Lithium silicate glass ceramic and lithium silicate glass comprising a tetravalent metal oxide

Information

  • Patent Grant
  • 9695082
  • Patent Number
    9,695,082
  • Date Filed
    Thursday, October 11, 2012
    12 years ago
  • Date Issued
    Tuesday, July 4, 2017
    7 years ago
Abstract
Lithium silicate glass ceramics and glasses containing specific oxides of tetravalent elements are described which crystallize at low temperatures and are suitable in particular as dental materials.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a National Stage of International patent application PCT/EP2012/070222, filed on Oct. 11, 2012, which claims priority to European patent application No. 11185338.8 filed on Oct. 14, 2011, the disclosures of which are incorporated herein by reference in their entirety.


The invention relates to lithium silicate glass ceramic and glass which contain tetravalent metal oxide selected from ZrO2, TiO2, CeO2, GeO2, SnO2 and mixtures thereof and are particularly suitable for use in dentistry, preferably for the preparation of dental restorations.


Lithium silicate glass ceramics are characterized as a rule by very good mechanical properties, which is why they have been used for a long time in the dental field and there primarily for the preparation of dental crowns and small bridges. The known lithium silicate glass ceramics usually contain as main components SiO2, Li2O, Na2O or K2O, and nucleating agents such as P2O5 as well as additional components such as e.g. La2O3.


DE 24 51 121 describes lithium disilicate glass ceramics which contain K2O. They are prepared from corresponding nuclei-containing starting glasses which are heated to temperatures of from 850 to 870° C. for the crystallization of lithium disilicate. The purpose for which the glass ceramics are used is not disclosed.


EP 827 941 describes sinterable lithium disilicate glass ceramics for dental purposes, which also contain K2O or Na2O in addition to La2O3. The lithium disilicate crystal phase is produced at a temperature of 850° C.


Lithium disilicate glass ceramics which likewise contain La2O3 as well as K2O are known from EP 916 625. A heat treatment is carried out at 870° C. for the formation of lithium disilicate.


EP 1 505 041 describes lithium silicate glass ceramics containing K2O, which, when lithium metasilicate is present as main crystal phase, can be very satisfactorily machined e.g. by means of CAD/CAM processes, in order to then be converted by further heat treatment at temperatures of from 830 to 850° C. into high-strength lithium disilicate glass ceramics.


EP 1 688 398 describes similar K2O-containing lithium silicate glass ceramics which are moreover substantially free from ZnO. A heat treatment at 830 to 880° C. is applied to them to produce lithium disilicate.


U.S. Pat. No. 5,507,981 describes processes for producing dental restorations and glass ceramics that can be used in these processes. These are in particular lithium disilicate glass ceramics with a low level of Li2O which contain as a rule either Na2O or K2O.


U.S. Pat. No. 6,455,451 relates to lithium disilicate glass ceramics which also contain K2O in addition to Li2O. However, the production of the desired lithium disilicate crystal phase requires high temperatures of from 800 to 1000° C.


WO 2008/106958 discloses lithium disilicate glass ceramics for veneering zirconium oxide ceramics. The glass ceramics contain Na2O and are produced by heat treatment of nuclei-containing glasses at 800 to 940° C.


WO 2009/126317 describes GeO2-containing lithium metasilicate glass ceramics which contain K2O and small quantities of SiO2. The glass ceramics are processed to form dental products primarily using machining.


WO 2011/076422 relates to lithium disilicate glass ceramics which also contain K2O in addition to high levels of ZrO2 or HfO2. The crystallization of lithium disilicate takes place at high temperatures of from 800 to 1040° C.


Common to the known lithium disilicate glass ceramics is that they require heat treatments at more than 800° C. in order to effect the precipitation of lithium disilicate as main crystal phase. A large quantity of energy is therefore also necessary for their production. Further, with the known glass ceramics the alkali metal oxides, such as in particular K2O or Na2O, as well as La2O3, are as a rule present as essential components which are clearly required for the production of glass ceramics with the sought properties and in particular the formation of the sought lithium disilicate main crystal phase.


There is therefore a need for lithium silicate glass ceramics during the preparation of which the crystallization of lithium disilicate can be effected at lower temperatures. Further, they should also be able to be prepared without the alkali metal oxides, such as K2O or Na2O, as well as La2O3, previously regarded as necessary, and be suitable in particular for the preparation of dental restorations primarily in view of their optical and mechanical properties.


This object is achieved by the lithium silicate glass ceramic according to the attached claims. Also subjects of the invention are the starting glass , the lithium silicate glass with nuclei , the process for the preparation of the glassceramic and the lithium silicate glass with nuclei according to the attached claims.


The lithium silicate glass ceramic according to the invention is characterized in that it comprises

    • tetravalent metal oxide selected from ZrO2, TiO2, CeO2, GeO2, SnO2 and mixtures thereof,
    • at least 12.1 wt.-% Li2O,
    • less than 0.1 wt.-% La2O3f
    • less than 1.0 wt.-% K2O and
    • less than 2.0 wt.-% Na2O.


It is preferred that the glass ceramic comprises the tetravalent metal oxide or mixtures thereof in an amount of from 0.1 to 15, in particular 2.0 to 15.0, particularly preferred 2.0 to 11.0 and even more preferred 2.0 to 8.0 wt.-%.


