Lithium lanthanum zirconium oxide (LLZO) powder

Information

  • Patent Grant
  • 11611130
  • Patent Number
    11,611,130
  • Date Filed
    Wednesday, April 29, 2020
    4 years ago
  • Date Issued
    Tuesday, March 21, 2023
    a year ago
Abstract
Disclosed herein are embodiments of doped and undoped spherical or spheroidal lithium lanthanum zirconium oxide (LLZO) powder products, and methods of production using microwave plasma processing, which can be incorporated into solid state lithium ion batteries. Advantageously, embodiments of the disclosed LLZO powder display a high quality, high purity stoichiometry, small particle size, narrow size distribution, spherical morphology, and customizable crystalline structure.
Description
BACKGROUND
Field

The present disclosure is generally directed in some embodiments to doped and undoped spherical or spheroidal lithium lanthanum zirconium oxide (LLZO) powder products, and methods of production.


SUMMARY

Disclosed herein are embodiments of a high quality, high purity stoichiometric LLZO powder with a small particle size, narrow size distribution, and spherical morphology, and methods of making such powder. In some embodiments, the LLZO powder can comprise: LLZO particles; wherein the LLZO particles have a D50 between about 20 nm and about 500 nm, D10 of greater than or equal to D50÷4, and D90 less than or equal to D50×4; wherein the LLZO particles have a sphericity factor of greater than about 0.6, and wherein a structure of the LLZO particles is a crystalline garnet structure and/or an amorphous structure.


In some embodiments, the D10 can be approximately equal to D50÷2. In some embodiments, the D90 can be approximately equal to D50×2. In some embodiments, the D50 can be between about 50 nm and about 500 nm. In some embodiments, the D50 can be between about 100 nm and about 400 nm. In some embodiments, the D50 can be between about 150 nm and about 300 nm. In some embodiments, the D50 can approximately equal 200 nm.


In some embodiments, the LLZO particles can have a stoichiometry of Li7-3xM1xLa3Zr2O12, M1 is Al, B, or Ga, and x is about 0.1 to 0.3. In some embodiments, the LLZO particles can have a stoichiometry of Li7-yLa3Zr2-yM2yO12, M2 is Ta or Nb, and y greater than or equal to about 0.4. In some embodiments, the LLZO particles can have a stoichiometry of Li7-3nxM1xLa3Zr2-myM2yO12, M1 is a low atomic mass metal, x is about 0.1 to 0.3, and n can depend on the valence of M1. In some embodiments, the LLZO particles can have a stoichiometry of Li7-3nxM1xLa3Zr2-myM2yO12, y greater than or equal to about 0.4, and m can depend on the valence of M2.


In some embodiments, the LLZO particles can be crystalline. In some embodiments, the crystalline structure of the LLZO particles can be a garnet crystalline structure. In some embodiments, the garnet crystalline structure can be a garnet single crystalline structure. In some embodiments, the LLZO particles can be amorphous. In some embodiments, the LLZO particles can be a combination of amorphous and crystalline structure.


Also disclosed herein are embodiments of a solid state battery, the solid state battery can comprise: an anode; a cathode; a solid electrolyte, a separator, wherein either the anode, cathode or separator comprises LLZO particles; wherein the LLZO particles have a D50 between about 20 and about 500 nm, D10 of greater than or equal to D50÷4, and D90 less than or equal to D50×4; wherein the LLZO particles have a sphericity factor of greater than about 0.6, and wherein a structure of the LLZO particles is either a crystalline garnet structure or an amorphous structure.


In some embodiments, the anode can comprise the LLZO particles. In some embodiments, the cathode can comprise the LLZO particles. In some embodiments, the separator can comprise the LLZO particles. In some embodiments, the separator can be a composite or a ceramic non-composite separator.


Further disclosed herein are embodiments of a method of manufacturing a LLZO powder, the method can comprise: preparing a LLZO feedstock of metallic salts comprising lithium, lanthanum, zirconium, tantalum, and a dopant; introducing the LLZO feedstock into a microwave plasma torch, a plasma plume of the microwave plasma torch, and/or an exhaust of the microwave plasma torch; and pyrolyzing the LLZO feedstock within the microwave plasma torch, the plasma plume of the microwave plasma torch, and/or the exhaust of the microwave plasma torch to form spheroidized LLZO powder.


In some embodiments, the LLZO feedstock can be a solid feedstock. In some embodiments, the LLZO feedstock can be a liquid feedstock. In some embodiments, the dopant can be one or a combination of any of Al, B, Ga, Be, Fe, Zn, Ta, Nb, Tc, Ce, Ti, Sn, Mo, Ru, Hf, Mg, Sc, Mn, Ni, Cu, Co, Ir, Pt, and Pd. In some embodiments, the method can further comprise sintering the spheroidized LLZO powder.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an example of LLZO particles produced by sol-gel synthesis.



FIG. 2 illustrates an example of LLZO particles produced by spray pyrolysis.



FIG. 3 illustrates an embodiment of LLZO nanoparticles produced by microwave enhanced plasma processing.



FIGS. 4A-4C illustrate an example of a microwave enhanced plasma processing system.



FIG. 5 illustrates an example embodiment of a method of producing powders according to the present disclosure.



FIG. 6 illustrates an embodiment of a microwave plasma torch that can be used in the production of powders, according to embodiments of the present disclosure.



FIGS. 7A-7B illustrate embodiments of a microwave plasma torch that can be used in the production of powders, according to a side feeding hopper embodiment of the present disclosure.





DETAILED DESCRIPTION

Disclosed herein are embodiments of improved lithium lanthanum zirconium oxide (LLZO) powders and products, as well as methods, devices, and assemblies for utilizing LLZO material made through plasma processing. A promising class of ionically conductive ceramics for solid state battery cells are based on LLZO. These materials have room temperature ionic conductivities of up to 10−3 S/cm and have excellent electrochemical stability. Embodiments of the disclosure can be incorporated into solid state batteries, such as in separators, electrodes, anodes, and/or cathodes.


Current solid state batteries can include either a conventional non-composite separator or a composite separator. In both a non-composite separator and a composite separator, a fine particle sized, spherical particle morphology, and narrow particle size distribution are ideal, and embodiments of the disclosure can produce such particles.


In producing an ionic membrane separator, the powder can be consolidated into a thin membrane through different methods. In one of these methods, the powder can be mixed with an ionic conducting polymer to form a composite membrane separator. In another instance, the powder can be consolidated into a ribbon through sintering to make a non-composite separator. Both of these separators benefit from tight control over the particle size, particle size distribution, and high chemical purity, which is advantageously disclosed herein. In ceramic electrolyte non-composite separators, the material can be either amorphous or crystalline. In composite electrolyte separators, the material can be crystalline.


In conventional LLZO preparation, the powder is typically produced by solid state or sol-gel synthesis and then milled to size, which may be costly in terms of energy and yield, and produces irregular-shaped particles and large particle size distribution range, as shown in FIG. 1.


Alternatively, companies have used spray pyrolysis in which a precursor solution is fed into a high temperature furnace. However, this method has limited control over process temperature uniformity and process environment. This leads to wide particle size distribution, phase impurities, and low particle densities making the material unsuitable for separator film usage as shown in FIG. 2.


In both cases, these characteristics lead to poor packing of material in green state, poor particle-to-particle contact, low driving force for sintering due to the large particle size, and poor coordination of particles with other particles. Green state can be defined as the particles after formation but before sintering. Rapid full density sintering of defect free separators may not occur when LLZO powder is produced via milling and/or spray pyrolysis. Separator films produced with LLZO prepared by these methods may have residual porosity and a large grain size distribution which may result in early failures.


Embodiments of the disclosure relate to LLZO powder having small or narrow particle size, small or narrow size distribution, and a relatively spherical morphology, which can have advantageous properties for solid state batteries. Superior LLZO can be made using plasma processing, such as microwave plasma processing. LLZO which has been processed using plasma processing may be spherical particles with tight size distribution (for example, between 100-500 nm), desired stoichiometry, and varied crystal structure. An embodiment of microwave plasma processed LLZO can be seen in FIG. 3. As shown, the processed LLZO can have highly spherical nanoscale material that can be sinterable to high density.


In some embodiments, the particles can exhibit a crystalline structure. In some embodiments, the crystalline structure can be a garnet crystalline structure. In some embodiments, particles can be amorphous. In some embodiments, the particles can be a combination of crystalline and amorphous. In some embodiments, the particles can have phase purity (or generally have phase purity).


In some embodiments, the particles can be fully crystalline. In some embodiments, the particles can be 99% (or about 99%) crystalline (and therefore 1% amorphous). In some embodiments, the particles can be greater than 50, 60, 70, 75, 80, 85, 90, 95, or 99% crystalline (or about 50, about 60, about 70, about 75, about 80, about 85, about 90, about 95, or about 99% crystalline).


In some embodiments, the sphericity factor can be greater than 0.3, 0.4, 0.5, 0.6, 0.7, or 0.8 (or greater than about 0.3, about 0.4, about 0.5, about 0.6, about 0.7, or about 0.8). In some embodiments, the sphericity factor can be less than 0.3, 0.4, 0.5, 0.6, 0.7, or 0.8 (or less than about 0.3, about 0.4, about 0.5, about 0.6, about 0.7, or about 0.8).


