The present invention relates to hearing aid and cochlear implant systems and more particularly, to auxiliary devices and components for hearing aid and cochlear implant systems.
Most people do not like heavy objects hanging from their ears. On occasion some people dangle heavy earrings from their ears. But, in general, most people do not like to carry heavy objects, day after day, from their ears. It is uncomfortable. It is unpleasant. And sometimes, it is unattractive.
Individuals who use technology to assist their hearing are often required to place at least part of that technology behind their ears inside behind-the-ear (BTE) cochlear implant or hearing aid systems and units, earhooks, or other external component units. The term “external” means not fully implanted within the body of a patient. These BTE units must remain small, light weight, and attractive in order to please the individuals wearing them. The shell of a BTE unit provides slightly more room for electronics than a thimble has room to be filled with water. Yet, a tremendous amount of complex technology needs to be packed into the limited physical space of a BTE unit shell. Limited space limits technology. And when technology is limited, individuals are not able to hear as much or as well as they would like to be able to hear.
Others have tried to solve this dilemma by building sizable add-on modules to the BTE unit. This improves the technology of the BTE unit, but adds to the weight problem and may cause discomfort to the user's ear. Further, add-ons require users to remove their BTE unit to put a unique connector on the BTE unit, then to plug this connector into the assistive technology. The assistive technology, then is placed on the head or body of the user, often detracting from the aesthetic appearance of the user.
A solution is needed for BTE units that neither compromises space nor technology, weight nor function. The more technology a BTE unit holds, the more uncomfortable, unpleasant, and unattractive BTE users may feel. Yet, the less technology a BTE unit holds, the less a BTE user will be able to hear. An assistive hearing unit is needed that adds the functionality of technology to a BTE unit without making the BTE unit heavier or larger. Further, this assistive hearing unit should not require the user to remove a BTE unit, nor should it detract from the user's appearance. The crisp, clear sounds that come from using assistive hearing devices should not be upstaged by undesirable side effects of those devices.
The present invention solves the above and other needs and eliminates, or at least minimizes, the undesirable side effects that accompany heavy and large Behind-the-Ear (BTE) or other units. At the same time, the present invention provides a means to increase the amount of technology used with a BTE unit. Further, the present invention does not require the user to take the BTE unit from behind the ear. In short, the present invention permits an individual to wear a lightweight, small, aesthetic BTE unit that incorporates an increased amount of assistive hearing technologies without having to remove that unit.
The present invention satisfies the above and other needs by providing an assistive listening device cap (ALD Cap) that is placed on top of a cochlear implant headpiece. Cochlear implant headpieces attach to the head, not the ear. The ALD Cap adheres to the headpiece through magnetic attraction or other means of fixation. The ALD Cap includes components that supplement or replace the components in the BTE unit. The ALD Cap communicates with the BTE unit, preferably through a BTE earhook that is attached to the BTE unit, either through wired or wireless communications.
Alternately, the ALD Cap of the present invention may attach to head-mounted technology, such as head-mounted transmitters or microphones used in conjunction with implantable hearing aids, cochlear implant processors, or other implantable hearing devices that do not use BTE units. For hearing aids and cochlear implant processors that are head-mounted and do not use BTE components, the ALD Cap provides access to assistive listening technology without the need for introducing components worn on or in the ear.
The above and other aspects of the present invention will be more apparent from the following more particular description thereof, presented in conjunction with the following drawings wherein:
Corresponding reference characters indicate corresponding components throughout the several views of the drawings.
The following description is of the best mode presently contemplated for carrying out the invention. This description is not to be taken in a limiting sense, but is made merely for the purpose of describing the general principles of the invention. The scope of the invention should be determined with reference to the claims.
The present invention adds functionality to cochlear implant and/or implantable hearing aid devices and systems without adding substantial weight or size to these associated devices or systems to their associated, head-mounted, external components. The present invention accomplishes this by providing an Assistive Listening Device (ALD) Cap that is placed on top of a headpiece that is associated with a Behind-the-Ear (BTE) unit. Alternately, the ALD Cap is place on top of the head-mounted external components associated with a cochlear implant or hearing aid system that does not use a BTE unit. The ALD Cap communicates with the BTE unit or other external components directly or through an auxiliary attachment, e.g., an earhook, attached to the BTE unit. The ALD Cap contains electronics that supplement or replace the functionality of the BTE unit or head-mounted external components.
As shown in
As shown in
Earhook 330 is attached to a BTE unit 340. BTE unit 340, as well as any other BTE unit of the present invention, may be a Behind-the-Ear unit of cochlear implant systems, implantable hearing aid systems, and any other hearing systems.
As shown in
Further alternate embodiments of receiver electronics 520 and transmission electronics 530 permit both to communicate using optical, infra-red, magnetic or other data transmission signals. Other embodiments of the present invention permit transmission electronics 530 to send data signals to a receiver inside the body of earhook 330, outside the body of earhook 330, inside the body of BTE unit 340, or outside the body of BTE unit 340. Battery 510 is removable from underneath ALD Cap 300. A magnet with increased magnetic strength may need to be placed inside headpiece 310 to permit ALD Cap 300 to adequately adhere to headpiece 310.
