This application is a National Stage of International patent application PCT/EP2012/070222, filed on Oct. 11, 2012, which claims priority to European patent application No. 11185338.8 filed on Oct. 14, 2011, the disclosures of which are incorporated herein by reference in their entirety.
The invention relates to lithium silicate glass ceramic and glass which contain tetravalent metal oxide selected from ZrO2, TiO2, CeO2, GeO2, SnO2 and mixtures thereof and are particularly suitable for use in dentistry, preferably for the preparation of dental restorations.
Lithium silicate glass ceramics are characterized as a rule by very good mechanical properties, which is why they have been used for a long time in the dental field and there primarily for the preparation of dental crowns and small bridges. The known lithium silicate glass ceramics usually contain as main components SiO2, Li2O, Na2O or K2O, and nucleating agents such as P2O5 as well as additional components such as e.g. La2O3.
DE 24 51 121 describes lithium disilicate glass ceramics which contain K2O. They are prepared from corresponding nuclei-containing starting glasses which are heated to temperatures of from 850 to 870° C. for the crystallization of lithium disilicate. The purpose for which the glass ceramics are used is not disclosed.
EP 827 941 describes sinterable lithium disilicate glass ceramics for dental purposes, which also contain K2O or Na2O in addition to La2O3. The lithium disilicate crystal phase is produced at a temperature of 850° C.
Lithium disilicate glass ceramics which likewise contain La2O3 as well as K2O are known from EP 916 625. A heat treatment is carried out at 870° C. for the formation of lithium disilicate.
EP 1 505 041 describes lithium silicate glass ceramics containing K2O, which, when lithium metasilicate is present as main crystal phase, can be very satisfactorily machined e.g. by means of CAD/CAM processes, in order to then be converted by further heat treatment at temperatures of from 830 to 850° C. into high-strength lithium disilicate glass ceramics.
EP 1 688 398 describes similar K2O-containing lithium silicate glass ceramics which are moreover substantially free from ZnO. A heat treatment at 830 to 880° C. is applied to them to produce lithium disilicate.
U.S. Pat. No. 5,507,981 describes processes for producing dental restorations and glass ceramics that can be used in these processes. These are in particular lithium disilicate glass ceramics with a low level of Li2O which contain as a rule either Na2O or K2O.
U.S. Pat. No. 6,455,451 relates to lithium disilicate glass ceramics which also contain K2O in addition to Li2O. However, the production of the desired lithium disilicate crystal phase requires high temperatures of from 800 to 1000° C.
WO 2008/106958 discloses lithium disilicate glass ceramics for veneering zirconium oxide ceramics. The glass ceramics contain Na2O and are produced by heat treatment of nuclei-containing glasses at 800 to 940° C.
WO 2009/126317 describes GeO2-containing lithium metasilicate glass ceramics which contain K2O and small quantities of SiO2. The glass ceramics are processed to form dental products primarily using machining.
WO 2011/076422 relates to lithium disilicate glass ceramics which also contain K2O in addition to high levels of ZrO2 or HfO2. The crystallization of lithium disilicate takes place at high temperatures of from 800 to 1040° C.
Common to the known lithium disilicate glass ceramics is that they require heat treatments at more than 800° C. in order to effect the precipitation of lithium disilicate as main crystal phase. A large quantity of energy is therefore also necessary for their production. Further, with the known glass ceramics the alkali metal oxides, such as in particular K2O or Na2O, as well as La2O3, are as a rule present as essential components which are clearly required for the production of glass ceramics with the sought properties and in particular the formation of the sought lithium disilicate main crystal phase.
There is therefore a need for lithium silicate glass ceramics during the preparation of which the crystallization of lithium disilicate can be effected at lower temperatures. Further, they should also be able to be prepared without the alkali metal oxides, such as K2O or Na2O, as well as La2O3, previously regarded as necessary, and be suitable in particular for the preparation of dental restorations primarily in view of their optical and mechanical properties.
This object is achieved by the lithium silicate glass ceramic according to the attached claims. Also subjects of the invention are the starting glass , the lithium silicate glass with nuclei , the process for the preparation of the glassceramic and the lithium silicate glass with nuclei according to the attached claims.