In some embodiments the particle size of the powder can be D50 tunable between 20 nm and 500 nm (or between about 20 nm and about 500 nm), between 50 nm and 500 nm (or between about 50 nm and about 500 nm), between 100 nm and 400 nm (or between about 100 nm and about 400 nm), or between about 150 nm and about 300 nm (or between about 150 nm to about 300 nm). In some embodiments, the D50 of the particles can be 200 nm (or about 200 nm). In some embodiments, D10 can be D50÷4. In some embodiments, the D10 can be D50÷2. In some embodiments, D90 can be D50×4. In some embodiments, D90 can be D50×2. For example, if D50 is 200 nm D50÷2 will be 100 nm, D50÷4 will be 50 nm, D50×4 will be 800 nm, and D50×2 will be 400 nm. D10 can be defined as the diameter at which 10% of the LLZO powder is comprised of particles with a diameter less than this value. D50 can be defined as the diameter at which 50% of the LLZO mass is comprised of particles with a diameter less than this value. D90 can be defined as the diameter at which 90% of the LLZO mass is comprised of particles with a diameter less than this value.


In some embodiments, the stoichiometry of the powder can be tunable within the formula Li7-nxM1xLa3Zr2-myM2yO12, where n and m can depend upon the valence of M1 and M2. In some embodiments, M1 and M2 can be any element on the periodic table. In some embodiments, M1 is a low atomic mass metal such as Al, B, Ga, Be, Fe, and Zn, and M2 can be Ta, Nb, Tc, Ce, Ti, Sn, Mo, Ru, Hf, Mg, Sc, Mn, Ni, Cu, Co, Ir, Pt, and Pd. In some embodiments, when M1 is a low atomic mass metal such as Al, B, or Ga, the stoichiometry can be controlled according to the formula Li7-3xM1xLa3Zr2O12 when x=0.1-0.3. In some embodiments, when M2 is a pentavalent metal such as Ta or Nb, the stoichiometry can be controlled according to the formula Li7-yLa3Zr2-yM2yO12 when y≥0.4. In some embodiments, B is used as the dopant to make a stoichiometry of Li7-3xBxLa3Zr2O12 when x=0.1-0.3. In some embodiments, the stoichiometry of the powder can be Li6.75La3Zr2.53O12. In some embodiments, a garnet crystalline structure can be formed using an M1 dopant.


In some embodiments, plasma processed LLZO can have a fine particle size which exhibits a greater driving force that densifies the material during sintering which promotes shorter sintering times and a lower temperature compared with traditionally prepared LLZO materials. The tight particle size distribution and spherical morphology can allow for high packing fraction which speeds up sintering. Short sintering time and low sintering temperature can lead to plasma processed LLZO being suitable for pressureless sintering.


Further, the tight particle size and spherical morphology can reduce the occurrence of stable pores that cannot be sintered out. Less stable pores can lead to an increase in end quality of the material. The tight size distribution can also lead to controlled grain growth which prevents abnormal growth that creates excessively large grains and broad grain size distribution.


In some embodiments, sintering can be performed to greater than 98.5% density with a maximum grain size of less than or equal to 2 μm. In some embodiments the porosity after sintering can be less than 5, 4, 3, 2, 1, or 0.5 (or less than about 5, about 4, about 3, about 2, about 1, or about 0.5)%. In some embodiments the porosity after sintering can be greater than 5, 4, 3, 2, 1, or 0.5 (or greater than about 5, about 4, about 3, about 2, about 1, or about 0.5)%. In some embodiments, the ionic conductivity of the plasma processed LLZO can be 10−3 S/cm after sintering.


Feedstock


In some embodiments, the feedstock used to produce the ionic conducting LLZO material can be metallic salts of the relevant elements such as nitrates and acetate of lithium, lanthanum, zirconium, tantalum, and aluminum. These salts can be dissolved and mixed at the right proportion to procure the desired stoichiometry. In some embodiments, a mixture of metallic salts can be used.


In some embodiments, nitrates of lanthanum, lithium, and aluminum can be mixed with acetates of zirconium to produce the solution feedstock and to produce the desired stoichiometry. In some embodiments, lithium hydroxide can be used as opposed to lithium nitrate to increase the lithium percentage in the salt.


In some embodiments, lithium or lanthanum may be vaporized during processing which can decrease the yield of metal in the final product. The amount of metallic salt can be increased to make up for the vaporized metal.


In some embodiments, other feedstocks used to produce ionically conducting LLZO material can be non-lithium containing ceramic powder particles of sizes ranging from 20-1000 nm mixed with a dispersion medium and in a carrier solution to produce a dispersion, suspension, slurry, or similar mixture. The carrier solution can be water, alcohols, or other non-polar solvents.


In some embodiments, lithium carbonate can be partially dissolved in the carrier solution and mixed with stoichiometric ratios of lanthanum oxide, zirconium oxide, and aluminum oxide mixed in water and a dispersion medium such as Triton X to form a stable suspension. In some embodiments, the dispersion or slurry can contain a combination of ceramic oxide powder mixed with a soluble metallic salt. Lithium nitrate and lanthanum nitrate can be mixed with zirconium and aluminum oxides in water to form a slurry.


Processing Steps


Precursor Creation


The process can start by dissolving the metallic salts of interest of lithium, lanthanum, zirconium, and dopants, such as aluminum, in stoichiometric proportions in a solvent such as water or in the case of dispersions, dispersing the powders in the carrier solution. The quantity of each salt can be calculated to give the desired final stoichiometry of the LLZO material to be made. In some embodiments, if making Li7La3Zr3O12, the amount of lithium salt would be calculated to yield seven moles of lithium, the amount of lanthanum salt would be calculated to yield 3 moles of lanthanum, the amount of zirconium salt would be calculated to yield 2 mole of zirconium in the final LLZO product.


In the case of dopants, stoichiometry of the formula can be adjusted accordingly. In some embodiments, aluminum takes the place of lithium in the LLZO structure. Lithium can be decreased from the feedstock in an equal proportion to aluminum added to the feedstock, following the formula Li7-3xAlxLa3Zr2O12 where x=0.1-0.3. If 0.25 mole of aluminum is desired as a dopant, the lithium concentration can be reduced from 7 moles to 6.25 moles to maintain both stoichiometry and charge neutrality.


In some embodiments, lithium or lanthanum may be vaporized during processing which can decrease the yield of metal in the final product. The amount of metallic salt can be increased to make up for the vaporized metal.


Plasma Processing


The dissolved salts can be well stirred and then filtered through a filter membrane with pore sizes from, for example 0.05-0.6 μm, to produce a clean solution free of sediments or insoluble impurities. The resulting solution precursor can be transferred into a vessel where it is fed into a droplet making device that sits on top of a microwave plasma torch. Embodiments of the precursor vessel include a syringe or hopper beaker. From the precursor vessel, the feedstock can be fed towards a droplet making device. Some embodiments of the droplet making device include a nebulizer and atomizer. The droplet maker can produce solution precursor droplets that are approximately equal in size with diameters ranging approximately 5%. The droplets can be fed into the microwave plasma torch, a plasma plume of the microwave plasma torch, and/or an exhaust of the microwave plasma torch.


An overview of the system can be seen in FIGS. 4A-4C. FIG. 4A is a schematic view of an example implementation of the microwave plasma processing system. The system includes a droplet maker 402. FIG. 4B illustrates a view of the droplet maker 402. The droplet maker 402 may be a piezoelectric droplet maker which uses a voltage to influence a valve which opens and closes to release liquid out of the valve. The droplet maker 402 creates highly controlled droplets 404 of a controlled size. FIG. 4C illustrates a view of the droplets 404. The size of the droplets 404 correlates to the final particle size. The droplets 404 enter a plasma chamber 406. The plasma chamber 406 is connected with a waveguide 408. The waveguide 408 is connected with a microwave generator 410 which generates a microwave frequency signal through the waveguide 408. The microwave frequency signal excites gases within the plasma chamber 406 to create a plasma. In some implementations, the plasma 406 may be an axisymmetric plasma. The droplets 404 are fed into the plasma 406 where they disassociate and create particles 412. The droplets 404 may be fed through the plasma, a plasma plume, or a plasma exhaust. The particles 412 are collected within a collection bin 414.


As each droplet is heated within a plasma hot zone created by the microwave plasma torch, the solvents can evaporate, the solute can precipitate, and pyrolysis can occur. Pyrolysis under the oxygen plasma can produce an oxide compound made of lithium, lanthanum, zirconium, and dopant choices M1 and M2. The plasma gas can be oxygen but alternatively can be a blend of up to three gasses with a minimum oxygen concentration of 1%. In some embodiments, one of the up to three gasses is argon.


In some embodiments, the droplet making device can sit to the side of the microwave plasma torch, such as shown in FIG. 7A. The feedstock material can be fed by the droplet making device from the side of the microwave plasma torch. The droplets can be fed from any direction into the microwave generated plasma.


Amorphous material can be produced after the precursor is decomposed into an oxide material and is then cooled at a rate sufficient to prevent atoms to reach a crystalline state. The cooling rate can be achieved by quenching the droplets within 0.05-2 seconds of pyrolyzation in a high velocity gas stream. The high velocity gas stream temperature can be in the range of −150° C.-40° C.