ALD Cap 300 is neither attached to BTE unit 340 nor earhook 330. Rather, ALD Cap 300 communicates with BTE unit 340 and/or earhook 330 through wireless communications. As a result, ALD Cap 300 is capable of adding to or replacing the functionality of BTE unit 340 and/or earhook 330 and/or other hearing system components without adding to the weight or size of BTE unit 340 and/or earhook 330. In this manner, a user's ear is not unduly burdened, and the user is able to use a maximally functional BTE unit without suffering the undesirable side effects of discomfort or displeasure. Further, because the ALD Cap of the present invention easily attaches to a headpiece without adding substantial structure, the user is able to employ the present invention in an aesthetically-pleasing manner without ever having to remove the BTE unit to use the ALD Cap.
As shown in
An ALD Cap of the present invention can include other components, such as indicator electronics and related display components that sense and indicate the functional status of electronics in the ALD Cap, a headpiece, an earhook, an external component unit, or a BTE unit. A “firefly” light, or LED indicator, is an example of an indicator; the firefly lights a bulb located on the ALD Cap whenever the firefly electronics sense that a cochlear speech processor or other functional unit is turned on and functioning properly.
Users of BTE units can wear the present invention by attaching an ALD Cap to the exterior of a headpiece and wearing either an earhook and/or BTE unit with a cable connection, an earhook and/or BTE unit with an RF or other communications receiver, or any other earhook and/or BTE unit. Users of head-mounted external component units can wear the present invention by attaching an ALD Cap to the exterior of an external component unit. To use the present invention, users simply turn the power on the ALD Cap and place it on top of their existing headpiece or other external component unit. The ALD Cap then receives RF or other signals and transmits them either to an earhook, a BTE unit, external head-mounted components, or other hearing system components via wire (including direct contact) or wireless signals.
Having an RF or other communications-based receiver in the earhook, body of the BTE unit, external component unit, or implanted components allows for a range of assistive listening technologies to be developed and integrated into ALD Caps. These caps can be interchangeable to meet different assisted listening device needs of users. The caps may reduce the weight and size of any BTE unit on a user's ear while providing maximum functionality to the user's listening device. In other applications or embodiments, the ALD Caps completely eliminate the need for a BTE unit by carrying components that otherwise would have been carried by a BTE unit. The simple connection of an ALD Cap to a headpiece or other external component unit and of a connection cable to an earhook and/or BTE unit does not require the user to remove the BTE device or external component unit in order to place the ALD Cap. Finally, the minimal addition of the ALD Cap to the headpiece or other external component unit remains aesthetically agreeable for users.
An embodiment of the present invention is shown in
The Bluetooth technology 790 of the phone adapter 750 may also communicate wireless signals 791 with corresponding Bluetooth technology 705 in the ALD Cap 700. The phone adapter 750 may include a multi-function, or “answer/end”, button 760 that controls various functions of adapter 750 including initiating, answering, transferring, and ending telephone calls. The button 760 may also be used to turn the adapter 750 on and off and pair the adapter 750 to a particular phone 795 employing Bluetooth communications. A related Bluetooth headset not employing cochlear implant technology is described in the JABRA FreeSpeak™ BT200 Wireless Mobile Headset Users Manual, incorporated herein by reference in its entirety, and available from JABRA Corporation of 9171 Towne Centre Drive, Suite 500, San Diego, Calif. 92122.
The phone adapter 750 may also include a microphone 770 capable of receiving audio input from a user's voice which is transmitted through the Bluetooth technology 790 of the adapter 750 to the phone 795 and ultimately to an individual on the receiving end of the phone conversation. The phone adapter 750 may also include an LED indicator light 780 that shows the relative status of the adapter 750, i.e., whether it is in active communications with a call in progress, in standby mode waiting for a phone call, or turned off. The phone adapter 750 may include a primary cell or rechargeable battery or may run off of inductive power from an outside source or direct power from a battery located within the speech processor portion of the BTE unit 740.
While the invention herein disclosed has been described by means of specific embodiments and applications thereof, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope of the invention set forth in the claims.
The present application claims the benefit of U.S. Provisional Application Ser. No. 60/469,082, filed May 8, 2003, which application is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5824022 | Zilberman et al. | Oct 1998 | A |
5948006 | Mann | Sep 1999 | A |
5949895 | Ball et al. | Sep 1999 | A |
6275736 | Kuzma et al. | Aug 2001 | B1 |
6275737 | Mann | Aug 2001 | B1 |
6358281 | Berrang et al. | Mar 2002 | B1 |
6473511 | Aceti et al. | Oct 2002 | B1 |
6496734 | Money | Dec 2002 | B1 |
6560488 | Crawford | May 2003 | B1 |
6648914 | Berrang et al. | Nov 2003 | B2 |
6726618 | Miller | Apr 2004 | B2 |
7174214 | Seligman | Feb 2007 | B2 |
7266208 | Charvin et al. | Sep 2007 | B2 |
7349741 | Maltan et al. | Mar 2008 | B2 |
20070106345 | Seligman | May 2007 | A1 |
20070191673 | Ball et al. | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
2005110530 | Nov 2005 | WO |
Number | Date | Country | |
---|---|---|---|
60469082 | May 2003 | US |