Bates et al., “Recharageble Thin-Film Lithium Microbatteries,” Solid State Technology, Jul. 1993, pp. 59-64. |
Ferg et al., “Spinel Anodes for Lithium-Ion Batteries,” J. Electrochem. Soc., 1994, 141(11):L147-L150. |
Jacoby, “Taking Charge of the 21st Century,” C&EN, Aug. 3, 1998, pp. 37-43. |
Megahed, “Lithium-ion rechargeable batteries,” J. Power Sources, 1994, 51:79-104. |
Peled et al., “Lithium Alloy-Thionyl Chloride Cells: Performance and Safety Aspects,” Molecular Oxygen Electroreduction, 1983, 130(6):1365-1368. |
Courtney et al., “Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites”, J. Electrochem. Soc., 144(6):2045-2052 (Jun. 1997). |
Anani et al., “Investigation of a Ternary Lithium Alloy Mixed-Conducting Matrix Electrode at Ambient Temperature”, J. Electrochem. Soc.: Solid-State Science and Technology, pp. 2103-2105 (Aug. 1988). |
Besenhard et al., “Binary and Ternary Li-Alloys as Anode Materials in Rechargeable Organic Electrolyte Li-Batteries”, Solid State Ionics, vols. 18 & 19, pp. 823-827 (1986). |
Besenhard et al., “Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?”, J. of Power Sources, 68:87-90 (1997). |
Besenhard et al., “Dimensionally Stable Li-Alloy Electrodes for Secondary Batteries”, Solid State Ionics, 40/41:525-529 (1990). |
Besenhard et al., “Will Advanced Li-Alloy Anodes Have A Chance In Lithium-Ion Batteries?”, Paper Presented @ the 8th International Meeting on Lithium Batteries, Nagoya Japan, 6/96, Extended Abstracts p. 69. |
Besenhard et al., “Binary and Ternary Li-Alloys As Anode Materials in Rechargeable Organic Electrolyte Li-Batteries”, Solid State Ionics, 18/19:823-827 (1986). |
Richard et al., “A Cell for In Situ X-Ray Dittraction Based on Coin Cell Hardware and Bellcore Plastic Electrode Technology”, J. Electrochem. Soc., 144(2):554-557 (Feb. 1997). |
Dahn et al., “Mechanisms for Lithium Insertion in Carbonaceous Materials”, Science, 270:590-593 (Oct. 27, 1995). |
Yang et al., “Small particle size multiphase Li-alloy anodes for Lithium-ion-batteries”, Solid State Ionics, 90:281-287 (1996). |
Courtney et al., “Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO2 and SN2BPO6 Glass”, J. Electrochem. Soc., 144(9):2943-2948 (Sep. 1997). |
Wang, et al., “Behavior of Some Binary Lithium Alloys as Negative Electrodes in Organic Solvent-Based Electrolytes”, J. Electrochem. Soc., 133(3):457-460 (Mar. 1986). |
Idota et al., “Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material”, Science, 276:1395-1397 (May 1997). |
Fauteux et al., “Rechargeable lithium battery anodes: alternatives to metallic lithium”, J. Applied Electrochemistry, 23:1-10 (1993). |
Dey, “Electrochemical Alloying of Lithium in Organic Electrolytes”, J. Electrochem. Soc., 118(10):1547-1549 (1971). |
Boukamp et al., “All-Solid Lithium Electrodes with mixed-Conductor Matrix”, J. Electrochem. Soc., 128(4):725-728 (1981). |