Alternatively, crystalline material can be produced when the plasma length and reactor temperature are sufficient to provide particles with the time and temperature necessary for atoms to diffuse to their thermodynamically favored crystallographic positions. The length of the plasma and reactor temperature can be tuned with parameters such as power, torch diameter, reactor length, gas flow rates, gas flow characteristics, and torch type. In some embodiments, longer plasma length can yield more crystallinity. In some embodiments, higher temperature can yield more crystallinity. In some embodiments, temperature can be adjusted to be high enough to yield crystallinity yet low enough to not melt or evaporate the particles. In some embodiments the temperature can be between 900° C. and 1600° C.


Spheroidization


In some embodiments, the final particles achieved by the plasma processing can be spherical or spheroidal, terms which can be used interchangeably. Advantageously, by using the critical and specific disclosure relevant to each of the different feedstocks disclosed, all of the feedstocks can be transformed into the spherical powders.


Embodiments of the present disclosure are directed to producing particles that are substantially spherical or spheroidal or have undergone significant spheroidization. In some embodiments, spherical, spheroidal or spheroidized particles refer to particles having a sphericity greater than a certain threshold. Particle sphericity can be calculated by calculating the surface area of a sphere As,ideal with a volume matching that of the particle, V using the following equation:







r
ideal

=



3





V


4





π


s








A

s
,
ideal


=

4





π






r
ideal
2







and then comparing that idealized surface area with the measured surface area of the particle, As,actual:






Sphericity
=



A

s
,
ideal



A

s
,
actual



.





In some embodiments, particles can have a sphericity (also referred to herein as sphericity factor) of greater than 0.5, 0.6, 0.7, 0.75, 0.8, 0.9, 0.91, 0.95, or 0.99 (or greater than about 0.5, about 0.6, about 0.7, about 0.75, about 0.8, about 0.8, about 0.91, about 0.95, or about 0.99). In some embodiments, particles can have a sphericity of 0.75 or greater or 0.91 or greater (or about 0.75 or greater or about 0.91 or greater). In some embodiments, particles can have a sphericity of less than 0.5, 0.6, 0.7, 0.75, 0.8, 0.9, 0.91, 0.95, or 0.99 (or less than about 0.5, about 0.6, about 0.7, about 0.75, about 0.8, about 0.8, about 0.91, about 0.95, or about 0.99). In some embodiments, a particle is considered to be spherical, spheroidal or spheroidized if it has a sphericity at or above any of the aforementioned sphericity values, and in some preferred embodiments, a particle is considered to be spherical if its sphericity is at or about 0.75 or greater or at or about 0.91 or greater.


In some embodiments, a median sphericity of all particles within a given powder can be greater than 0.5, 0.6, 0.7, 0.75, 0.8, 0.9, 0.91, 0.95, or 0.99 (or greater than about 0.5, about 0.6, about 0.7, about 0.75, about 0.8, about 0.8, about 0.91, about 0.95, or about 0.99). In some embodiments, a median sphericity of all particles within a given powder can be less than 0.5, 0.6, 0.7, 0.75, 0.8, 0.9, 0.91, 0.95, or 0.99 (or less than about 0.5, about 0.6, about 0.7, about 0.75, about 0.8, about 0.8, about 0.91, about 0.95, or about 0.99). In some embodiments, a powder is considered to be spheroidized if all or a threshold percentage (as described by any of the fractions below) of the particles measured for the given powder have a median sphericity greater than or equal to any of the aforementioned sphericity values, and in some preferred embodiments, a powder is considered to be spheroidized if all or a threshold percentage of the particles have a median sphericity at or about 0.75 or greater or at or about 0.91 or greater.


In some embodiments, the fraction of particles within a powder that can be above a given sphericity threshold, such as described above, can be greater than 50%, 60%, 70%, 80%, 90%, 95%, or 99% (or greater than about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, or about 99%). In some embodiments, the fraction of particles within a powder that can be above a given sphericity threshold, such as described above, can be less than 50%, 60%, 70%, 80%, 90%, 95%, or 99% (or less than about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, or about 99%).


Particle size distribution and sphericity may be determined by any suitable known technique such as by SEM, optical microscopy, dynamic light scattering, laser diffraction, manual measurement of dimensions using an image analysis software, for example from about 15-30 measures per image over at least three images of the same material section or sample, and any other techniques.


Microwave Plasma Processing


The above disclosed particles/structures/powders/precursors can be used in a number of different processing procedures. For example, spray/flame pyrolysis, radiofrequency plasma processing, and high temperature spray driers can all be used.


In some cases, the feedstock may include a well-mixed slurry containing the constituent solid materials suspended in a liquid carrier medium which can be fed through a droplet making device. Some embodiments of the droplet making device include a nebulizer and atomizer. The droplet maker can produce solution precursor droplets with diameters ranging approximately 1 um-200 um. The droplets can be fed into the microwave plasma torch, a plasma plume of the microwave plasma torch, afterglow of the plasma plume, and/or an exhaust of the microwave plasma torch. As each droplet is heated within a plasma hot zone created by the microwave plasma torch, the carrier liquid is driven off and the remaining dry components melt to form a molten droplet containing the constituent elements. The plasma gas can be argon, nitrogen, helium hydrogen or a mixture thereof.


In some embodiments, the droplet making device can sit to the side of the microwave plasma torch. The feedstock material can be fed by the droplet making device from the side of the microwave plasma torch. The droplets can be fed from any direction into the microwave generated plasma.


Amorphous material can be produced after the precursor is processed into the desired material and is then cooled at a rate sufficient to prevent atoms to reach a crystalline state. The cooling rate can be achieved by quenching the material within 0.05-2 seconds of processing in a high velocity gas stream. The high velocity gas stream temperature can be in the range of −200° C.-40° C.


Alternatively, crystalline material can be produced when the plasma length and reactor temperature are sufficient to provide particles with the time and temperature necessary for atoms to diffuse to their thermodynamically favored crystallographic positions. The length of the plasma and reactor temperature can be tuned with parameters such as power (2-120 kW), torch diameter (0.5-4″), reactor length (0.5-30′), gas flow rates (1-20 CFM), gas flow characteristics (laminar or turbulent), and torch type (laminar or turbulent). Longer time at the right temperature results in more crystallinity.


The process parameters can be optimized to obtain maximum spheroidization depending on the powder initial condition. For each feedstock powder characteristic, process parameters can be optimized for a particular outcome. U.S. Pat. Pub. No. 2018/0297122, U.S. Pat. Nos. 8,748,785, and 9,932,673 disclose certain processing techniques that can be used in the disclosed process, specifically for microwave plasma processing. Accordingly, U.S. Pat. Pub. No. 2018/0297122, U.S. Pat. Nos. 8,748,785, and 9,932,673 are incorporated by reference in its entirety and the techniques describes should be considered to be applicable to the feedstock described herein.


One aspect of the present disclosure involves a process of spheroidization of metals, metal alloys, or ceramics using a microwave generated plasma. The powder feedstock is entrained in inert and/or reducing and/or oxidizing gas environment and injected into the microwave plasma environment. Upon injection into a hot plasma, the feedstock is spheroidized and released into a chamber filled with an inert gas and directed into hermetically sealed drums where is it stored. This process can be carried out at atmospheric pressure, in a partial vacuum, or at a slightly higher pressure than atmospheric pressure. In alternative embodiments, the process can be carried out in a low, medium, or high vacuum environment. The process can run continuously and the drums are replaced as they fill up with spheroidized particles.


The rate of cooling of the spheroidized metals, metal alloys, or ceramics can be controlled to strategically influence the microstructure of the powder. By controlling the process parameters such as cooling gas flow rate, residence time, cooling gas composition etc., microstructure of the metals, metal alloys, or ceramics can be controlled. The precise cooling rates required to form these structures is largely a function of the type and quantity of the alloying elements within the material.


The rate of cooling, especially when combined with the consistent and uniform heating capabilities of a microwave plasma plume, allow for control over the final microstructure. As a result, the above methods can be applied to processing metals, metal alloys, or ceramics feedstock.


Cooling processing parameters include, but are not limited to, cooling gas flow rate, residence time of the spheroidized particles in the hot zone, and the composition or make of the cooling gas. For example, the cooling rate or quenching rate of the particles can be increased by increasing the rate of flow of the cooling gas. The faster the cooling gas is flowed past the spheroidized particles exiting the plasma, the higher the quenching rate-thereby allowing certain desired microstructures to be locked-in.


Residence time of the particles within the hot zone of the plasma can also be adjusted to provide control over the resulting microstructure. That is, the length of time the particles are exposed to the plasma determines the extent of melting of the particle (i.e., surface of the particle melted as compared to the inner most portion or core of the particle). Consequently, the extent of melting effects the extent of cooling needed for solidification and thus it is a cooling process parameter.


Microstructural changes can be incorporated throughout the entire particle or just a portion thereof depending upon the extent of particle melting. Residence time can be adjusted by adjusting such operating variables of particle injection rate and flow rate (and conditions, such as laminar flow or turbulent flow) within the hot zone. Equipment changes can also be used to adjust residence time. For example, residence time can be adjusted by changing the cross-sectional area of the hot zone.