It is particularly surprising that the formation of the glass ceramic according to the invention with lithium disilicate as main crystal phase is also achieved in the absence of various components regarded as necessary for conventional glass ceramics, such as alkali metal oxides, in particular K2O, Na2O and La2O3, even at very low and thus advantageous crystallization temperatures of in particular from 640 to 740° C. The glass ceramic also has a combination of optical and mechanical properties as well as processing properties that are very advantageous for the use as dental material.


The glass ceramic according to the invention accordingly preferably comprises less than 0.5 and in particular less than 0.1 wt.-% K2O. It is particularly preferably substantially free from K2O.


A glass ceramic is also preferred which comprises less than 1.0, in particular less than 0.5 and preferably less than 0.1 wt.-% Na2O and particularly preferred is substantially free from Na2O.


Moreover, a glass ceramic which is substantially free from La2O2 is preferred.


A glass ceramic, excluding lithium silicate glass ceramic which comprises at least 6.1 wt.-% ZrO2, is also preferred.


Further, a glass ceramic, excluding lithium silicate glass ceramic which comprises at least 8.5 wt.-% transition metal oxide selected from the group consisting of oxides of yttrium, oxides of transition metals with an atomic number from 41 to 79 and mixtures of these oxides, is also preferred.


The glass ceramic according to the invention preferably comprises 55.0 to 82.0, in particular 58.0 to 80.0, preferably 60.0 to 80.0 and particularly preferred 67.0 to 79.0 wt.-% SiO2.


It is also preferred that the glass ceramic comprises 12.5 to 20.0 and in particular 15.0 to 17.0 wt.-% Li2O.


It is further preferred that the molar ratio between SiO2 and Li2O is from 1.7 to 3.1, in particular 1.75 to 3.0. It is very surprising that the production of lithium disilicate is achieved within this broad range. Specifically at ratios of less than 2.0 conventional materials usually form lithium metasilicate instead of lithium disilicate.


In a further preferred embodiment the molar ratio between SiO2 and Li2O is at least 2.2, in particular 2.3 to 2.5, and preferably about 2.4, as a glass ceramic with particularly high strength is thus obtained.


The glass ceramic according to the invention can also comprise a nucleating agent. P2O5 is particularly preferably used for this. The glass ceramic preferably comprises 0 to 10.0, in particular 0.5 to 9.0 and preferably 2.5 to 7.5 wt.-% P2O5. However, metals in amounts of in particular from 0.005 to 0.5 wt.-%, such as in particular Ag, Au, Pt and Pd, can also be used as nucleating agents.


In a further preferred embodiment, the glass ceramic comprises at least one and preferably all of the following components:















Component
wt.-%








SiO2
58.0 to 79.0



Li2O
12.5 to 20.0



tetravalent metal
 2.0 to 15.0



oxide or mixtures




P2O5
  0 to 7.0, in particular 0.5 to 7.0



Al2O3
  0 to 6.0, in particular 0.5 to 3.5.









The glass ceramic according to the invention can moreover also comprise additional components which are selected in particular from oxides of divalent elements, oxides of trivalent elements, further oxides of pentavalent elements, oxides of hexavalent elements, melt accelerators, colourants and fluorescent agents.


Suitable oxides of divalent elements are in particular MgO, CaO, SrO, BaO and ZnO and preferably CaO.


Suitable oxides of trivalent elements are in particular Al2O3, Y2O3 and Bi2O3 and mixtures thereof, and preferably Al2O3, already mentioned above as a component.


The term “further oxides of pentavalent elements” refers to oxides of pentavalent elements with the exception of P2O5. Examples of suitable further oxides of pentavalent elements are Ta2O5 and Nb2O5.


Examples of suitable oxides of hexavalent elements are WO3 and MoO3.


A glass ceramic which comprises at least one oxide of divalent elements, at least one oxide of trivalent elements, at least one further oxide of pentavalent elements and/or at least one oxide of hexavalent elements is preferred.


Examples of melt accelerators are fluorides.


Examples of colourants and fluorescent agents are oxides of d- and f-elements, such as the oxides of Ti, V, Sc, Mn, Fe, Co, Ta, W, Ce, Pr, Nd, Tb, Er, Dy, Gd, Eu and Yb. Metal colloids, e.g. of Ag, Au and Pd, can also be used as colourants and in addition can also act as nucleating agents. These metal colloids can be formed e.g. by reduction of corresponding oxides, chlorides or nitrates during the melting and crystallization processes. The metal colloids can be present in the glass ceramic in an amount of from 0.005 to 0.5 wt.-%.


The term “main crystal phase” used below refers to the crystal phase which has the highest proportion by volume compared with other crystal phases.


The glass ceramic according to the invention has lithium metasilicate as main crystal phase in one embodiment. In particular the glass ceramic comprises more than 5 vol.-%, preferably more than 10 vol.-% and particularly preferred more than 15 vol.-% lithium metasilicate crystals, relative to the total glass ceramic.


In a further particularly preferred embodiment, the glass ceramic has lithium disilicate as main crystal phase. In particular the glass ceramic comprises more than 10 vol.-%, preferably more than 20 vol.-% and particularly preferred more than 30 vol.-% lithium disilicate crystals, relative to the total glass ceramic.


The lithium disilicate glass ceramic according to the invention is characterized by particularly good mechanical properties and can be produced e.g. by heat treatment of the lithium metasilicate glass ceramic according to the invention. However, it can be formed in particular by heat treatment of a corresponding starting glass or of a corresponding lithium silicate glass with nuclei.