The lithium silicate glass ceramic according to the invention is characterized in that it comprises
It is preferred that the glass ceramic comprises the tetravalent metal oxide or mixtures thereof in an amount of from 0.1 to 15, in particular 2.0 to 15.0, particularly preferred 2.0 to 11.0 and even more preferred 2.0 to 8.0 wt.-%.
It is particularly surprising that the formation of the glass ceramic according to the invention with lithium disilicate as main crystal phase is also achieved in the absence of various components regarded as necessary for conventional glass ceramics, such as alkali metal oxides, in particular K2O, Na2O and La2O3, even at very low and thus advantageous crystallization temperatures of in particular from 640 to 740° C. The glass ceramic also has a combination of optical and mechanical properties as well as processing properties that are very advantageous for the use as dental material.
The glass ceramic according to the invention accordingly preferably comprises less than 0.5 and in particular less than 0.1 wt.-% K2O. It is particularly preferably substantially free from K2O.
A glass ceramic is also preferred which comprises less than 1.0, in particular less than 0.5 and preferably less than 0.1 wt.-% Na2O and particularly preferred is substantially free from Na2O.
Moreover, a glass ceramic which is substantially free from La2O2 is preferred.
A glass ceramic, excluding lithium silicate glass ceramic which comprises at least 6.1 wt.-% ZrO2, is also preferred.
Further, a glass ceramic, excluding lithium silicate glass ceramic which comprises at least 8.5 wt.-% transition metal oxide selected from the group consisting of oxides of yttrium, oxides of transition metals with an atomic number from 41 to 79 and mixtures of these oxides, is also preferred.
The glass ceramic according to the invention preferably comprises 55.0 to 82.0, in particular 58.0 to 80.0, preferably 60.0 to 80.0 and particularly preferred 67.0 to 79.0 wt.-% SiO2.
It is also preferred that the glass ceramic comprises 12.5 to 20.0 and in particular 15.0 to 17.0 wt.-% Li2O.
It is further preferred that the molar ratio between SiO2 and Li2O is from 1.7 to 3.1, in particular 1.75 to 3.0. It is very surprising that the production of lithium disilicate is achieved within this broad range. Specifically at ratios of less than 2.0 conventional materials usually form lithium metasilicate instead of lithium disilicate.
In a further preferred embodiment the molar ratio between SiO2 and Li2O is at least 2.2, in particular 2.3 to 2.5, and preferably about 2.4, as a glass ceramic with particularly high strength is thus obtained.
The glass ceramic according to the invention can also comprise a nucleating agent. P2O5 is particularly preferably used for this. The glass ceramic preferably comprises 0 to 10.0, in particular 0.5 to 9.0 and preferably 2.5 to 7.5 wt.-% P2O5. However, metals in amounts of in particular from 0.005 to 0.5 wt.-%, such as in particular Ag, Au, Pt and Pd, can also be used as nucleating agents.
In a further preferred embodiment, the glass ceramic comprises at least one and preferably all of the following components:
The glass ceramic according to the invention can moreover also comprise additional components which are selected in particular from oxides of divalent elements, oxides of trivalent elements, further oxides of pentavalent elements, oxides of hexavalent elements, melt accelerators, colourants and fluorescent agents.
Suitable oxides of divalent elements are in particular MgO, CaO, SrO, BaO and ZnO and preferably CaO.
Suitable oxides of trivalent elements are in particular Al2O3, Y2O3 and Bi2O3 and mixtures thereof, and preferably Al2O3, already mentioned above as a component.
The term “further oxides of pentavalent elements” refers to oxides of pentavalent elements with the exception of P2O5. Examples of suitable further oxides of pentavalent elements are Ta2O5 and Nb2O5.
Examples of suitable oxides of hexavalent elements are WO3 and MoO3.
A glass ceramic which comprises at least one oxide of divalent elements, at least one oxide of trivalent elements, at least one further oxide of pentavalent elements and/or at least one oxide of hexavalent elements is preferred.
Examples of melt accelerators are fluorides.