Another cooling processing parameter that can be varied or controlled is the composition of the cooling gas. Certain cooling gases are more thermally conductive than others. For example helium is considered to be a highly thermally conductive gas. The higher the thermal conductivity of the cooling gas, the faster the spheroidized particles can be cooled/quenched. By controlling the composition of the cooling gas (e.g., controlling the quantity or ratio of high thermally conductive gasses to lesser thermally conductive gases) the cooling rate can be controlled.


The microstructure of a metal, metal alloy, or ceramic can be determined by the composition of the material and heating and cooling/quenching of the material. By selecting (or knowing) the composition of the feedstock material, and then exposing the feedstock to a plasma that has the uniform temperature profile and control there over as provided by the microwave plasma torch, followed by selecting and controlling the cooling parameters control over the microstructure of the spheroidized particle is achieved. In addition, the phase of the material can depend upon the compositions of the feed stock material (e.g., purity, composition of alloying elements, etc.) as well thermal processing.


In one exemplary embodiment, inert gas is continually purged surrounding a powdered metals, metal alloys, or ceramics feed to remove oxygen within a powder-feed hopper. A continuous volume of powder feed is then entrained within an inert gas and fed into the microwave generated plasma for dehydrogenation or for composition/maintaining purity of the spheroidized particles. In one example, the microwave generated plasma may be generated using a microwave plasma torch, as described in U.S. Patent Publication No. US 2013/0270261, and/or U.S. Pat. Nos. 8,748,785, 9,023,259, 9,206,085, 9,242,224, and 10,477,665, each of which is hereby incorporated by reference in its entirety.


In some embodiments, the particles are exposed to a uniform temperature profile at between 4,000 and 8,000 K within the microwave generated plasma. In some embodiments, the particles are exposed to a uniform temperature profile at between 3,000 and 8,000 K within the microwave generated plasma. Within the plasma torch, the powder particles are rapidly heated and melted. In some embodiments, liquid convection accelerates H2 diffusion throughout the melted particle, continuously bringing hydrogen (H2) to the surface of the liquid metal hydride where it leaves the particle, reducing the time each particle is required to be within the process environment relative to solid-state processes. As the particles within the process are entrained within an inert gas, such as argon, generally contact between particles is minimal, greatly reducing the occurrence of particle agglomeration. The need for post-process sifting is thus greatly reduced or eliminated, and the resulting particle size distribution could be practically the same as the particle size distribution of the input feed materials. In exemplary embodiments, the particle size distribution of the feed materials is maintained in the end products.


Within the plasma, the melted particles are inherently spheroidized due to liquid surface tension. As the microwave generated plasma exhibits a substantially uniform temperature profile, more than 90% spheroidization of particles could be achieved (e.g., 91%, 93%, 95%, 97%, 99%, 100%). After exiting the plasma, the particles are cooled before entering collection bins. When the collection bins fill, they can be removed and replaced with an empty bin as needed without stopping the process.



FIG. 5 is a flow chart illustrating an exemplary method (250) for producing spherical powders, according to an embodiment of the present disclosure. In this embodiment, the process (250) begins by introducing a feed material into a plasma torch (255). In some embodiments, the plasma torch is a microwave generated plasma torch or an RF plasma torch. Within the plasma torch, the feed materials are exposed to a plasma causing the materials to melt, as described above (260). The melted materials are spheroidized by surface tension, as discussed above (260b). After exiting the plasma, the products cool and solidify, locking in the spherical shape and are then collected (265).


In some embodiments, the environment and/or sealing requirements of the bins are carefully controlled. That is, to prevent contamination or potential oxidation of the powders, the environment and or seals of the bins are tailored to the application. In one embodiment, the bins are under a vacuum. In one embodiment, the bins are hermetically sealed after being filled with powder generated in accordance with the present technology. In one embodiment, the bins are back filled with an inert gas, such as, for example argon. Because of the continuous nature of the process, once a bin is filled, it can be removed and replaced with an empty bin as needed without stopping the plasma process.


The methods and processes in accordance with the disclosure can be used to make powders, such as spherical powders.


In some embodiments, the processing discussed herein, such as the microwave plasma processing, can be controlled to prevent and/or minimize certain elements for escaping the feedstock during the melt, which can maintain the desired composition/microstructure.



FIG. 6 illustrates an exemplary microwave plasma torch that can be used in the production of powders, according to embodiments of the present disclosure. As discussed above, feed materials 9, 10 can be introduced into a microwave plasma torch 3, which sustains a microwave generated plasma 11. In one example embodiment, an entrainment gas flow and a sheath flow (downward arrows) may be injected through inlets 5 to create flow conditions within the plasma torch prior to ignition of the plasma 11 via microwave radiation source 1.


In some embodiments, the entrainment flow and sheath flow are both axis-symmetric and laminar, while in other embodiments the gas flows are swirling. The feed materials 9 are introduced axially into the microwave plasma torch, where they are entrained by a gas flow that directs the materials toward the plasma. As discussed above, the gas flows can consist of a noble gas column of the periodic table, such as helium, neon, argon, etc. Within the microwave generated plasma, the feed materials are melted in order to spheroidize the materials. Inlets 5 can be used to introduce process gases to entrain and accelerate particles 9, 10 along axis 12 towards plasma 11. First, particles 9 are accelerated by entrainment using a core laminar gas flow (upper set of arrows) created through an annular gap within the plasma torch. A second laminar flow (lower set of arrows) can be created through a second annular gap to provide laminar sheathing for the inside wall of dielectric torch 3 to protect it from melting due to heat radiation from plasma 11. In exemplary embodiments, the laminar flows direct particles 9, 10 toward the plasma 11 along a path as close as possible to axis 12, exposing them to a substantially uniform temperature within the plasma.


In some embodiments, suitable flow conditions are present to keep particles 10 from reaching the inner wall of the plasma torch 3 where plasma attachment could take place. Particles 9, 10 are guided by the gas flows towards microwave plasma 11 were each undergoes homogeneous thermal treatment. Various parameters of the microwave generated plasma, as well as particle parameters, may be adjusted in order to achieve desired results. These parameters may include microwave power, feed material size, feed material insertion rate, gas flow rates, plasma temperature, residence time and cooling rates. In some embodiments, the cooling or quenching rate is not less than 10+3 degrees C./sec upon exiting plasma 11. As discussed above, in this particular embodiment, the gas flows are laminar; however, in alternative embodiments, swirl flows or turbulent flows may be used to direct the feed materials toward the plasma.



FIGS. 7A-B illustrates an exemplary microwave plasma torch that includes a side feeding hopper rather than the top feeding hopper shown in the embodiment of FIG. 6, thus allowing for downstream feeding. Thus, in this implementation the feedstock is injected after the microwave plasma torch applicator for processing in the “plume” or “exhaust” of the microwave plasma torch. Thus, the plasma of the microwave plasma torch is engaged at the exit end of the plasma torch to allow downstream feeding of the feedstock, as opposed to the top-feeding (or upstream feeding) discussed with respect to FIG. 6. This downstream feeding can advantageously extend the lifetime of the torch as the hot zone is preserved indefinitely from any material deposits on the walls of the hot zone liner. Furthermore, it allows engaging the plasma plume downstream at temperature suitable for optimal melting of powders through precise targeting of temperature level and residence time. For example, there is the ability to dial the length of the plume using microwave powder, gas flows, and pressure in the quenching vessel that contains the plasma plume.


Generally, the downstream spheroidization method can utilize two main hardware configurations to establish a stable plasma plume which are: annular torch, such as described in U.S. Pat. Pub. No. 2018/0297122, or swirl torches described in U.S. Pat. No. 8,748,785 B2 and U.S. Pat. No. 9,932,673 B2. Both FIG. 7A and FIG. 7B show embodiments of a method that can be implemented with either an annular torch or a swirl torch. A feed system close-coupled with the plasma plume at the exit of the plasma torch is used to feed powder axisymmetrically to preserve process homogeneity.


Other feeding configurations may include one or several individual feeding nozzles surrounding the plasma plume. The feedstock powder can enter the plasma at a point from any direction and can be fed in from any direction, 360° around the plasma, into the point within the plasma. The feedstock powder can enter the plasma at a specific position along the length of the plasma plume where a specific temperature has been measured and a residence time estimated for sufficient melting of the particles. The melted particles exit the plasma into a sealed chamber where they are quenched then collected.


The feed materials 314 can be introduced into a microwave plasma torch 302. A hopper 306 can be used to store the feed material 314 before feeding the feed material 314 into the microwave plasma torch 302, plume, or exhaust. The feed material 314 can be injected at any angle to the longitudinal direction of the plasma torch 302. 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, or 55 degrees. In some embodiments, the feedstock can be injected an angle of greater than 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, or 55 degrees. In some embodiments, the feedstock can be injected an angle of less than 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, or 55 degrees. In alternative embodiments, the feedstock can be injected along the longitudinal axis of the plasma torch.