It has surprisingly been shown that the lithium disilicate glass ceramic according to the invention has very good mechanical and optical properties and processing properties even in the absence of components regarded as essential for conventional glass ceramics. The combination of its properties even allows it to be used as dental material and in particular material for the preparation of dental restorations.


The lithium disilicate glass ceramic according to the invention has in particular a fracture toughness, measured as KIC value, of at least 1.8 MPa·m0.5 and in particular more than about 2.0 MPa·m0.5. This value was determined using the Vickers method and calculated using Niihara's equation.


The invention also relates to a lithium silicate glass with nuclei that are suitable for forming lithium metasilicate and/or lithium disilicate crystals, wherein the glass comprises the components of the above-described glass ceramics according to the invention. Thus this glass is characterized in that it comprises

    • tetravalent metal oxide selected from ZrO2, TiO2, CeO2, GeO2, SnO2 and mixtures thereof,
    • at least 12.1 wt.-% Li2O,
    • less than 0.1 wt.-% La2O3,
    • less than 1.0 wt.-% K2O and
    • less than 2.0 wt.-% Na2O.


In respect of preferred embodiments of this glass reference is made to the preferred embodiments described above of the glass ceramics according to the invention.


The glass with nuclei according to the invention can be produced by heat treatment of a correspondingly composed starting glass according to the invention. The lithium metasilicate glass ceramic according to the invention can then be formed by a further heat treatment, and in turn be converted into the lithium disilicate glass ceramic according to the invention by further heat treatment, or the lithium disilicate glass ceramic according to the invention can also preferably be formed directly from the glass with nuclei. The starting glass, the glass with nuclei and the lithium metasilicate glass ceramic can consequently be regarded as precursors to the production of the high-strength lithium disilicate glass ceramic.


The glass ceramics according to the invention and the glasses according to the invention are present in particular in the form of powders, granular material or blanks, e.g. monolithic blanks, such as platelets, cuboids or cylinders, or powder green compacts, in unsintered, partly sintered or densely-sintered form. They can easily be further processed in these forms. They can, however, also be present in the form of dental restorations, such as inlays, onlays, crowns, veneers, facets or abutments.


The invention also relates to a process for the preparation of the glass ceramic according to the invention and the glass with nuclei according to the invention, wherein a correspondingly composed starting glass, the glass with nuclei according to the invention or the lithium metasilicate glass ceramic according to the invention is subjected to at least one heat treatment in the range of from 450 to 950° C., in particular 450 to 750 and preferably 480 to 740° C.


The starting glass according to the invention is therefore characterized in that it comprises

    • tetravalent metal oxide selected from ZrO2, TiO2, CeO2, GeO2, SnO2 and mixtures thereof,
    • at least 12.1 wt.-% Li2O,
    • less than 0.1 wt.-% La2O3,
    • less than 1.0 wt.-% K2O and
    • less than 2.0 wt.-% Na2O.


In addition, it preferably also comprises suitable amounts of SiO2 and Li2O, in order to allow the formation of a lithium silicate glass ceramic, and in particular a lithium disilicate glass ceramic. Further, the starting glass can also comprise still further components, such as are given above for the lithium silicate glass ceramic according to the invention. All those embodiments are preferred for the starting glass which are also given as preferred for the glass ceramic.


With the process according to the invention, the glass with nuclei is usually prepared by means of a heat treatment of the starting glass at a temperature of in particular from 480 to 520° C. The lithium disilicate glass ceramic according to the invention is then preferably produced from the glass with nuclei through further heat treatment at usually 600 to 750 and in particular 640 to 740° C.


Thus, much lower temperatures are used according to the invention for the crystallization of lithium disilicate than with the conventional lithium disilicate glass ceramics. The energy thus saved represents a clear advantage. Surprisingly, this low crystallization temperature is also possible in the absence of components, such as K2O and Na2O as well as La2O3, regarded as essential for conventional glass ceramics.


To prepare the starting glass, the procedure is in particular that a mixture of suitable starting materials, such as carbonates, oxides, phosphates and fluorides, is melted at temperatures of in particular from 1300 to 1600° C. for 2 to 10 h. To achieve a particularly high homogeneity, the obtained glass melt is poured into water in order to form a granular glass material, and the obtained granular material is then melted again.


The melt can then be poured into moulds to produce blanks of the starting glass, so-called solid glass blanks or monolithic blanks.


It is also possible to put the melt into water again in order to prepare a granular material. This granular material can then be pressed, after grinding and optionally addition of further components, such as colourants and fluorescent agents, to form a blank, a so-called powder green compact.


Finally, the starting glass can also be processed to form a powder after granulation.


The starting glass, e.g. in the form of a solid glass blank, a powder green compact or in the form of a powder, is then subjected to at least one heat treatment in the range of from 450 to 950° C. It is preferred that a first heat treatment is initially carried out at a temperature in the range of from 480 to 520° C. to prepare a glass according to the invention with nuclei which are suitable for forming lithium metasilicate and/or lithium disilicate crystals. This first heat treatment is preferably carried out for a period of from 10 min to 120 min and in particular 10 min to 30 min. The glass with nuclei can then preferably be subjected to at least one further temperature treatment at a higher temperature and in particular more than 570° C. to effect crystallization of lithium metasilicate or lithium disilicate. This further heat treatment is preferably carried out for a period of from 10 min to 120 min, in particular 10 min to 60 min and particularly preferably 10 min to 30 min. To crystallize lithium disilicate, the further heat treatment is usually carried out at 600 to 750 and in particular 640 to 740° C.