Examples of colourants and fluorescent agents are oxides of d- and f-elements, such as the oxides of Ti, V, Sc, Mn, Fe, Co, Ta, W, Ce, Pr, Nd, Tb, Er, Dy, Gd, Eu and Yb. Metal colloids, e.g. of Ag, Au and Pd, can also be used as colourants and in addition can also act as nucleating agents. These metal colloids can be formed e.g. by reduction of corresponding oxides, chlorides or nitrates during the melting and crystallization processes. The metal colloids can be present in the glass ceramic in an amount of from 0.005 to 0.5 wt.-%.
The term “main crystal phase” used below refers to the crystal phase which has the highest proportion by volume compared with other crystal phases.
The glass ceramic according to the invention has lithium metasilicate as main crystal phase in one embodiment. In particular the glass ceramic comprises more than 5 vol.-%, preferably more than 10 vol.-% and particularly preferred more than 15 vol.-% lithium metasilicate crystals, relative to the total glass ceramic.
In a further particularly preferred embodiment, the glass ceramic has lithium disilicate as main crystal phase. In particular the glass ceramic comprises more than 10 vol.-%, preferably more than 20 vol.-% and particularly preferred more than 30 vol.-% lithium disilicate crystals, relative to the total glass ceramic.
The lithium disilicate glass ceramic according to the invention is characterized by particularly good mechanical properties and can be produced e.g. by heat treatment of the lithium metasilicate glass ceramic according to the invention. However, it can be formed in particular by heat treatment of a corresponding starting glass or of a corresponding lithium silicate glass with nuclei.
It has surprisingly been shown that the lithium disilicate glass ceramic according to the invention has very good mechanical and optical properties and processing properties even in the absence of components regarded as essential for conventional glass ceramics. The combination of its properties even allows it to be used as dental material and in particular material for the preparation of dental restorations.
The lithium disilicate glass ceramic according to the invention has in particular a fracture toughness, measured as KIC value, of at least 1.8 MPa·m0.5 and in particular more than about 2.0 MPa·m0.5. This value was determined using the Vickers method and calculated using Niihara's equation.
The invention also relates to a lithium silicate glass with nuclei that are suitable for forming lithium metasilicate and/or lithium disilicate crystals, wherein the glass comprises the components of the above-described glass ceramics according to the invention. Thus this glass is characterized in that it comprises
In respect of preferred embodiments of this glass reference is made to the preferred embodiments described above of the glass ceramics according to the invention.
The glass with nuclei according to the invention can be produced by heat treatment of a correspondingly composed starting glass according to the invention. The lithium metasilicate glass ceramic according to the invention can then be formed by a further heat treatment, and in turn be converted into the lithium disilicate glass ceramic according to the invention by further heat treatment, or the lithium disilicate glass ceramic according to the invention can also preferably be formed directly from the glass with nuclei. The starting glass, the glass with nuclei and the lithium metasilicate glass ceramic can consequently be regarded as precursors to the production of the high-strength lithium disilicate glass ceramic.
The glass ceramics according to the invention and the glasses according to the invention are present in particular in the form of powders, granular material or blanks, e.g. monolithic blanks, such as platelets, cuboids or cylinders, or powder green compacts, in unsintered, partly sintered or densely-sintered form. They can easily be further processed in these forms. They can, however, also be present in the form of dental restorations, such as inlays, onlays, crowns, veneers, facets or abutments.
The invention also relates to a process for the preparation of the glass ceramic according to the invention and the glass with nuclei according to the invention, wherein a correspondingly composed starting glass, the glass with nuclei according to the invention or the lithium metasilicate glass ceramic according to the invention is subjected to at least one heat treatment in the range of from 450 to 950° C., in particular 450 to 750 and preferably 480 to 740° C.
The starting glass according to the invention is therefore characterized in that it comprises
In addition, it preferably also comprises suitable amounts of SiO2 and Li2O, in order to allow the formation of a lithium silicate glass ceramic, and in particular a lithium disilicate glass ceramic. Further, the starting glass can also comprise still further components, such as are given above for the lithium silicate glass ceramic according to the invention. All those embodiments are preferred for the starting glass which are also given as preferred for the glass ceramic.
With the process according to the invention, the glass with nuclei is usually prepared by means of a heat treatment of the starting glass at a temperature of in particular from 480 to 520° C. The lithium disilicate glass ceramic according to the invention is then preferably produced from the glass with nuclei through further heat treatment at usually 600 to 750 and in particular 640 to 740° C.