The microwave radiation can be brought into the plasma torch through a waveguide 304. The feed material 314 is fed into a plasma chamber 310 and is placed into contact with the plasma generated by the plasma torch 302. When in contact with the plasma, plasma plume, or plasma exhaust, the feed material melts. While still in the plasma chamber 310, the feed material 314 cools and solidifies before being collected into a container 312. Alternatively, the feed material 314 can exit the plasma chamber 310 while still in a melted phase and cool and solidify outside the plasma chamber. In some embodiments, a quenching chamber may be used, which may or may not use positive pressure. While described separately from FIG. 6, the embodiments of FIGS. 7A-7B are understood to use similar features and conditions to the embodiment of FIG. 6.


In some embodiments, implementation of the downstream injection method may use a downstream swirl, extended spheroidization, or quenching. A downstream swirl refers to an additional swirl component that can be introduced downstream from the plasma torch to keep the powder from the walls of the tube. An extended spheroidization refers to an extended plasma chamber to give the powder longer residence time. In some implementations, it may not use a downstream swirl, extended spheroidization, or quenching. In some embodiments, it may use one of a downstream swirl, extended spheroidization, or quenching. In some embodiments, it may use two of a downstream swirl, extended spheroidization, or quenching.


Injection of powder from below may result in the reduction or elimination of plasma-tube coating in the microwave region. When the coating becomes too substantial, the microwave energy is shielded from entering the plasma hot zone and the plasma coupling is reduced. At times, the plasma may even extinguish and become unstable. Decrease of plasma intensity means decreases in spheroidization level of the powder. Thus, by feeding feedstock below the microwave region and engaging the plasma plume at the exit of the plasma torch, coating in this region is eliminated and the microwave powder to plasma coupling remains constant through the process allowing adequate spheroidization.


Thus, advantageously the downstream approach may allow for the method to run for long durations as the coating issue is reduced. Further, the downstream approach allows for the ability to inject more powder as there is no need to minimize coating.


From the foregoing description, it will be appreciated that inventive LLZO powders and methods of manufacturing are disclosed. While several components, techniques and aspects have been described with a certain degree of particularity, it is manifest that many changes can be made in the specific designs, constructions and methodology herein above described without departing from the spirit and scope of this disclosure.


Certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as any subcombination or variation of any subcombination.


Moreover, while methods may be depicted in the drawings or described in the specification in a particular order, such methods need not be performed in the particular order shown or in sequential order, and that all methods need not be performed, to achieve desirable results. Other methods that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional methods can be performed before, after, simultaneously, or between any of the described methods. Further, the methods may be rearranged or reordered in other implementations. Also, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products. Additionally, other implementations are within the scope of this disclosure.


Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include or do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments.


Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.


Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than or equal to 10% of, within less than or equal to 5% of, within less than or equal to 1% of, within less than or equal to 0.1% of, and within less than or equal to 0.01% of the stated amount. If the stated amount is 0 (e.g., none, having no), the above recited ranges can be specific ranges, and not within a particular % of the value. For example, within less than or equal to 10 wt./vol. % of, within less than or equal to 5 wt./vol. % of, within less than or equal to 1 wt./vol. % of, within less than or equal to 0.1 wt./vol. % of, and within less than or equal to 0.01 wt./vol. % of the stated amount.


The disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various embodiments can be used in all other embodiments set forth herein. Additionally, it will be recognized that any methods described herein may be practiced using any device suitable for performing the recited steps.


While a number of embodiments and variations thereof have been described in detail, other modifications and methods of using the same will be apparent to those of skill in the art. Accordingly, it should be understood that various applications, modifications, materials, and substitutions can be made of equivalents without departing from the unique and inventive disclosure herein or the scope of the claims.

Claims
  • 1. A lithium lanthanum zirconium oxide (LLZO) powder comprising: LLZO particles;wherein the LLZO particles are produced by plasma processing;wherein the LLZO particles have a D50 between about 20 nm and about 500 nm, D10 of greater than or equal to D50÷4, and D90 less than or equal to D50×4;wherein the LLZO particles have a sphericity factor of greater than about 0.6, andwherein a structure of the LLZO particles is a crystalline garnet structure and/or an amorphous structure.
  • 2. The LLZO powder of claim 1, wherein the D10 is approximately equal to D50÷2.
  • 3. The LLZO powder of claim 1, wherein the D90 is approximately equal to D50×2.
  • 4. The LLZO powder of claim 1, wherein the LLZO particles have a D50 between about 50 nm and about 500 nm.
  • 5. The LLZO powder of claim 1, wherein the D50 is between about 100 nm and about 400 nm.
  • 6. The LLZO powder of claim 1, wherein the D50 is between about 150 nm to about 300 nm.
  • 7. The LLZO powder of claim 1, wherein the LLZO particles have a stoichiometry of Li7-3xM1xLa3Zr2O12, M1 is Al, B, Ga, and x is about 0.1 to 0.3.
  • 8. The LLZO powder of claim 1, wherein the LLZO particles have a stoichiometry of Li7-yLa3Zr2-yM2yO12, M2 is Ta or Nb, and y greater than or equal to about 0.4.
  • 9. The LLZO powder of claim 1, wherein the LLZO particles have a stoichiometry of Li7-3nxM1xLa3Zr2-myM2yO12, M1 is a low atomic mass metal, x is about 0.1 to 0.3, and n can depend on the valence of M1.
  • 10. The LLZO powder of claim 1, wherein the LLZO particles have a stoichiometry of Li7-3nxM1xLa3Zr2-myM2yO12, y greater than or equal to about 0.4, and m can depend on the valence of M2.
  • 11. The LLZO powder of claim 1, wherein the LLZO particles are crystalline.
  • 12. The LLZO powder of claim 11, wherein the crystalline structure of the LLZO particles is a garnet crystalline structure.
  • 13. A solid state battery comprising: an anode;a cathode;a solid electrolyte; anda separator;wherein either the anode, cathode or separator comprises LLZO particles;wherein the LLZO particles are produced by plasma processing;wherein the LLZO particles have a D50 between about 20 and about 500 nm, D10 of greater than or equal to D50÷4, and D90 less than or equal to D50×4;wherein the LLZO particles have a sphericity factor of greater than about 0.6, andwherein a structure of the LLZO particles is a crystalline garnet structure.
  • 14. The solid state battery of claim 13, wherein the separator comprises the LLZO particles.
  • 15. The solid state battery of claim 14, wherein the separator is a composite or a ceramic non-composite separator.
  • 16. The LLZO powder of claim 1, wherein the LLZO particles have a stoichiometry of Li7-3xM1xLa3Zr2O12, M1 is Al, and x is about 0.1 to 0.3.
  • 17. The LLZO powder of claim 1, wherein the LLZO particles have a stoichiometry of Li7-3xM1xLa3Zr2O12, M1 is B, and x is about 0.1 to 0.3.
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

This application claims benefit to U.S. Provisional Patent Application Ser. No. 62/841,039 entitled “LITHIUM LANTHANUM ZIRCONIUM OXIDE (LLZO) POWDER,” filed on Apr. 30, 2019, the contents of which is hereby incorporated by reference in its entireties.