Therefore, in a preferred embodiment of the process

    • (a) the starting glass is subjected to a heat treatment at a temperature of from 480 to 520° C. in order to form the glass with nuclei, and
    • (b) the glass with nuclei is subjected to a heat treatment at a temperature of from 640 to 740° C. in order to form the glass ceramic with lithium disilicate as main crystal phase.


The duration of the heat treatments carried out in (a) and (b) is preferably as given above.


The at least one heat treatment carried out in the process according to the invention can also take place during a hot pressing or sintering-on of the glass according to the invention or the glass ceramic according to the invention.


Dental restorations, such as bridges, inlays, onlays, crowns, veneers, facets or abutments, can be prepared from the glass ceramics according to the invention and the glasses according to the invention. The invention therefore also relates to their use for the preparation of dental restorations. It is preferred that the glass ceramic or the glass is shaped into the desired dental restoration by pressing or machining.


The pressing is usually carried out at increased pressure and increased temperature. It is preferred that the pressing is carried out at a temperature of from 700 to 1200° C. It is further preferred to carry out the pressing at a pressure of from 2 to 10 bar. During pressing, the desired shape change is achieved by viscous flow of the material used. The starting glass according to the invention and in particular the glass with nuclei according to the invention, the lithium metasilicate glass ceramic according to the invention and the lithium disilicate glass ceramic according to the invention can be used for the pressing. The glasses and glass ceramics according to the invention can be used in particular in the form of blanks, e.g. solid blanks or powder green compacts, e.g. in unsintered, partly sintered or densely-sintered form.


The machining is usually carried out by material removing processes and in particular by milling and/or grinding. It is particularly preferred that the machining is carried out as part of a CAD/CAM process. The starting glass according to the invention, the glass with nuclei according to the invention, the lithium metasilicate glass ceramic according to the invention and the lithium disilicate glass ceramic according to the invention can be used for the machining. The glasses and glass ceramics according to the invention can be used in particular in the form of blanks, e.g. solid blanks or powder green compacts, e.g. in unsintered, partly sintered or densely-sintered form. The lithium metasilicate glass ceramic according to the invention and lithium disilicate glass ceramic according to the invention are preferably used for the machining. The lithium disilicate glass ceramic can also be used in a not yet fully crystallized form which was produced by heat treatment at a lower temperature. This has the advantage that an easier machining, and thus the use of simpler equipment for the machining, is possible. After the machining of such a partly crystallized material, the latter is usually subjected to a heat treatment at a higher temperature and in particular 640 to 740° C. in order to effect further crystallization of lithium disilicate.


In general, after the preparation of the dental restoration shaped as desired by pressing or machining, the latter can also in particular be heat-treated in order to convert the precursors used, such as starting glass, glass with nuclei or lithium metasilicate glass ceramic, into lithium disilicate glass ceramic or to increase the crystallization of lithium disilicate or to reduce the porosity, e.g. of a porous powder green compact used.


However, the glass ceramic according to the invention and the glass according to the invention are also suitable as coating material of e.g. ceramics and glass ceramics. The invention is therefore also directed to the use of the glass according to the invention or the glass ceramic according to the invention for coating of in particular ceramics and glass ceramics.


The invention also relates to a process for coating ceramics and glass ceramics, wherein the glass ceramic according to the invention or the glass according to the invention is applied to the ceramic or glass ceramic and is subjected to increased temperature.


This can take place in particular by sintering-on and preferably by pressing-on. With sintering-on, the glass ceramic or the glass is applied to the material to be coated, such as ceramic or glass ceramic, in the usual way, e.g. as powder, and then sintered at increased temperature. With the preferred pressing-on, the glass ceramic according to the invention or the glass according to the invention is pressed on, e.g. in the form of powder green compacts or monolithic blanks, at an increased temperature of e.g. from 700 to 1200° C., and applying pressure, e.g. 2 to 10 bar. The methods described in EP 231 773 and the press furnace disclosed there can be used in particular for this. A suitable furnace is e.g. the Programat EP 5000 from Ivoclar Vivadent AG, Liechtenstein.


It is preferred that, after conclusion of the coating process, the glass ceramic according to the invention is present with lithium disilicate as main crystal phase, as it has particularly good properties.


Because of the above-described properties of the glass ceramic according to the invention and the glass according to the invention as its precursor, these are suitable in particular for use in dentistry. A subject of the invention is therefore also the use of the glass ceramic according to the invention or the glass according to the invention as a dental material and in particular for the preparation of dental restorations or as a coating material for dental restorations, such as crowns, bridges and abutments.


Finally, the glasses and glass ceramics according to the invention can also be mixed together with other glasses and glass ceramics in order to produce dental materials with properties adjusted as desired. Compositions and in particular dental materials which comprise the glass according to the invention or the glass ceramic according to the invention in combination with at least one other glass and/or one other glass ceramic therefore represent a further subject of the invention. The glass according to the invention or the glass ceramic according to the invention can therefore be used in particular as main component of an inorganic-inorganic composite or in combination with a plurality of other glasses and/or glass ceramics, wherein the composites or combinations can be used in particular as dental materials. The combinations or composites can particularly preferably be present in the form of sintered blanks. Examples of other glasses and glass ceramics for the preparation of inorganic-inorganic composites and of combinations are disclosed in DE 43 14 817, DE 44 23 793, DE 44 23 794, DE 44 28 839, DE 196 47 739, DE 197 25 553, DE 197 25 555, DE 100 31 431 and DE 10 2007 011 337. These glasses and glass ceramics belong to the group of silicates, borates, phosphates or aluminosilicates. Preferred glasses and glass ceramics are of SiO2—Al2O3—K2O type (with cubic or tetragonal leucite crystals), SiO2—B2O3—Na2O type, alkali-silicate type, alkali-zinc-silicate type, silicophosphate type, SiO2—ZrO2 type and/or lithium-aluminosilicate type (with spodumene crystals). By mixing such glasses or glass ceramics with the glasses and/or glass ceramics according to the invention, for example the coefficient of thermal expansion can be adjusted as desired in a broad range of from 6 to 20·10−6 K−1.