Thus, much lower temperatures are used according to the invention for the crystallization of lithium disilicate than with the conventional lithium disilicate glass ceramics. The energy thus saved represents a clear advantage. Surprisingly, this low crystallization temperature is also possible in the absence of components, such as K2O and Na2O as well as La2O3, regarded as essential for conventional glass ceramics.
To prepare the starting glass, the procedure is in particular that a mixture of suitable starting materials, such as carbonates, oxides, phosphates and fluorides, is melted at temperatures of in particular from 1300 to 1600° C. for 2 to 10 h. To achieve a particularly high homogeneity, the obtained glass melt is poured into water in order to form a granular glass material, and the obtained granular material is then melted again.
The melt can then be poured into moulds to produce blanks of the starting glass, so-called solid glass blanks or monolithic blanks.
It is also possible to put the melt into water again in order to prepare a granular material. This granular material can then be pressed, after grinding and optionally addition of further components, such as colourants and fluorescent agents, to form a blank, a so-called powder green compact.
Finally, the starting glass can also be processed to form a powder after granulation.
The starting glass, e.g. in the form of a solid glass blank, a powder green compact or in the form of a powder, is then subjected to at least one heat treatment in the range of from 450 to 950° C. It is preferred that a first heat treatment is initially carried out at a temperature in the range of from 480 to 520° C. to prepare a glass according to the invention with nuclei which are suitable for forming lithium metasilicate and/or lithium disilicate crystals. This first heat treatment is preferably carried out for a period of from 10 min to 120 min and in particular 10 min to 30 min. The glass with nuclei can then preferably be subjected to at least one further temperature treatment at a higher temperature and in particular more than 570° C. to effect crystallization of lithium metasilicate or lithium disilicate. This further heat treatment is preferably carried out for a period of from 10 min to 120 min, in particular 10 min to 60 min and particularly preferably 10 min to 30 min. To crystallize lithium disilicate, the further heat treatment is usually carried out at 600 to 750 and in particular 640 to 740° C.
Therefore, in a preferred embodiment of the process
The duration of the heat treatments carried out in (a) and (b) is preferably as given above.
The at least one heat treatment carried out in the process according to the invention can also take place during a hot pressing or sintering-on of the glass according to the invention or the glass ceramic according to the invention.
Dental restorations, such as bridges, inlays, onlays, crowns, veneers, facets or abutments, can be prepared from the glass ceramics according to the invention and the glasses according to the invention. The invention therefore also relates to their use for the preparation of dental restorations. It is preferred that the glass ceramic or the glass is shaped into the desired dental restoration by pressing or machining.
The pressing is usually carried out at increased pressure and increased temperature. It is preferred that the pressing is carried out at a temperature of from 700 to 1200° C. It is further preferred to carry out the pressing at a pressure of from 2 to 10 bar. During pressing, the desired shape change is achieved by viscous flow of the material used. The starting glass according to the invention and in particular the glass with nuclei according to the invention, the lithium metasilicate glass ceramic according to the invention and the lithium disilicate glass ceramic according to the invention can be used for the pressing. The glasses and glass ceramics according to the invention can be used in particular in the form of blanks, e.g. solid blanks or powder green compacts, e.g. in unsintered, partly sintered or densely-sintered form.
The machining is usually carried out by material removing processes and in particular by milling and/or grinding. It is particularly preferred that the machining is carried out as part of a CAD/CAM process. The starting glass according to the invention, the glass with nuclei according to the invention, the lithium metasilicate glass ceramic according to the invention and the lithium disilicate glass ceramic according to the invention can be used for the machining. The glasses and glass ceramics according to the invention can be used in particular in the form of blanks, e.g. solid blanks or powder green compacts, e.g. in unsintered, partly sintered or densely-sintered form. The lithium metasilicate glass ceramic according to the invention and lithium disilicate glass ceramic according to the invention are preferably used for the machining. The lithium disilicate glass ceramic can also be used in a not yet fully crystallized form which was produced by heat treatment at a lower temperature. This has the advantage that an easier machining, and thus the use of simpler equipment for the machining, is possible. After the machining of such a partly crystallized material, the latter is usually subjected to a heat treatment at a higher temperature and in particular 640 to 740° C. in order to effect further crystallization of lithium disilicate.
