The present application in general, relates to a lithium manganese oxide spinel, and more particularly, relates to a lithium manganese oxide spinel used in lithium-ion batteries.
Lithium ion batteries are typically used in consumer electronics. Recently, the lithium ion batteries have become popular in varied applications including defence, automotive, and aerospace applications. The lithium ion batteries are mostly preferred because of their high energy-to-weight ratio and a slow loss of charge when not in use. Additionally, the lithium ion batteries have high energy and power density. Further, the lithium ion batteries are rechargeable and therefore reusable.
However, it has been observed that the lithium ion batteries require constant current and constant voltage for charging. The charge time of the lithium batteries depends upon type of application. Usually, the charge time of the lithium batteries is observed to be within a range of 1 to 5 hours. A lithium ion battery used in mobile phones or cell phones require 1C. Whereas, a lithium ion battery used in laptops require 0.8C. It is to be noted that “C” herein indicates a rated current that discharges the battery in one hour). Thus, the lithium ion batteries available today faces technical problems of slow charging and quick discharging. Hence, an improved lithium ion battery with high charging speed is desirable.
Before the present materials, compositions, systems and methodologies are described, it is to be understood that this application is not limited to the particular materials, compositions, systems and methodologies as described, as there can be multiple possible embodiments which are not expressly illustrated in the present application. It is also to be understood that the terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope of the present application. This summary is not intended to identify essential features of the claimed subject matter nor is it intended for use in detecting or limiting the scope of the claimed subject matter.
In one embodiment, a doped lithium manganese oxide material, optionally including a shell capping layer, is disclosed. The lithium manganese oxide material may be represented by a first formula of Li1+xMyMn2−y−xO4. In one aspect, the value of ‘x’, in the first formula, may satisfy a relation −0.1<x<0.3, preferably 0≤x≤0.15. Further, the value of ‘y’, in the first formula, may satisfy a relation 0≤y≤0.2, preferably 0≤y≤0.16. The lithium manganese oxide material may have a spinel structure. In an aspect, the metal element ‘M’ may include at least one of Cr, Al, Ni, Mg, V, Ca and a combination thereof. The metal element ‘M’ may exchange a position of ‘Mn’, in the formula, as a doping element. Further, the optionally included shell capping layer may be made of a carbon or a compound having a second formula of Li1+xMyMn2−y−xO4, wherein the value of ‘x’, in the second formula, satisfies a relation −0.1<x<0.3, and wherein the value of ‘y’, in the second formula, satisfies a relation 0≤y≤0.2.
In another embodiment, a method for preparation of a lithium manganese oxide, optionally including a shell capping layer, is disclosed. The method may include reacting a lithium compound, a manganese compound and a metal compound under conditions effective to produce a compound of a first formula of Li1+xMyMn2−y−xO4. In one aspect, the value of ‘x’, in the first formula, may satisfy the relation −0.1<x<0.3, preferably 0≤x≤0.15. Further, the value of ‘y’, in the first formula, may satisfy the relation 0≤y≤0.2, preferably 0≤y≤0.16. The conditions may include: mixing the lithium compound, the manganese compound and the metal compound in an aqueous solution thereby forming a mixture; spraying, through an atomizer, the mixture at a predefined temperature; collecting the sprayed powder precursor and calcinating the sprayed powder precursor in a furnace at one or more predefined temperature ranges for one or more predefined time intervals in air atmosphere to obtain calcinated powder. The method may further include optionally forming the shell capping layer on the surface of the calcinated powder by dispersing the calcinated powder into distilled water with a dissolved mixture of the lithium compound, the manganese compound and the metal compound; spray drying the dispersed solution at a predefined temperature; and calcinating the spray dried powder at a predefined temperature for a predefined time interval in the air atmosphere thereby forming a thin layer of compound with a second formula of Li1+xMyMn2−y−xO4 on the surface of the calcinated powder.
In yet another embodiment, a method for preparation of a lithium manganese oxide, optionally including a shell capping layer is disclosed. The method may include reacting a lithium compound, a manganese compound and a metal compound under conditions effective to produce a compound of a first formula of Li1+xMyMn2−y−xO4. In one aspect, the value of ‘x’, in the first formula, may satisfy the relation −0.1<x<0.3. Further, the value of ‘y’, in the first formula, may satisfy the relation 0≤y≤0.2. The conditions may include: mixing the lithium compound, the manganese compound and the metal compound in an aqueous solution thereby forming a mixture; spraying, through an atomizer, the mixture at a predefined temperature; collecting the sprayed powder precursor and calcinating the sprayed powder precursor in a furnace at one or more predefined temperature ranges for one or more predefined time intervals in air atmosphere to obtain calcinated powder. The method may further include optionally forming the shell capping layer on the surface of the calcinated powder by dispersing the calcinated powder into a mixture of distilled water and ethanol with a carbon precursor; concentrating the dispersed solution; calcinating the dried powder at a predefined temperature for a predefined time interval in the air atmosphere; and cooling the dried powder calcinated to form a thin layer of carbon on the surface of the calcinated powder.