The invention is explained in more detail below by means of examples.







EXAMPLES
Examples 1 to 14
Composition and Crystal Phases

A total of 14 glasses and glass ceramics according to the invention with the composition given in Table I were prepared by melting corresponding starting glasses followed by heat treatment for controlled nucleation and crystallization.


For this, the starting glasses weighing from 100 to 200 g were first melted from customary raw materials at 1400 to 1500° C., wherein the melting was very easily possible without formation of bubbles or streaks. By pouring the starting glasses into water, glass frits were prepared which were then melted a second time at 1450 to 1550° C. for 1 to 3 h for homogenization.


In the case of Examples 1 to 6 and 8 to 14, the obtained glass melts were then poured into preheated moulds in order to produce glass monoliths.


In the case of Example 7, the obtained glass melt was cooled to 1400° C. and converted to a fine-particle granular material by pouring into water. The granular material was dried and ground to a powder with a particle size of <90 μm. This powder was moistened with some water and pressed to form a powder green compact at a pressing pressure of 20 MPa.


The glass monoliths (Examples 1-6 and 8-14) as well as the powder green compact (Example 7) were then converted by thermal treatment to glasses and glass ceramics according to the invention. The thermal treatments used for controlled nucleation and controlled crystallization are also given in Table I. The following meanings apply

    • TN and tN temperature and time used for nucleation
    • TC and tC temperature and time used for crystallization of lithium disilicate or lithium metasilicate
    • LS lithium metasilicate


It can be seen that a first heat treatment in the range of from 480 to 520° C. resulted in the formation of lithium silicate glasses with nuclei and these glasses crystallized due to a further heat treatment already at 640 to 740° C. to glass ceramics with lithium disilicate or lithium metasilicate as main crystal phase, as was established by X-ray diffraction tests.


The produced lithium silicate glass ceramics were able to be very satisfactorily machined into the form of various dental restorations, in a CAD/CAM process or by hot pressing, which restorations were also provided with a veneer if required.


They were also able to be applied by hot pressing as coatings onto in particular dental restorations, e.g. in order to veneer the latter as desired.


Example 15
Processing Via Powder Green Compacts

The glass ceramics according to Examples 1 and 11 were ground to powders with an average particle size of <90 μm.


In a first variant, the obtained powders were pressed with or without pressing auxiliaries to powder green compacts and the latter were partly or densely sintered at temperatures of from 800 to 1100° C. and then further processed by machining or by hot pressing to form dental restorations.


In a second variant, the obtained powders were pressed with or without pressing auxiliaries to powder green compacts and the latter were then further processed by machining or by hot pressing to form dental restorations. In particular, the dental restorations obtained after the machining were then densely sintered at temperatures of from 900 to 1100° C.


With both variants, in particular crowns, caps, partial crowns and inlays as well as coatings on dental ceramics and dental glass ceramics were prepared.


Example 16
Hot Pressing of Glass with Nuclei

A glass with the composition according to Example 7 was prepared by mixing corresponding raw materials in the form of oxides and carbonates for 30 min in a Turbula mixer and then melting the mixture at 1450° C. for 120 min in a platinum crucible. The melt was poured into water in order to obtain a fine-particle granular glass material. This granular glass material was melted again at 1530° C. for 150 min in order to obtain a glass melt with particularly high homogeneity. The temperature was reduced to 1500° C. for 30 min and cylindrical glass blanks with a diameter of 12.5 mm were then poured into pre-heated, separable steel moulds or graphite moulds. The obtained glass cylinders were then nucleated at 500° C. and stress-relieved.


The nucleated glass cylinders were then processed by hot pressing at a pressing temperature of 970° C. and a pressing time of 6 min using an EP600 press furnace, Ivoclar Vivadent AG, to form dental restorations, such as inlays, onlays, veneers, partial crowns, crowns, laminating materials and laminates. In each case, lithium disilicate was detected as main crystal phase.