In general, after the preparation of the dental restoration shaped as desired by pressing or machining, the latter can also in particular be heat-treated in order to convert the precursors used, such as starting glass, glass with nuclei or lithium metasilicate glass ceramic, into lithium disilicate glass ceramic or to increase the crystallization of lithium disilicate or to reduce the porosity, e.g. of a porous powder green compact used.
However, the glass ceramic according to the invention and the glass according to the invention are also suitable as coating material of e.g. ceramics and glass ceramics. The invention is therefore also directed to the use of the glass according to the invention or the glass ceramic according to the invention for coating of in particular ceramics and glass ceramics.
The invention also relates to a process for coating ceramics and glass ceramics, wherein the glass ceramic according to the invention or the glass according to the invention is applied to the ceramic or glass ceramic and is subjected to increased temperature.
This can take place in particular by sintering-on and preferably by pressing-on. With sintering-on, the glass ceramic or the glass is applied to the material to be coated, such as ceramic or glass ceramic, in the usual way, e.g. as powder, and then sintered at increased temperature. With the preferred pressing-on, the glass ceramic according to the invention or the glass according to the invention is pressed on, e.g. in the form of powder green compacts or monolithic blanks, at an increased temperature of e.g. from 700 to 1200° C., and applying pressure, e.g. 2 to 10 bar. The methods described in EP 231 773 and the press furnace disclosed there can be used in particular for this. A suitable furnace is e.g. the Programat EP 5000 from Ivoclar Vivadent AG, Liechtenstein.
It is preferred that, after conclusion of the coating process, the glass ceramic according to the invention is present with lithium disilicate as main crystal phase, as it has particularly good properties.
Because of the above-described properties of the glass ceramic according to the invention and the glass according to the invention as its precursor, these are suitable in particular for use in dentistry. A subject of the invention is therefore also the use of the glass ceramic according to the invention or the glass according to the invention as a dental material and in particular for the preparation of dental restorations or as a coating material for dental restorations, such as crowns, bridges and abutments.
Finally, the glasses and glass ceramics according to the invention can also be mixed together with other glasses and glass ceramics in order to produce dental materials with properties adjusted as desired. Compositions and in particular dental materials which comprise the glass according to the invention or the glass ceramic according to the invention in combination with at least one other glass and/or one other glass ceramic therefore represent a further subject of the invention. The glass according to the invention or the glass ceramic according to the invention can therefore be used in particular as main component of an inorganic-inorganic composite or in combination with a plurality of other glasses and/or glass ceramics, wherein the composites or combinations can be used in particular as dental materials. The combinations or composites can particularly preferably be present in the form of sintered blanks. Examples of other glasses and glass ceramics for the preparation of inorganic-inorganic composites and of combinations are disclosed in DE 43 14 817, DE 44 23 793, DE 44 23 794, DE 44 28 839, DE 196 47 739, DE 197 25 553, DE 197 25 555, DE 100 31 431 and DE 10 2007 011 337. These glasses and glass ceramics belong to the group of silicates, borates, phosphates or aluminosilicates. Preferred glasses and glass ceramics are of SiO2—Al2O3—K2O type (with cubic or tetragonal leucite crystals), SiO2—B2O3—Na2O type, alkali-silicate type, alkali-zinc-silicate type, silicophosphate type, SiO2—ZrO2 type and/or lithium-aluminosilicate type (with spodumene crystals). By mixing such glasses or glass ceramics with the glasses and/or glass ceramics according to the invention, for example the coefficient of thermal expansion can be adjusted as desired in a broad range of from 6 to 20·10−6 K−1.
The invention is explained in more detail below by means of examples.
A total of 14 glasses and glass ceramics according to the invention with the composition given in Table I were prepared by melting corresponding starting glasses followed by heat treatment for controlled nucleation and crystallization.
For this, the starting glasses weighing from 100 to 200 g were first melted from customary raw materials at 1400 to 1500° C., wherein the melting was very easily possible without formation of bubbles or streaks. By pouring the starting glasses into water, glass frits were prepared which were then melted a second time at 1450 to 1550° C. for 1 to 3 h for homogenization.
In the case of Examples 1 to 6 and 8 to 14, the obtained glass melts were then poured into preheated moulds in order to produce glass monoliths.