US Referenced Citations (276)
Number Name Date Kind
1699205 Podszus et al. Jul 1925 A
2892215 Naeser et al. Jun 1959 A
3290723 Jacques et al. Dec 1966 A
3293334 Bylund et al. Dec 1966 A
3434831 Knopp et al. Mar 1969 A
3466165 Rhys et al. Sep 1969 A
RE26879 Kelso May 1970 E
3652259 Knopp Mar 1972 A
3802816 Kaufmann Apr 1974 A
3845344 Rainer Oct 1974 A
3909241 Cheney et al. Sep 1975 A
3966374 Honnorat et al. Jun 1976 A
3974245 Cheney et al. Aug 1976 A
4076640 Forgensi et al. Feb 1978 A
4177026 Honnorat et al. Dec 1979 A
4212837 Oguchi et al. Jul 1980 A
4221554 Oguchi et al. Sep 1980 A
4423303 Hirose et al. Dec 1983 A
4431449 Dillon et al. Feb 1984 A
4439410 Santen et al. Mar 1984 A
4544404 Yolton et al. Oct 1985 A
4569823 Westin Feb 1986 A
4599880 Stepanenko et al. Jul 1986 A
4611108 Leprince et al. Sep 1986 A
4670047 Kopatz et al. Jun 1987 A
4692584 Caneer, Jr. Sep 1987 A
4705560 Kemp, Jr. et al. Nov 1987 A
4711660 Kemp, Jr. et al. Dec 1987 A
4711661 Kemp, Jr. et al. Dec 1987 A
4714587 Eylon et al. Dec 1987 A
4731110 Kopatz et al. Mar 1988 A
4731111 Kopatz et al. Mar 1988 A
4772315 Johnson et al. Sep 1988 A
4778515 Kemp, Jr. et al. Oct 1988 A
4780131 Kemp, Jr. et al. Oct 1988 A
4783216 Kemp, Jr. et al. Nov 1988 A
4783218 Kemp, Jr. et al. Nov 1988 A
4787934 Johnson et al. Nov 1988 A
4802915 Kopatz et al. Feb 1989 A
4836850 Kemp, Jr. et al. Jun 1989 A
4859237 Johnson et al. Aug 1989 A
4923509 Kemp, Jr. et al. May 1990 A
4943322 Kemp, Jr. et al. Jul 1990 A
4944797 Kemp et al. Jul 1990 A
4952389 Szymanski et al. Aug 1990 A
5041713 Weidman Aug 1991 A
5095048 Takahashi et al. Mar 1992 A
5114471 Johnson et al. May 1992 A
5200595 Boulos et al. Apr 1993 A
5290507 Runkle Mar 1994 A
5292370 Tsai et al. Mar 1994 A
5431967 Manthiram et al. Jul 1995 A
5958361 Laine et al. Sep 1999 A
5989648 Phillips Nov 1999 A
6221125 Soda et al. Apr 2001 B1
6261484 Phillips et al. Jul 2001 B1
6274110 Kim et al. Aug 2001 B1
6329628 Kuo et al. Dec 2001 B1
6334882 Aslund Jan 2002 B1
6409851 Sethuram et al. Jun 2002 B1
6428600 Flurschutz et al. Aug 2002 B1
6543380 Sung-Spritzl Apr 2003 B1
6551377 Leonhardt Apr 2003 B1
6569397 Yadav et al. May 2003 B1
6579573 Strutt et al. Jun 2003 B2
6589311 Han et al. Jul 2003 B1
6652822 Phillips et al. Nov 2003 B2
6676728 Han et al. Jan 2004 B2
6689192 Phillips et al. Feb 2004 B1
6755886 Phillips et al. Jun 2004 B2
6780219 Singh et al. Aug 2004 B2
6805822 Takei et al. Oct 2004 B2
6838072 Kong et al. Jan 2005 B1
6869550 Dorfman et al. Mar 2005 B2
6902745 Lee et al. Jun 2005 B2
6919527 Boulos et al. Jul 2005 B2
6989529 Wiseman Jan 2006 B2
7066980 Akimoto et al. Jun 2006 B2
7091441 Kuo Aug 2006 B1
7108733 Enokido Sep 2006 B2
7125537 Liao et al. Oct 2006 B2
7175786 Celikkaya et al. Feb 2007 B2
7182929 Singhal et al. Feb 2007 B1
7220398 Sutorik et al. May 2007 B2
7235118 Bouaricha et al. Jun 2007 B2
7297310 Peng et al. Nov 2007 B1
7297892 Kelley et al. Nov 2007 B2
7357910 Phillips et al. Apr 2008 B2
7368130 Kim et al. May 2008 B2
7374704 Che et al. May 2008 B2
7375303 Twarog May 2008 B2
7431750 Liao et al. Oct 2008 B2
7442271 Asmussen et al. Oct 2008 B2
7491468 Okada et al. Feb 2009 B2
7517513 Sarkas et al. Apr 2009 B2
7524353 Johnson, Jr. et al. Apr 2009 B2
7572315 Boulos et al. Aug 2009 B2
7629553 Fanson et al. Dec 2009 B2
7700152 Laine et al. Apr 2010 B2
7776303 Hung et al. Aug 2010 B2
7806077 Lee et al. Oct 2010 B2
7828999 Yubuta et al. Nov 2010 B2
7901658 Weppner et al. Mar 2011 B2
7931836 Xie et al. Apr 2011 B2
8043405 Johnson, Jr. et al. Oct 2011 B2
8092941 Weppner et al. Jan 2012 B2
8168128 Seeley et al. May 2012 B2
8211388 Woodfield et al. Jul 2012 B2
8268230 Cherepy et al. Sep 2012 B2
8303926 Luhrs et al. Nov 2012 B1
8329090 Hollingsworth et al. Dec 2012 B2
8389160 Venkatachalam et al. Mar 2013 B2
8439998 Ito et al. May 2013 B2
8449950 Shang et al. May 2013 B2
8478785 Jamjoom et al. Jul 2013 B2
8658317 Weppner et al. Feb 2014 B2
8748785 Jordan et al. Jun 2014 B2
8784706 Shevchenko et al. Jul 2014 B2
8840701 Borland et al. Sep 2014 B2
8877119 Jordan et al. Nov 2014 B2
8911529 Withers et al. Dec 2014 B2
8951496 Hadidi et al. Feb 2015 B2
8968669 Chen Mar 2015 B2
9023259 Hadidi et al. May 2015 B2
9067264 Moxson et al. Jun 2015 B2
9079778 Kelley et al. Jul 2015 B2
9085490 Taylor et al. Jul 2015 B2
9101982 Aslund Aug 2015 B2
9196901 Se-Hee et al. Nov 2015 B2
9206085 Hadidi et al. Dec 2015 B2
9242224 Redjdal et al. Jan 2016 B2
9259785 Hadidi et al. Feb 2016 B2
9321071 Jordan et al. Apr 2016 B2
9322081 McHugh et al. Apr 2016 B2
9421612 Fang et al. Aug 2016 B2
9624565 Lee et al. Apr 2017 B2
9630162 Sunkara et al. Apr 2017 B1
9643891 Hadidi et al. May 2017 B2
9718131 Boulos et al. Aug 2017 B2
9751129 Boulos et al. Sep 2017 B2
9768033 Ranjan et al. Sep 2017 B2
9782791 Redjdal et al. Oct 2017 B2
9782828 Wilkinson Oct 2017 B2
9796019 She et al. Oct 2017 B2
9796020 Aslund Oct 2017 B2
9871248 Rayner et al. Jan 2018 B2
9879344 Lee et al. Jan 2018 B2
9899674 Hirai et al. Feb 2018 B2
9932673 Jordan et al. Apr 2018 B2
9945034 Yao et al. Apr 2018 B2
9981284 Guo et al. May 2018 B2
9999922 Struve Jun 2018 B1
10050303 Anandan et al. Aug 2018 B2
10065240 Chen Sep 2018 B2
10130994 Fang et al. Nov 2018 B2
10167556 Ruzic et al. Jan 2019 B2
10244614 Foret Mar 2019 B2
10333183 Sloop Jun 2019 B2
10350680 Yamamoto et al. Jul 2019 B2
10442000 Fukada et al. Oct 2019 B2
10477665 Hadidi Nov 2019 B2
10493524 She et al. Dec 2019 B2
10529486 Nishisaka Jan 2020 B2
10543534 Hadidi et al. Jan 2020 B2
10610929 Fang et al. Apr 2020 B2
10638592 Foret Apr 2020 B2
10639712 Barnes et al. May 2020 B2
10647824 Hwang et al. May 2020 B2
10655206 Moon et al. May 2020 B2
10668566 Smathers et al. Jun 2020 B2
10669437 Cox et al. Jun 2020 B2
10688564 Boulos et al. Jun 2020 B2
10717150 Aleksandrov et al. Jul 2020 B2
10744590 Maier et al. Aug 2020 B2
10892477 Choi et al. Jan 2021 B2
10943744 Sungail et al. Mar 2021 B2
10987735 Hadidi et al. Apr 2021 B2
11072533 Shevchenko et al. Jul 2021 B2
11077524 Smathers et al. Aug 2021 B2
11130175 Parrish et al. Sep 2021 B2
11148202 Hadidi et al. Oct 2021 B2
11273322 Zanata et al. Mar 2022 B2
11273491 Barnes et al. Mar 2022 B2
11311938 Badwe et al. Apr 2022 B2
20020112794 Sethuram et al. Aug 2002 A1
20030172772 Sethuram et al. Sep 2003 A1
20030207978 Yadav et al. Nov 2003 A1
20040045807 Sarkas et al. Mar 2004 A1
20040123699 Liao et al. Jul 2004 A1
20050025698 Talbot et al. Feb 2005 A1
20050163696 Uhm et al. Jul 2005 A1
20050242070 Hammer Nov 2005 A1
20060145124 Hsiao et al. Jul 2006 A1
20060291827 Suib et al. Dec 2006 A1
20070089860 Hou et al. Apr 2007 A1
20070259768 Kear et al. Nov 2007 A1
20080029485 Kelley et al. Feb 2008 A1
20080182114 Kim et al. Jul 2008 A1
20080296268 Mike et al. Dec 2008 A1
20090074655 Suciu Mar 2009 A1
20090093553 Jager et al. Apr 2009 A1
20090155689 Zaghib et al. Jun 2009 A1
20100007162 Han et al. Jan 2010 A1
20100096362 Hirayama et al. Apr 2010 A1
20100176524 Burgess et al. Jul 2010 A1
20120027955 Sunkara et al. Feb 2012 A1
20120034135 Risby Feb 2012 A1
20120051962 Imam et al. Mar 2012 A1
20120074342 Kim et al. Mar 2012 A1
20120100438 Fasching et al. Apr 2012 A1
20120230860 Ward-Close et al. Sep 2012 A1
20120240726 Kim et al. Sep 2012 A1
20120294919 Jaynes et al. Nov 2012 A1
20130032753 Yamamoto et al. Feb 2013 A1
20130071284 Kano et al. Mar 2013 A1
20130078508 Tolbert et al. Mar 2013 A1
20140202286 Yokoyama et al. Jul 2014 A1
20140272430 Kalayaraman Sep 2014 A1
20150000844 Woo Jan 2015 A1