TABLE I









Example















1
2
3
4
5
6
7


Composition
wt.-%
wt.-%
wt.-%
wt.-%
wt.-%
wt.-%
wt.-%





SiO2
73.8
69.4
76.4
73.7
73.8
78.4
78.1


Li2O
15.3
19.7
12.7
15.3
15.3
16.3
16.3


P2O5
3.4
3.4
3.4
7.0
0.5
3.3



Al2O3









ZrO2
3.5
3.5
3.5
2.0
5.2




TiO2
4.0
4.0
4.0
2.0
5.2

5.6


CeO2





2.0



GeO2









SnO2









Rb2O


Cs2O









CaO









Ag2O









Pd









Au









SiO2/Li2O molar ratio
2.39
1.75
3.00
2.39
2.39
2.39
2.39


Optical properties
opaque
transparent
transparent
transparent
transparent
transparent
transparent


(after pouring)
glass


Tg/° C.
489
482
495
479
503
483
483


TN/° C.
510
500
510
500
520
500
500


tN/min.
10
10
10
10
10
10
10


TC/° C.
680
700
700
740
680
650
680


tC/min.
20
20
20
20
20
20
40


Main crystal phaseRT-XRD
lithium
lithium
lithium
lithium
lithium
lithium
lithium



disilicate
disilicate
disilicate
disilicate
disilicate
disilicate
metasilicate


Other crystal phases
Li2SiO3,
Li2SiO3,
Li3PO4
Li2SiO3,
LS





cristobalite
Li3PO4

Li3PO4












Example















8
9
10
11
12
13
14


Composition
wt.-%
wt.-%
wt.-%
wt.-%
wt.-%
wt.-%
wt.-%





SiO2
75.75
75.75
58.8
72.8
78.4
70.2
73.9


Li2O
15.8
15.8
15.3
15.1
16.3
14.5
15.3


P2O5


3.4
3.6
3.3
3.2
3.3


Al2O3
3.0
3.0
3.0


2.9



ZrO2
5.4
5.4

2.5

5.0



TiO2






3.0


CeO2








GeO2


15.0





SnO2




2.0



Rb2O



2.0

4.3



Cs2O


4.5



4.5


CaO



3.8





Ag2O



0.2





Pd
0.05








Au

0.05







SiO2/Li2O molar ratio
2.39
2.39
1.94
2.40
2.40
2.40
2.40


Optical properties
transparent
opaque
transparent
transparent
opaque
transparent
transparent


(after pouring)

glass


glass


Tg/° C.
489
486
459
462
472
485
479


TN/° C.
510
510
480
490
490
500
500


tN/min.
10
10
10
10
10
10
10


TC/° C.
620
620
640
700
640
700
700


tC/min.
30
30
30
20
20
20
20


Main crystal phase
lithium
lithium
lithium
lithium
lithium
lithium
lithium



metasilicate
metasilicate
metasilicate
disilicate
disilicate
disilicate
disilicate


