The present invention relates generally to the field of medicine, and, more particularly, to illuminated surgical retractors.
In general, surgical retractors are used to push, pull, hold and/or fold skin, flesh and/or other tissue away from a site where a surgical operation or other intervention is being performed. Retractors expand the cavity or working area around the site, providing more room in which to maneuver operating and diagnostic tools. Retractors have also been used to facilitate separation of various tissues from architectures proximal to the surgical site, thereby improving access to and visibility of the site.
Historically, surgical retractors have been comprised of two main parts: a body or handle portion and an insertion portion or insert. The body is typically held by an operator when manipulating the retractor or coupled to a support frame that may include weights or mechanisms designed to facilitate desired movements and hold the retractor in place. The insert is suitably configured to move or grasp the desired tissues. For example, by putting a hook-shaped insert into a surgical cavity and then rotating it, surrounding tissues may be snared and then pulled away from the working environment. Not surprisingly, a single size and shape for retractors has not been practical. Indeed, a wide variety of geometries has been developed for different surgical procedures. Retractors have also been used in conjunction with external lighting systems wherein the retractor holds the body tissue out of the way while the lighting system concurrently illuminates the body cavity. However, relying on directed lighting external to a surgical cavity can be problematic due to difficulties in projecting the light in the required direction and shadows that may be cast onto the operating field. Moreover, separate retracting and lighting systems may be frustrating for an operator who is forced to manipulate both systems simultaneously, and various problems may arise as separate lighting and retracting tools get in the way of each other and cross paths with other equipment in the operating room.
Some retractor designs have sought to integrate retracting and lighting functions into a single device. However, the various complex ways of housing light sources and delivering light to the inserts in many of these illuminated or lit retractors have produced limited retractor geometries, bulky and/or heavy handles and inserts, and/or maintenance issues. Furthermore, some illuminated retractors have tended to emit narrow spot beams of light directed to rather small locations of the operating site. As such an illuminated retractor is moved, as is typically necessary to perform its very retracting function, the narrow spot beam of light is concurrently (and undesirably) moved around the cavity in various directions. While some other illuminated retractors have been designed to provide more diffuse lighting, historical diffusion techniques such as frost or ground lenses can produce light losses that reduce the overall intensity or brightness (relative to the light source) of any light that is eventually delivered to the cavity. Moreover, depending on the application, sometimes the availability of a directed beam may be desirable.
Consequently, the competing needs for variety in size and geometry, directed lighting and diffuse lighting, and simplicity have tended to limit the effectiveness of historical illuminated retractors.
The present invention provides an apparatus including a surgical retractor and a light conduit.
In one aspect of the invention, an apparatus for illuminated retraction of a surgical cavity includes a retractor having a portion insertable into a surgical cavity and a light conduit. The portion has a first surface for abutting the margins of the surgical cavity and a second surface opposite the first surface facing away from the margins abutted by the first surface. The second surface includes an opening. The light conduit includes a light emitting end having a longitudinal axis. The light emitting end is disposed within the opening in the second surface and has a shape corresponding to the shape of the second surface.
In another aspect of the invention, an apparatus is provided having a surgical retractor and a light conduit. The retractor includes a retractor surface. The light conduit is releasably coupled to the retractor. The conduit includes a sheath having an outer wall terminating at an angled end portion and an opening extending through the sheath wall at the angled end. A plurality of light transmitting filaments is disposed within the sheath. The filaments terminate in an end portion having a longitudinal axis and an end face normal to the axis and contained within the sheath. The end portion is fully recessed within the retractor surface.
In another aspect of the invention, an apparatus is provide including a surgical retractor and a light conduit coupled to the retractor. The light conduit includes a plurality of light transmitting filaments. The filaments terminate in a stair-step arrangement at a light emitting end adjacent the retractor.
In another aspect of the invention, an apparatus includes a surgical retractor and a light conduit coupled to the retractor. The light conduit includes at least one light transmitting filament terminating at a light emitting end having a longitudinal axis. The at least one filament defines a planar surface at the light emitting end oblique to the longitudinal axis and positioned within the opening.
Various examples of the present invention will be discussed with reference to the appended drawings. These drawings depict only illustrative examples of the invention and are not to be considered limiting of its scope.
It is noted that as used throughout this disclosure and the claims, the terms “finger-releasable,” “finger-releasably,” and the like mean separable by a human hand(s), finger(s), and/or thumb(s)—without tools; whereas, the terms “releasable,” “releasably,” and the like mean separable with or without tools.