20150101454 Shimizu et al. Apr 2015 A1
20150255767 Aetukuri Sep 2015 A1
20150259220 Rosocha et al. Sep 2015 A1
20150333307 Thokchom Nov 2015 A1
20160285090 Ozkan et al. Sep 2016 A1
20160308244 Badding Oct 2016 A1
20160332232 Forbes Jones et al. Nov 2016 A1
20160351910 Albano et al. Dec 2016 A1
20170009328 Germann et al. Jan 2017 A1
20170120339 Aslund May 2017 A1
20170125842 Meguro May 2017 A1
20170151609 Elsen et al. Jun 2017 A1
20170176977 Huang et al. Jun 2017 A1
20170263975 Anandan et al. Sep 2017 A1
20170368604 Wilkinson Dec 2017 A1
20170373344 Hadidi et al. Dec 2017 A1
20180104745 L'Esperance et al. Apr 2018 A1
20180277849 Gayden Sep 2018 A1
20180366707 Johnson et al. Dec 2018 A1
20190001416 Larouche et al. Jan 2019 A1
20190061005 Kelkar Feb 2019 A1
20190084290 Stoyanov et al. Mar 2019 A1
20190127835 Yang et al. May 2019 A1
20190160528 McGee et al. May 2019 A1
20190173130 Schuhmacher et al. Jun 2019 A1
20190218650 Subramanian et al. Jul 2019 A1
20190271068 Sungail et al. Sep 2019 A1
20190292441 Hill et al. Sep 2019 A1
20190348202 Sachdev et al. Nov 2019 A1
20200203706 Holman et al. Jun 2020 A1
20200207668 Cavalli et al. Jul 2020 A1
20200215606 Barnes et al. Jul 2020 A1
20200276638 King et al. Sep 2020 A1
20200288561 Huh Sep 2020 A1
20200314991 Duanmu et al. Oct 2020 A1
20200335754 Ramasubramanian et al. Oct 2020 A1
20200346287 Badwe et al. Nov 2020 A1
20200358096 Paulsen et al. Nov 2020 A1
20200391295 Dorval et al. Dec 2020 A1
20210075000 Holman et al. Mar 2021 A1
20210078072 Barnes et al. Mar 2021 A1
20210085468 Ryd et al. Mar 2021 A1
20210129216 Barnes et al. May 2021 A1
20210146432 Badwe et al. May 2021 A1
20210187607 Badwe et al. Jun 2021 A1
20210252599 Hadidi et al. Aug 2021 A1
20210276094 Sobu et al. Sep 2021 A1
20210296731 Wrobel et al. Sep 2021 A1
20210367264 Hadidi et al. Nov 2021 A1
20210408533 Holman et al. Dec 2021 A1
20220041457 Pullen et al. Feb 2022 A1
20220095445 Shang et al. Mar 2022 A1
20220118517 Hadidi et al. Apr 2022 A1
20220134431 Badwe et al. May 2022 A1
20220223379 Holman et al. Jul 2022 A1
20220228288 Holman et al. Jul 2022 A1
20220267216 Holman et al. Aug 2022 A1
Foreign Referenced Citations (63)
Number Date Country
2014394102 Jun 2020 AU
2947531 Nov 2015 CA
1653869 Aug 2005 CN
1675785 Sep 2005 CN
1967911 May 2007 CN
101716686 Feb 2011 CN
102394290 Mar 2012 CN
102179521 Jan 2013 CN
103402921 Nov 2013 CN
102554242 Dec 2013 CN
103874538 Jun 2014 CN
104084592 Oct 2014 CN
104209526 Dec 2014 CN
104485452 Apr 2015 CN
103515590 Sep 2015 CN
105514373 Apr 2016 CN
104772473 Sep 2016 CN
106493350 Mar 2017 CN
108217612 Jun 2018 CN
111970807 Nov 2020 CN
0 256 233 Feb 1988 EP
2 292 557 Mar 2011 EP
3 143 838 Mar 2017 EP
10-172564 Jun 1998 JP
2004-505761 Feb 2004 JP
2004-362895 Dec 2004 JP
2007-138287 Jun 2007 JP
2007-238402 Sep 2007 JP
2011-108406 Jun 2011 JP
2017-524628 Aug 2017 JP
2018-190563 Nov 2018 JP
10-1133094 Apr 2012 KR
2018-0001799 Jan 2018 KR
521539 Feb 2003 TW
WO 2005039752 May 2005 WO
WO 2011082596 Jul 2011 WO
WO 2012144424 Oct 2012 WO
2014153318 Sep 2014 WO
WO 2015064633 May 2015 WO
WO 2015174949 Nov 2015 WO
WO 2016048862 Mar 2016 WO
WO 2017091543 Jun 2017 WO
WO 2017106601 Jun 2017 WO
WO 2017177315 Oct 2017 WO
WO 2017223482 Dec 2017 WO
WO 2018141082 Aug 2018 WO
WO 2019045923 Mar 2019 WO
WO 2019095039 May 2019 WO
WO 2019139773 Jul 2019 WO
WO 2019243870 Dec 2019 WO
WO 2019246242 Dec 2019 WO
WO 2019246257 Dec 2019 WO
WO 2020009955 Jan 2020 WO
WO 2020091854 May 2020 WO
WO 2020132343 Jun 2020 WO
WO 2020223358 Nov 2020 WO
WO 2020223374 Nov 2020 WO
WO 2021046249 Mar 2021 WO
WO 2021118762 Jun 2021 WO
WO 2021127132 Jun 2021 WO
WO 2021263273 Dec 2021 WO
2022032301 Feb 2022 WO
2022067303 Mar 2022 WO
Non-Patent Literature Citations (62)
Entry
International Search Report & Written Opinion in International Application No. PCT/US2020/30510 dated Aug. 17, 2020 in 18 pages.
“Build Boldly”, Technology Demonstration, 6K Additive, [publication date unknown], in 11 pages.
Ajayi, B. et al., “A rapid and scalable method for making mixed metal oxide alloys for enabling accelerated materials discovery”, Journal of Materials Research, Jun. 2016, vol. 31, No. 11, pp. 1596-1607.
Boulos, M., “The inductively coupled radio frequency plasma”, Journal of High Temperature Material Process, 1997, vol. 1, pp. 17-39.
Boulos, M., “Induction Plasma Processing of Materials for Powders, Coating, and Near-Net-Shape Parts”, Advanced Materials & Processes, Aug. 2011, pp. 52-53, in 3 pages.
Carreon, H. et al., “Study of Aging Effects in a Ti—6Al—4V alloy with Widmanstatten and Equiaxed Microstructures by Non-destructive Means”, AIP Conference Proceedings 1581, 2014 (published online Feb. 17, 2015), pp. 739-745.
Chang, S. et al., “One-Step Fast Synthesis of Li4Ti5O12 Particles Using an Atmospheric Pressure Plasma Jet”, Journal of the American Ceramic Society, Dec. 26, 2013, vol. 97, No. 3, pp. 708-712.
Chen, G. et al., “Spherical Ti—6Ak—4V Powders Produced by Gas Atomization”, Key Engineering Materials, vol. 704, Aug. 2016, pp. 287-292. URL: https://www.scientific.net/KEM.704.287.
Chikumba, S. et al., “High Entropy Alloys: Development and Applications”, 7th International Conference on Latest Trends in Engineering & Technology (ICLTET'2015), Nov. 26-27, 2015, Irene, Pretoria (South Africa), pp. 13-17.
Dolbec, R., “Recycling Spherical Powders”, Presented at Titanium 2015, Orlando, FL, Oct. 2015, in 20 pages.
Fuchs, G.E. et al., “Microstructural evaluation of as-solidified and heat-treated y-TiAl based powders”, Materials Science and Engineering, 1992, A152, pp. 277-282.
He, J. Y. et al., “A precipitation-hardened high-entropy alloy with outstanding tensile properties”, Acta Materialia, 2016, vol. 102, pp. 187-196.
Ivasishin, O. M. et al., “Innovative Process for Manufacturing Hydrogenated Titanium Powder for Solid State Production of P/M Titanium Alloy Components”, Titanium 2010, Oct. 3-6, 2010, in 27 pages.
Jia, H. et al., “Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes”, Nature Communications, Mar. 2020, vol. 11, in 9 pages. URL: https://doi.org/10.1038/s41467-020-15217-9.
Ko, M. et al., “Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries”, Chem Electro Chem, Aug. 2015, vol. 2, pp. 1645-1651. URL: https://doi.org/10.1002/celc.201500254.
Kotlyarov, V. I. et al, “Production of Spherical Powders on the Basis of Group IV Metals for Additive Manufacturing”, Inorganic Materials: Applied Research, Pleiades Publishing, May 2017, vol. 8, No. 3, pp. 452-458.
Laine, R. M. et al., “Making nanosized oxide powders from precursors by flame spray pyrolysis”, Key Engineering Materials, Jan. 1999, vol. 159-160, pp. 17-24.
Li, X. et al., “Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes”, Nature Communications, Jul. 2014, vol. 5, Article No. 4105, in 7 pages. URL: https://doi.org/10.1038/ncomms5105.
Li, Z. et al., “Strong and Ductile Non-Equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties”, The Journal of The Minerals, Metals & Materials Society, Aug. 2017, vol. 69(1), pp. 2099-2106. URL: https://doi.org/10.1007/s11837-017-2540-2.
Lin, M., “Gas Quenching with Air Products' Rapid Gas Quenching Gas Mixture”, Air Products, Dec. 31, 2007, in 4 pages. URL: https://www.airproducts.co.uk/-/media/airproducts/files/en/330/330-07-085-us-gas-quenching-with-air-products-rapid-gas-quenching-gas-mixture.pdf.