The detailed description is described with reference to the accompanying Figures. In the Figures, the left-most digit(s) of a reference number identifies the Figure in which the reference number first appears. The same numbers are used throughout the drawings to refer like features and components.
Some embodiments of this invention, illustrating all its features, will now be discussed in detail.
The words “comprising,” “having,” “containing,” and “including,” and other forms thereof, are intended to be equivalent in meaning and be open ended in that an item or items following any one of these words is not meant to be an exhaustive listing of such item or items, or meant to be limited to only the listed item or items.
It must also be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. Although any systems and methods similar or equivalent to those described herein can be used in the practice or testing of embodiments of the present invention, the preferred, systems and methods are now described. The disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms.
Various modifications to the embodiment will be readily apparent to those skilled in the art and the generic principles herein may be applied to other embodiments. However, one of ordinary skill in the art will readily recognize that the present application is not intended to be limited to the embodiments illustrated, but is to be accorded the widest scope consistent with the principles and features described herein.
In accordance with aspects of the present application, a lithium manganese oxide spinel material and method for manufacturing the said lithium manganese oxide spinel material are described herein. The lithium manganese oxide spinel material may act as a cathode active material in a lithium-ion battery used for charging different electronic applications. The battery may include a positive electrode (cathode), a negative electrode, a separator and an electrolyte. The cathode may include a current collector and an electrode active material layer. The electrode active material layer may include a cathode active material in a range of about 80-99%, cathode conductive agent in a range of about 0.1-10% and a cathode binder in a range of about 0.1-10%. The cathode active material may have a primary particle size in the range of about 50 nm to about 5 μm. Preferably, the primary particle size of the cathode active material may be in the range of about 200 nm to about 1 μm.
In order to prepare/manufacture a cathode active material, a lithium compound, a manganese compound and a metal compound may be mixed together in an aqueous solution thereby forming a mixture. The lithium compound may include at least one of Li2O, LiOH, LiCl, LiNO3, Li2CO3, lithium acetate, a Li-carboxylate and a combination thereof. The manganese compound may include at least one of MnO2, MnO, MnOOH, Mn2O3, Mn3O4, MnCO3, Mn(NO3)2, a Mn-carboxylate and a combination thereof. The metal compound may include at least one of a metal salt, a metal hydroxide, a metal carboxylate and a combination thereof. The metal element of the metal compound may include at least one of Cr, Al, Ni, Mg, V, Ca and a combination thereof. The mixture may include a molar portion of the lithium compound, the manganese compound and the metal compound in a predefined range of about 0.9 to about 1.2, about 1.70 to about 2.1, and about 0 to about 0.2 respectively. Preferably, the molar portion of the lithium compound, the manganese compound and the metal compound may be within a range of about 1.0 to about 1.15, about 1.75 to about 2.0 and about 0.01 to about 0.16 respectively. Further the mixture may be sprayed, through an atomizer, at a predefined temperature in a range of about 80° C. to about 250° C. The sprayed mixture may be calcinated at a predefined temperature range of about 400° C. to about 500° C. for a first time interval of around 30 minutes to around 2 hours. The sprayed powder precursor may further be calcinated at a second predefined temperature range of about 700° C.-1000° C. for a second predefined time interval of around 5 hours to around 40 hours. Preferably, the sprayed mixture may be calcinated at a temperature range of about 750° C.-950° C. for a time interval of around 10 hours to around 30 hours. After calcination, a compound having a formula Li1+xMyMn2−y−xO4 may be produced. In one aspect, the value of ‘x’ may satisfy the relation −0.1<x<0.3 and the value of y may satisfy the relation 0≤y≤0.2. Preferably the value of ‘x’ and ‘y’ may satisfy the relation 0≤x≤0.15 and 0≤y≤0.16 respectively.