Other crystal phases



Li3PO4
Li3PO4
Li3PO4
Li3PO4








Claims
  • 1. Lithium silicate glass ceramic which comprises a tetravalent metal oxide selected from ZrO2, TiO2, CeO2, GeO2, SnO2 and mixtures thereof,67.0 to 79.0 wt.-% SiO2,at least 12.1 wt.-% Li2O,0 to 6.0 wt.-% Al2O3,less than 0.1 wt.-% La2O3,less than 1.0 wt.-% K2O andless than 2.0 wt.-% Na2O,andwhich has lithium metasilicate as a main crystal phase and has more than 5 vol.-%, lithium metasilicate crystals.
  • 2. Glass ceramic according to claim 1, wherein lithium silicate glass ceramic is excluded which comprises at least 6.1 wt.-% ZrO2.
  • 3. Glass ceramic according to claim 1, wherein glass ceramic is excluded which comprises at least 8.5 wt.-% transition metal oxide selected from the group consisting of oxides of yttrium, oxides of transition metals with an atomic number from 41 to 79 and mixtures of these oxides.
  • 4. Glass ceramic according to claim 1, which comprises less than 0.5 wt.-% K2O.
  • 5. Glass ceramic according to claim 1, which comprises less than 1.0 wt.-% Na2O.
  • 6. Glass ceramic according to claim 1, which is substantially free from La2O3.
  • 7. Glass ceramic according to claim 1, which comprises the tetravalent metal oxide or mixtures thereof in an amount of from 0.1 to 15 wt.-%.
  • 8. Glass ceramic according to claim 1, which comprises 12.5 to 20.0 wt.-% Li2O.
  • 9. Glass ceramic according to claims 1, which comprises 0 to 10.0 wt.-% P2O5.
  • 10. Glass ceramic according to claims 1, which comprises at least one of the following components:
  • 11. Lithium silicate glass ceramic according to claims 1, which comprises SiO2 and Li2 O in a molar ratio of from 1.7 to 3.1.
  • 12. Glass ceramic according to claim 1 , wherein the glass ceramic is present in the form of a powder, a granular material, a blank or a dental restoration.
  • 13. Process for the preparation of the glass ceramic according to claim 1, wherein a starting glass with nuclei or a glass ceramic with lithium metasilicate as main crystal phase is subjected to at least one heat treatment in the range of from 450 to 950° C,.
  • 14. Process of using a glass ceramic which comprises tetravalent metal oxide selected from ZrO2, TiO2, CeO2, GeO2, SnO2 and mixtures thereof,67.0 to 79.0 wt.-% SiO2,at least 12.1 wt.-% Li2O,less than 0.1 wt.-% La2O3,less than 1.0 wt.-% K2O andless than 2.0 wt.-% Na2O, andwhich has lithium metasilicate as a main crystal phase and has more than 5 vol.-% lithium metasilicate crystals,as dental material for the preparation of dental restorations.
  • 15. Process for the preparation of a lithium silicate glass ceramic which comprises tetravalent metal oxide selected from ZrO2, TiO2, CeO2, GeO2, SnO2 and mixtures thereof,at least 12.1 wt. -% Li2° ,less than 0.1 wt.-% La2O3,less than 1.0 wt.-% K2O andless than 2.0 wt.-% Na2O,wherein(a) a starting glass which comprises the components of the glass ceramic is subjected to a heat treatment at a temperature of from 480 to 520° C. for a period of from 10 min to 120 min in order to form a glass with nuclei which are suitable for forming lithium disilicate crystals, and(b)the glass with nuclei is subjected to a heat treatment at a temperature of from 640 to 740° C. in order to form a glass ceramic with lithium disilicate as main crystal phase.
  • 16. Process for the preparation of a lithium silicate glass ceramic according to claim 15, which has lithium disilicate as a main crystal phase and a fracture toughness, measured as KIC value, of at least 1.9 MPa·m0.5.
  • 17. Process of preparing dental restorations according to claim 14, wherein the glass ceramic is shaped by pressing or machining to the desired dental restoration.
  • 18. Process for the preparation of a lithium silicate glass ceramic according to claim 15, which has lithium disilicate as a main crystal phase and has more than 10 vol.-% lithium disilicate crystals.
Priority Claims (1)
Number Date Country Kind
11185338 Oct 2011 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2012/070222 10/11/2012 WO 00
Publishing Document Publishing Date Country Kind
WO2013/053866 4/18/2013 WO A
US Referenced Citations (104)
Number Name Date Kind
2684911 Stookey Jul 1954 A
2971853 Stookey Feb 1961 A
3006775 Chen Oct 1961 A
3022180 Morrissey et al. Feb 1962 A
3161528 Eppler Dec 1964 A
3252778 Goodman et al. May 1966 A
3804608 Gaskell et al. Apr 1974 A
3816704 Borom et al. Jun 1974 A
3977857 Mattox Aug 1976 A
4155888 Mooth May 1979 A
4189325 Barrett et al. Feb 1980 A
4414282 McCollister et al. Nov 1983 A
4473653 Rudoi Sep 1984 A
4480044 McAlinn Oct 1984 A
4515634 Wu May 1985 A
4671770 Bell et al. Jun 1987 A
4963707 Zyokou et al. Oct 1990 A
4977114 Horinouchi et al. Dec 1990 A
5176961 Crooker et al. Jan 1993 A
5219799 Beall et al. Jun 1993 A
5432130 Rheinberger et al. Jul 1995 A
5507981 Petticrew et al. Apr 1996 A
5618763 Frank et al. Apr 1997 A
5628564 Nenyei et al. May 1997 A
5691256 Taguchi et al. Nov 1997 A
5698019 Frank et al. Dec 1997 A
5698482 Frank et al. Dec 1997 A
5702514 Petticrew Dec 1997 A
5707777 Aoai et al. Jan 1998 A
5872069 Abe Feb 1999 A
5874376 Taguchi et al. Feb 1999 A
5925180 Frank et al. Jul 1999 A
5938959 Wang Aug 1999 A
5968856 Schweiger et al. Oct 1999 A
6048589 Suzuki Apr 2000 A
6066584 Krell et al. May 2000 A
6095682 Hollander et al. Aug 2000 A
6106747 Wohlwend Aug 2000 A
6121175 Drescher et al. Sep 2000 A
6157004 Bizzio Dec 2000 A
6163020 Bartusch et al. Dec 2000 A
6174827 Goto et al. Jan 2001 B1