Muoto, C. et al., “Phase Homogeneity in Y2O3—MgO Nanocomposites Synthesized by Thermal Decomposition of Nitrate Precursors with Ammonium Acetate Additions”, Journal of the American Ceramic Society, 2011, vol. 94(12), pp. 4207-4217.
Nyutu, E. et al., “Ultrasonic Nozzle Spray in Situ Mixing and Microwave-Assisted Preparation of Nanocrystalline Spinel Metal Oxides: Nickel Ferrite and Zinc Aluminate”, Journal of Physical Chemistry C, Feb. 1, 2008, vol. 112, No. 5, pp. 1407-1414.
Ohta, R. et al., “Effect of PS-PVD production throughput on Si nanoparticles for negative electrode of lithium ion batteries”, Journal of Physics D: Applied Physics, Feb. 2018, vol. 51(1), in 7 pages.
Or, T. et al., “Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook”, Carbon Energy, Jan. 2020, vol. 2, pp. 6-43. URL: https://doi.org/10.1002/cey2.29.
Popescu, G. et al., “New TiZrNbTaFe high entropy alloy used for medical applications”, IOP Conference Series: Materials Science and Engineering, Mod Tech 2018, Sep. 2018, vol. 400, in 9 pages.
Reig, L. et al., “Microstructure and Mechanical Behavior of Porous Ti—6Al—4V Processed by Spherical Powder Sintering”, Materials, Oct. 23, 2013, vol. 6, pp. 4868-4878.
Sastry, S.M.L. et al., “Rapid Solidification Processing of Titanium Alloys”, Journal of Metals (JOM), Sep. 1983, vol. 35, pp. 21-28.
Savage, S. J. et al., “Production of rapidly solidified metals and alloys”, Journal of Metals (JOM), Apr. 1984, vol. 36, pp. 20-33.
Sheng, Y. et al., “Preparation of Spherical Tungsten Powder by RF Induction Plasma”, Rare Metal Materials and Engineering, Nov. 2011, vol. 40, No. 11, pp. 2033-2037.
Sheng, Y. et al., “Preparation of Micro-spherical Titanium Powder by RF Plasma”, Rare Metal Materials and Engineering, Jun. 2013, vol. 42, No. 6, pp. 1291-1294.
Suryanarayana, C., “Recent Developments in Mechanical Alloying”, Reviews on Advanced Materials Science, Aug. 2008, vol. 18(3), pp. 203-211.
Suryanarayana, C. et al., “Rapid solidification processing of titanium alloys”, International Materials Reviews, 1991, vol. 36, pp. 85-123.
Tang, H. P. et al., “Effect of Powder Reuse Times on Additive Manufacturing of Ti—6Al—4V by Selective Electron Beam Melting”, JOM, Mar. 2015, vol. 67, pp. 555-563.
Van Laar, J. H. et al., “Spheroidisation of Iron Powder in a Microwave Plasma Reactor”, Journal of the Southern African Institute of Mining and Metallurgy, Oct. 2016, vol. 116, No. 10, pp. 941-946.
Veith, M. et al., “Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Cedoped Y3Al5O12 via different sol-gel methods”, The Journal of Materials Chemistry, Jan. 1999, vol. 9, pp. 3069-3079.
Wang, J. et al., “Preparation of Spherical Tungsten and Titanium Powders by RF Induction Plasma Processing”, Rare Metals, Jun. 2015 (published online May 31, 2014), vol. 34, No. 6, pp. 431-435.
Wang, Y. et al., “Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries”, Advanced Materials, Jun. 2008, pp. 2251-2269.
Yang, S. et al., “Preparation of Spherical Titanium Powders from Polygonal Titanium Hydride Powders by Radio Frequency Plasma Treatment”, Materials Transactions, Nov. 2013, vol. 54, No. 12, pp. 2313-2316.
Zhang, K., Ph.D., “The Microstructure and Properties of Hipped Powder Ti Alloys”, a thesis submitted to The University of Birmingham, College of Engineering and Physical Sciences, Apr. 2009, in 65 pages.
Zhang, Y. et al., “Microstructures and properties of high-entropy alloys”, Progress in Materials Science, Apr. 2014 (available online Nov. 2013), vol. 61, pp. 1-93.
Zhang, Y. D. et al., “High-energy cathode materials for Li-ion batteries: A review of recent developments”, Science China Technological Sciences, Sep. 2015, vol. 58(11), pp. 1809-1828.
International Preliminary Report on Patentability and Written Opinion, re PCT Application No. PCT/US2020/030510, dated Nov. 11, 2021.
Bobzin, K. et al., “Modelling and Diagnostics of Multiple Cathodes Plasma Torch System for Plasma Spraying”, Frontiers of Mechanical Engineering, Sep. 2011, vol. 6, pp. 324-331.
Bobzin, K. et al., “Numerical and Experimental Determination of Plasma Temperature during Air Plasma Spraying with a Multiple Cathodes Torch”, Journal of Materials Processing Technology, Oct. 2011, vol. 211, pp. 1620-1628.
Boulos, M., “Plasma power can make better powders”, Metal Powder Report, May 2004, vol. 59(5), pp. 16-21.
Coldwell, D. M. et al., “The reduction of SiO2 with Carbon in a Plasma”, Journal of Electrochemical Society, Jan. 1977, vol. 124, pp. 1686-1689.
Gradl, P. et al., “GRCop-42 Development and Hot-fire Testing Using Additive Manufacturing Powder Bed Fusion for Channel-Cooled Combustion Chambers”, 55th AIAA/SAE/ASEE Joint Propulsion Conference 2019, Aug. 2019, pp. 1-26.
Li, L. et al., “Spheroidization of silica powders by radio frequency inductively coupled plasma with Ar—H2 and Ar—N2 as the sheath gases at atmospheric pressure”, International Journal of Minerals, Metallurgy, and Materials, Sep. 2017, vol. 24(9), pp. 1067-1074.
Moisan, M. et al., “Waveguide-Based Single and Multiple Nozzle Plasma Torches: the Tiago Concept”, Plasma Sources Science and Technology, Jun. 2001, vol. 10, pp. 387-394.
Zielinski, A. et al., “Modeling and Analysis of a Dual-Channel Plasma Torch in Pulsed Mode Operation for Industrial, Space, and Launch Applications”, IEEE Transactions on Plasma Science, Jul. 2015, vol. 43(7), pp. 2201-2206.
Ajayi, B. P. et al., “Atmospheric plasma spray pyrolysis of lithiated nickel-manganese-cobalt oxides for cathodes in lithium ion batteries”, Chemical Engineering Science, vol. 174, Sep. 14, 2017, pp. 302-310.
Dearmitt, C., “26. Functional Fillers for Plastics”, in Applied Plastics Engineering Handbook—Processing and Materials, ed., Myer Kutz, Elsevier, 2011, pp. 455-468.
Gleiman, S. et al., “Melting and spheroidization of hexagonal boron nitride in a microwave-powered, atmospheric pressure nitrogen plasma”, Journal of Materials Science, Aug. 2002, vol. 37(16), pp. 3429-3440.
Houmes et al., “Microwave Synthesis of Ternary Nitride Materials”, Journal of Solid State Chemistry, vol. 130, Issue 2, May 1997, pp. 266-271.
Majewksi, T., “Investigation of W—Re—Ni heavy alloys produced from plasma spheroidized powders”, Solid State Phenomena, Mar. 2013, vol. 199, pp. 448-453.
Moldover, M. R. et al., “Measurement of the Universal Gas Constant R Using a Spherical Acoustic Resonator”, Physical Review Letters, Jan. 1988, vol. 60(4), pp. 249-252.
Murugan et al. “Nanostructured a/β-tungsten by reduction of WO3 under microwave plasma”, Int. Journal of Refractory Metals and Hard Materials 29 (2011) 128-133. (Year: 2011).
Nichols, F. A., “On the spheroidization of rod-shaped particles of finite length”, Journal of Materials Science, Jun. 1976, vol. 11, pp. 1077-1082.
Park et al. “Preparation of spherical WTaMoNbV refractory high entropy alloy powder by inductively-coupled thermal plasma”, Materials Letters 255 (2019) 126513 (Year: 2019).
Walter et al., “Microstructural and mechanical characterization of sol gel-derived Si—O—C glasses” Journal of the European Ceramic Society, vol. 22, Issue 13, Dec. 2002, pp. 2389-2400.
Zhang, X. et al., “High thickness tungsten coating with low oxygen content prepared by air plasma spray”, Cailliao Gongcheng, 2014, vol. 5, pp. 23-28.
Zhang, Y. S. et al., “Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity”, Scientific Reports, Jan. 2017, vol. 7, in 8 pages.
Related Publications (1)
Number Date Country
20200350542 A1 Nov 2020 US
Provisional Applications (1)
Number Date Country
62841039 Apr 2019 US