In order to prepare/manufacture a cathode active material with a shell capping layer, a lithium compound, a manganese compound and a metal compound may be mixed together in an aqueous solution thereby forming a mixture. The lithium compound may include at least one of Li2O, LiOH, LiCl, LiNO3, Li2CO3, lithium acetate, a Li-carboxylate and a combination thereof. The manganese compound may include at least one of MnO2, MnO, MnOOH, Mn2O3, Mn3O4, MnCO3, Mn(NO3)2, a Mn-carboxylate and a combination thereof. The metal compound may include at least one of a metal salt, a metal hydroxide, a metal carboxylate and a combination thereof. The metal element of the metal compound may include at least one of Cr, Al, Ni, Mg, V, Ca and a combination thereof. The mixture may include a molar portion of the lithium compound, the manganese compound and the metal compound in a predefined range of about 0.9 to about 1.2, about 1.70 to about 2.05, and about 0 to about 0.2 respectively. Preferably, the molar portion of the lithium compound, manganese compound and the metal compound may be within a range of about 1.0 to about 1.15, about 1.75 to about 2.0 and about 0.01 to about 0.16 respectively. Further the mixture may be sprayed, through an atomizer, at a predefined temperature in a range of about 80° C. to about 250° C. The sprayed mixture may be calcinated at a predefined temperature range of about 400° C. to about 500° C. for a first time interval of around 30 minutes to around 2 hours. The sprayed powder precursor may further be calcinated at a second predefined temperature range of about 700° C.-1000° C. for a second predefined time interval of around 5 hours to around 40 hours. Preferably, the sprayed mixture may be calcinated at a temperature range of about 700° C.-900° C. for a time interval of around 5 hours to around 20 hours. After calcination, a compound (i.e. a calcinated powder) having a formula Li1+xMyMn2−y−xO4 may be produced. In one aspect, the value of ‘x’ may satisfy the relation −0.1<x<0.3 and the value of y may satisfy the relation 0≤y≤0.2. Preferably the value of ‘x’ and ‘y’ may satisfy the relation 0≤x≤0.15 and 0≤y≤0.16 respectively. Further, the calcinated powder may be optionally coated with either a compound layer or a carbon layer.
In one embodiment, in order to coat the calcinated powder with the compound layer, the calcinated powder may be dispersed into distilled water with a dissolved mixture of the lithium compound, the manganese compound and the aluminium compound. It is to be noted that the molar portion of the lithium compound is in the range of about 0.9 to about 1.15 (preferred range is about 1.0 to about 1.1), the molar portion of manganese compound is in the range of about 1.70 to about 2.05 (preferred range is about 1.75 to about 2.0), and the molar portion of aluminum compound is in the range of about 0 to about 0.2 (preferred range is about 0.01 to about 0.16). The dispersed solution may further be spray dried at a predefined temperature range of about 80° C.-250° C. and calcinated at about 500° C.-1000° C. in air atmosphere. A thin layer of a compound, acting as the shell capping layer, having the formula Li1+xMyMn2−y−xO4, may be formed on the surface of calcinated powder.
In another embodiment, in order to coat the calcinated powder with the carbon layer, the calcinated powder may be dispersed into a mixture of distilled water and ethanol with a carbon precursor. The carbon precursor may be at least one of a glucose, a sucrose and a combination thereof. The dispersed solution may be allowed to concentrate. Thereafter, dried powder may be calcinated at a predefined temperature of about 600° C. for around ten minutes. After cooling to room temperature, a thin layer of carbon, acting as the shell capping layer, may be formed on the surface of calcinated powder.
In an embodiment, the thickness of the shell capping layer formed on the cathode active material may be within a range of about 1 nm to about 20 nm. Preferably, the thickness of the shell capping layer is about 5 to about 15 nm. The cathode active material as described above may be prepared/fabricated using synthesis process such as a spray pyrolysis or a solid state reaction, the details of which are described below.
In one embodiment, the preparation/fabrication of the cathode active material using spray pyrolysis process is described. The system employed for carrying out the spray pyrolysis process may include a droplet generator, a quartz reactor, and a particle collector. In this embodiment, the cathode active material such as aluminum doped lithium manganese oxide with formula of Li1.09Al0.04Mn1.87.O4 (LMAO) may be prepared by using an aqueous solution of a manganese acetate and a lithium acetate. Specifically, the manganese acetate and the lithium acetate may be mixed together in an aqueous solution thereby forming a mixture. The mixture may be further sprayed through an atomizer (e.g. an ultrasonic spray head) at a predefined temperature. The resulting mist/spray powder precursor may be dried and further collected by the particle collector. The dried solid powder may be calcinated in an air filled furnace at a predefined temperature for a predefined time in order to obtain Li1.09Al0.04Mn1.87.O4 (LMAO) as the cathode active material. The furnace used for calcinating the mixture may be a muffle furnace or a rotary furnace. The calcination of the sprayed powder precursor may be carried out at a predefined temperature within a range of about 400° C. to about 500° C. for a predefined time of around 30 minutes to around 2 hours. Additionally, the sprayed powder precursor may be further calcinated at a predefined temperature within a range of about 700° C.-1000° C. for a predefined time of around 5 hours to around 40 hours. The calcination may be carried out in air atmosphere.
Thus, after the calcination of the sprayed powder precursor at different temperatures for different time periods, an Aluminum-doped Lithium Manganese Oxide (LMAO) cathode active material having the compound formula Li1.09Al0.04Mn1.87O4 (LMAO) is obtained.