6252202 Zychek Jun 2001 B1
6267595 Gratz Jul 2001 B1
6270876 Abe et al. Aug 2001 B1
6287121 Guiot et al. Sep 2001 B1
6342458 Schweiger et al. Jan 2002 B1
6376397 Petticrew Apr 2002 B1
6420288 Cramer von Clausbruch et al. Jul 2002 B2
6441346 Zychek Aug 2002 B1
6455451 Brodkin Sep 2002 B1
6485849 Petticrew Nov 2002 B2
6514893 Schweiger et al. Feb 2003 B1
6517623 Brodkin et al. Feb 2003 B1
6593257 Nagata et al. Jul 2003 B1
6802894 Brodkin et al. Oct 2004 B2
6818573 Petticrew Nov 2004 B2
7162321 Luthardt et al. Jan 2007 B2
7316740 Schweiger Jan 2008 B2
7452836 Apel et al. Nov 2008 B2
7655586 Brodkin et al. Feb 2010 B1
7806694 Brodkin et al. Oct 2010 B2
7816291 Schweiger et al. Oct 2010 B2
7867930 Apel et al. Jan 2011 B2
7867933 Apel et al. Jan 2011 B2
7871948 Apel et al. Jan 2011 B2
7892995 Castillo Feb 2011 B2
7993137 Apel et al. Aug 2011 B2
8042358 Schweiger et al. Oct 2011 B2
8047021 Schweiger et al. Nov 2011 B2
8444756 Schweiger et al. May 2013 B2
20010006174 Brennan Jul 2001 A1
20010031446 Petticrew Oct 2001 A1
20020009600 Peng et al. Jan 2002 A1
20020010063 Schweiger et al. Jan 2002 A1
20020022563 Schweiger et al. Feb 2002 A1
20020031670 Goto et al. Mar 2002 A1
20020035025 Schweiger et al. Mar 2002 A1
20020160694 Wood et al. Oct 2002 A1
20030198838 Petticrew Oct 2003 A1
20040182538 Lambrecht Sep 2004 A1
20050098064 Schweiger et al. May 2005 A1
20050127544 Brodkin et al. Jun 2005 A1
20060082033 Hauptmann et al. Apr 2006 A1
20060257823 Pfeiffer et al. Nov 2006 A1
20060257824 Pfeiffer et al. Nov 2006 A1
20070023971 Saha et al. Feb 2007 A1
20070042889 Apel et al. Feb 2007 A1
20080120994 Schweiger et al. May 2008 A1
20080199823 Miller Aug 2008 A1
20090023574 Holand et al. Jan 2009 A1
20090038344 Apel et al. Feb 2009 A1
20090038508 Apel et al. Feb 2009 A1
20090042166 Craig et al. Feb 2009 A1
20090256274 Castillo Oct 2009 A1
20090258778 Castillo Oct 2009 A1
20100083706 Castillo Apr 2010 A1
20110030423 Johannes et al. Feb 2011 A1
20110256409 Ritzberger et al. Oct 2011 A1
20120094822 Castillo et al. Apr 2012 A1
20120148988 Castillo et al. Jun 2012 A1
20120248642 Ritzberger et al. Oct 2012 A1
20120309607 Durschang et al. Dec 2012 A1
20140141960 Borczuch-Laczka et al. May 2014 A1
Foreign Referenced Citations (38)
Number Date Country
2163792 Dec 1994 CA
2213390 Mar 1998 CA
2239865 Dec 1998 CA
2239869 Dec 1998 CA
2252660 May 1999 CA
2351154 Dec 2001 CA
2451121 May 1975 DE
4303458 Jan 1994 DE
4314817 Nov 1994 DE
4423793 Feb 1996 DE
4423794 Feb 1996 DE
4428839 Feb 1996 DE
19647739 Mar 1998 DE
19725553 Dec 1998 DE
19725555 Dec 1998 DE
10031431 Jan 2002 DE
102007011337 Sep 2008 DE
231773 Aug 1987 EP
0626353 Nov 1994 EP
690031 Jan 1996 EP
0827941 Mar 1998 EP
0916625 May 1999 EP
1152641 Nov 2001 EP
1505041 Feb 2005 EP
1688398 Aug 2006 EP
2298228 Mar 2011 EP
752243 Jul 1956 GB
1495022 Dec 1977 GB
2284655 Jun 1995 GB
02196048 Aug 1990 JP
H10323354 Dec 1998 JP
1174418 Mar 1999 JP
2001019485 Jan 2001 JP
2005-062832 Mar 2005 JP
2007028787 Mar 2007 WO
2008106958 Sep 2008 WO
2009126317 Oct 2009 WO
2011076422 Jun 2011 WO
Non-Patent Literature Citations (17)
Entry
Jakovac, M., et al., Measurement of ion elution from dental ceramics, Journal of the European Ceramic Society, May 6, 2006, vol. 26, pp. 1695-1700.
Apel, E., et al., “Influence of Zr02 on the crystallization and properties of lithium disilicate glass-ceramics derived from multi-component system”, Journal of European Ceramic Society, 2007, 27, 1571-1577.
Durschang, Dr. Bernhard, “Report of Results, Fraunhofer Institute for Silicate Research ISC Glass and Mineral Materials”, 2015.
McMillan, P.W., et al., “The Structure and Properties of a Lithium Zinc Silicate Glass-Ceramic”, Journal of Material Science 1966, I. 269-279.
Deubener, J., et al., “Induction time analysis of nucleation and crystal grown in di- and metasilicate glasses”, Journal of Non-Crystalline Solids 1993, 163, 1-12.
Holand, W., et al., “Glass-ceramic technology”, American Chemical Society 2002, Westerville OH, USA.
Holand, W., et al., “Control of nucleation in glass ceramics”, Phil. Trans. Soc. Lond. A 2003, 361, 575-589.
Holand, W., et al., “Principles and phenomena of bioengineering with glass-ceramics of dental restoration”, Journal of the European Ceramics Society 2007, 27, 1571-1577.
Ivoclar Vivadent, Inc., IPS e.max lithium disilicate, 627329, Rev. Feb. 2009.
Borom, M.P., et al., “Strength and Microstructure in Lithium Disilicate Glass Ceramics”, J. Am. Ceram. Soc., 1975,58, 385-391.
Stookey, S.D., “Chemical Machining of Photosensitive Glass,” Ind. Eng. Chem. 45:115-118 (1993).
Von Clausbruch, et al., “Effect of ZnO on the Crystallization, Microstructure, and Properties of Glass-Ceramics in the SiO2—Li2O—K2O—P2O5 System,” Glastech. Ber. Glass Sci. Technol. 74(8)223-229(2001).
Von Clausbruch, et al., “Effect of P2O5 on the Crystallization and Microstructure of Glass-Ceramics in the SiO2—Li2O—Zn)-P2O5 System,” Glastech. Ber. Glass Sci. Technol. 74(8):223-229(2001).
Oliveria et al., “Sintering and Crystallization of a GlassPowder in the Li2O—ZrO2—SiO2 System,” J. Amer. Ceramic Soc. 81(3):777-780 (1998).
Giassi, et al., “Injection Moulding of LiO2—ZrO2—SiO2—A12O3 (LZSA) Glass Ceramics,” Glass Technol., 46(3), 277-280 (2005).
http://en.wikipedia.org/wiki/Nucleation ; Sep. 20, 2012.
Montedo, et al., “Low Thermal Expansion Sintered LZSA Glass Ceramics,” American Ceramic Society Bulletin, vol. 87, No. 7, pp. 34-40. Jul. 2008.
Related Publications (1)
Number Date Country
20140223965 A1 Aug 2014 US