Apparatus 200 also includes a light conduit 380 having a side-view geometry or profile substantially conforming to that of surgical retractor 210. Conduit 380 includes an end 390, an end 400, and an optional casing or sheath 410. Sheath 410 extends through channel 370 and hole 364 such that end 390 protrudes from an intermediate portion of channel 374 (see also
In general, conduit 380 is suitable for use in surgical procedures and configured to transmit externally generated light from end 400 to end 390. Accordingly, conduit 380 includes one or more fiber optic cables and/or any other suitable light transmitting materials. 791 The light transmitting materials may be in the form of a single cable or filament such as a glass or plastic rod. The filament may be molded or otherwise formed into a desired cross-sectional and longitudinal shape. The single filament may alone form the conduit 380 or the single filament may be housed in optional sheath 410 to protect the filament, provide additional rigidity or flexibility, and/or improve the light transmission and/or dispersion of the conduit 380. Alternatively, the light transmitting materials may be in the form of a plurality of filaments such as a plurality of glass or plastic filaments. The plurality of filaments may be loosely gathered and constrained in a desired shape by placing them within optional sheath 410. The filaments may also be formed into a self-supporting structure such as by adhering them to one another with an adhesive and/or by fusing them with heat and/or pressure. The multifilament structure may then be optionally housed in sheath 410. The conduit 380 includes a coupling member 420 fixedly housing a portion of sheath 410 proximal to end 400. Member 420 is configured in a known manner for finger-releasably coupling conduit 380 to an external light source.
In the exemplary embodiment, conduit 380 is reusable and suitable for sterilization in an autoclave. Accordingly, sheath 410 is a rigid stainless steel pipe with lustrous outer surface 416 produced by suitable color buffing and lackluster outer surface 418 produced by suitable mass finishing. In alternative embodiments, the various components of conduit 380 may be made from high temperature plastic and/or any other material or combination of materials suitable for use in surgical procedures and sterilization in an autoclave, and sheath 410 may or may not be flexible. It is noted, however, that in some alternative embodiments conduit 380 may be disposable and, accordingly, in such alternative embodiments all of the components of conduit 380 may be made of relatively inexpensive low temperature acrylics or polymers.
Apparatus 200 further includes a bracket 430 that finger-releasably couples conduit 380 to surgical retractor 210. Bracket 430 includes a sleeve portion 440 fixedly housing a portion of sheath 410 of conduit 380 proximal to end 400 and distal to end 390 (see also
In operation of exemplary apparatus 200, member 420 of light conduit 380 is coupled to a suitable external light source and insertion portion 280 of surgical retractor 210 is inserted into a surgical cavity. Body portion 220 is used to grasp and manipulate surgical retractor 210 as desired. It should be appreciated that the low profile and light weight of exemplary apparatus 200 facilitates its manipulation. In any event, light from the external source is emitted from end 390 of light conduit 380. Channel 374 focuses some of this light into somewhat of a spotlight like beam. Insertion portion 280 is suitably maneuvered to direct the focused light into a desired portion of the surgical cavity. Meanwhile, one or more of the lustrous surfaces (e.g., 340, 350, 310) also reflect a portion of the light present in the surgical cavity, thereby dispersing some of the light to generally illuminate another portion or portions of the surgical cavity at a somewhat lower intensity than the area illuminated by the focused light. Consequently, general or somewhat diffuse lighting of the surgical cavity is provided concurrently with more focused lighting of relatively higher intensity.
For additional dispersion and/or additional focused lighting, additional surgical retractor 210 and/or apparatus 200 are inserted into the surgical cavity as desired. In such cases, various lustrous surfaces of the various surgical retractor 210 may cooperate somewhat to reflect light amongst themselves, thereby enhancing the dispersive effect while maintaining the availability of one or more directable beams.
To facilitate cleaning of apparatus 200 or use of surgical retractor 210 without light conduit 380, conduit 380 is released from surgical retractor 210 by pushing peg 460 of bracket 430 out of hole 260 of surgical retractor 210 with a finger or thumb, and conduit 380 is removed from channel 370 and channel 374 by moving bracket 430 generally down and away from surgical retractor 210 and by pulling bracket 430 generally away from hole 364 such that end 390 of conduit 380 is withdrawn from channel 374 through hole 364, thereby separating conduit 380 and bracket 430 from surgical retractor 210.
In typical use, the insertion portion 280 of the retractor 210 is inserted into a surgical cavity with the bottom surface 310 abutting the margins of the surgical cavity to retract the margins and enlarge the cavity opening. The top surface 340 faces away from the margins of the cavity. The light conduit emits light through the hole 364 in the top surface 340 to illuminate the surgical cavity.
The exemplary conduit 500 of
The exemplary conduit 600 of
The exemplary conduit 700 of
The exemplary conduit 800 of
The foregoing description of the invention is illustrative only, and is not intended to limit the scope of the invention to the precise terms set forth. Further, although the invention has been described in detail with reference to certain illustrative embodiments, variations and modifications exist within the scope and spirit of the invention as described and defined in the following claims.
This application is a continuation-in-part of U.S. application Ser. No. 10/356292, filed Jan. 31, 2003.
Number | Date | Country | |
---|---|---|---|
Parent | 10356292 | Jan 2003 | US |
Child | 11042496 | Jan 2005 | US |