In one example, 11.09 molar portion of lithium acetate, 1.91 to 1.75 molar portion of manganese acetate and 0 to 0.16 molar portion of Al(OH)3 may be dissolved in water with vigorous stirring for around 15 minutes. Further, the solution may be pumped to an atomizer and sprayed out at about 120° C. to form fine particles. The dried particles may be collected and pretreated at about 450° C. for around 2 hours and calcinated at 800-900° C. for 20-40 hours. A lithium ion battery cathode active material may be obtained with the formula of Li1.09Mn1.91−xAlxO4 (0≤x≤0.16) and having a particle size ranging from 200 to 400 nm.
In another embodiment, the preparation/fabrication of a cathode active material using a solid state reaction process is described. In this embodiment, the cathode active material such as metal doped lithium manganese oxide is prepared using solid mixing of a lithium salt, a manganese oxide powder and a doping element. In one aspect, the lithium salt is at least one of lithium carbonate, lithium hydroxide or lithium acetate. Further, the doping element may be selected from metal oxides, or salts or hydroxides. In order to obtain the metal doped lithium manganese oxide, the mixture of the lithium salt, the manganese oxide powder and the doping element may be calcinated in an air filled furnace. Specifically, the mixture may be calcinated at a predefined temperature of about 450° C. for a predefined time of around 2 hours. Additionally, the mixture may be further calcinated at a higher predefined temperature of about 750° C.-950° C. for a predefined longer time period of around 10 to 40 hours. The calcination may result in obtaining the metal doped lithium manganese oxide.
In one example, 1.09 molar portion of lithium carbonate, 1.91 to 1.75 molar portion of electrolytic manganese dioxide and 0 to 0.16 molar portion of Al(OH)3 may be mixed either using blender or ball miller. The mixed precursor may be transferred into a muffle furnace or a rotary tube furnace and pretreated at 450° C. for 2 hours. The mixture may be calcinated at 700° C.-950° C. for 20-40 hours at air atmosphere. A lithium ion battery cathode active material may be obtained with the formula of Li1.09Mn1.91−xAlxO4 having a particle size within a range of 200 to 1000 nm.
In yet another embodiment, aluminum-doping on the cathode active material is described. In this embodiment, the Al-doped cathode active material is prepared using either of the spray pyrolysis process or the solid state reaction process as described above. In accordance with this embodiment, the cathode active material such as LMO may be doped with aluminum (Al) material to form an Al-doped LMO or LMAO.
In accordance with aspects of the present application, a lithium manganese oxide material with a shell capping layer and a method for manufacturing the said lithium manganese oxide material with the shell capping layer is described. In one embodiment, the cathode active material may be further coated with a lithium manganate (LMO) coating. The coating of LMO on the cathode active materials such as LMAO may be achieved by mixing an aqueous solution of as-prepared LMAO and a mixture of lithium acetate and manganese acetate. The mixture may be further atomized with an ultrasonic spray head and a resulting mist may be dried and further collected in the particle collector. The dry solid powder may be calcinated in air filled muffle furnace at a temperature of 800° C. in order to form LMO-coated LMAO.
10040 In one example, an Al doped lithium manganese oxide active material may be dispersed into water with lithium acetate, manganese acetate mixture in a ratio of 1.09:1.91. The solution may be pumped to an atomizer and sprayed out at 120° C. The LMO precursors may be coated onto LMAO particle surface. The dried particles may be collected and pretreated at 450° C. for 2 hours. Further, the particles penetrated may be calcinated at 700° C.-950° C. for 20-40 hours at air atmosphere to obtain an LMO-coated LMAO.
In another embodiment, instead of the LMO coating as described above, the cathode active material may be capped/coated with a carbon. In this embodiment, 3 g previously prepared LMO powder may be dispersed in a distilled water and ethanol solvent having a volume ratio of 1:3. Further, 526 g glucose (or 0.5 g sucrose) may be dissolved in the water and then poured into the LMO dispersion liquid. After ultrasonication for predefined time interval, the solution may be concentrated to obtain a dry powder. The dry powder may further be calcinated at 600° C. for ten minutes and thereafter cooled to room temperature in order to obtain carbon coated LMO.
Table 1 below illustrates the rate performance and capacity retention of LMO and LMAO cathode materials, in accordance with embodiments of the present application.
The embodiments, examples and alternatives of the preceding paragraphs or the description and drawings, including any of their various aspects or respective individual features, may be taken independently or in any combination. Features described in connection with one embodiment are applicable to all embodiments, unless such features are incompatible.
Although implementations of lithium manganese oxide spinel materials and manufacturing methods therefor have been described in language specific to structural features and/or methods, it is to be understood that the appended claims are not necessarily limited to the specific features or methods described. Rather, the specific features and methods are disclosed as examples of implementations lithium manganese oxide spinel materials and manufacturing methods therefor.