in these liquid transporting apparatuses is not limited to an electroconductive liquid, and the liquid may be a liquid obtained by dispersing an electroconductive additive in a non-electro-conductive liquid so as to impart the electro-conductivity to the liquid similarly as an electroconductive liquid.
Furthermore, the present invention is not limited to a liquid transporting apparatus which is capable of discharging a liquid from a plurality of discharge sections, and is applicable also to a liquid transporting apparatus which has one liquid channel provided with one discharge section, and which discharges a liquid only from this one discharge section.
Number | Date | Country | Kind |
---|---|---|---|
2005-364284 | Dec 2005 | JP | national |