In the case of Example 7, the obtained glass melt was cooled to 1400° C. and converted to a fine-particle granular material by pouring into water. The granular material was dried and ground to a powder with a particle size of <90 μm. This powder was moistened with some water and pressed to form a powder green compact at a pressing pressure of 20 MPa.
The glass monoliths (Examples 1-6 and 8-14) as well as the powder green compact (Example 7) were then converted by thermal treatment to glasses and glass ceramics according to the invention. The thermal treatments used for controlled nucleation and controlled crystallization are also given in Table I. The following meanings apply
It can be seen that a first heat treatment in the range of from 480 to 520° C. resulted in the formation of lithium silicate glasses with nuclei and these glasses crystallized due to a further heat treatment already at 640 to 740° C. to glass ceramics with lithium disilicate or lithium metasilicate as main crystal phase, as was established by X-ray diffraction tests.
The produced lithium silicate glass ceramics were able to be very satisfactorily machined into the form of various dental restorations, in a CAD/CAM process or by hot pressing, which restorations were also provided with a veneer if required.
They were also able to be applied by hot pressing as coatings onto in particular dental restorations, e.g. in order to veneer the latter as desired.
The glass ceramics according to Examples 1 and 11 were ground to powders with an average particle size of <90 μm.
In a first variant, the obtained powders were pressed with or without pressing auxiliaries to powder green compacts and the latter were partly or densely sintered at temperatures of from 800 to 1100° C. and then further processed by machining or by hot pressing to form dental restorations.
In a second variant, the obtained powders were pressed with or without pressing auxiliaries to powder green compacts and the latter were then further processed by machining or by hot pressing to form dental restorations. In particular, the dental restorations obtained after the machining were then densely sintered at temperatures of from 900 to 1100° C.
With both variants, in particular crowns, caps, partial crowns and inlays as well as coatings on dental ceramics and dental glass ceramics were prepared.
A glass with the composition according to Example 7 was prepared by mixing corresponding raw materials in the form of oxides and carbonates for 30 min in a Turbula mixer and then melting the mixture at 1450° C. for 120 min in a platinum crucible. The melt was poured into water in order to obtain a fine-particle granular glass material. This granular glass material was melted again at 1530° C. for 150 min in order to obtain a glass melt with particularly high homogeneity. The temperature was reduced to 1500° C. for 30 min and cylindrical glass blanks with a diameter of 12.5 mm were then poured into pre-heated, separable steel moulds or graphite moulds. The obtained glass cylinders were then nucleated at 500° C. and stress-relieved.
The nucleated glass cylinders were then processed by hot pressing at a pressing temperature of 970° C. and a pressing time of 6 min using an EP600 press furnace, Ivoclar Vivadent AG, to form dental restorations, such as inlays, onlays, veneers, partial crowns, crowns, laminating materials and laminates. In each case, lithium disilicate was detected as main crystal phase.
Number | Date | Country | Kind |
---|---|---|---|
11185338 | Oct 2011 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2012/070222 | 10/11/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/053866 | 4/18/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2684911 | Stookey | Jul 1954 | A |
2971853 | Stookey | Feb 1961 | A |
3006775 | Chen | Oct 1961 | A |
3022180 | Morrissey et al. | Feb 1962 | A |
3161528 | Eppler | Dec 1964 | A |
3252778 | Goodman et al. | May 1966 | A |
3804608 | Gaskell et al. | Apr 1974 | A |
3816704 | Borom et al. | Jun 1974 | A |
3977857 | Mattox | Aug 1976 | A |
4155888 | Mooth | May 1979 | A |
4189325 | Barrett et al. | Feb 1980 | A |
4414282 | McCollister et al. | Nov 1983 | A |
4473653 | Rudoi | Sep 1984 | A |
4480044 | McAlinn | Oct 1984 | A |
4515634 | Wu | May 1985 | A |
4671770 | Bell et al. | Jun 1987 | A |
4963707 | Zyokou et al. | Oct 1990 | A |
4977114 | Horinouchi et al. | Dec 1990 | A |
5176961 | Crooker et al. | Jan 1993 | A |
5219799 | Beall et al. | Jun 1993 | A |
5432130 | Rheinberger et al. | Jul 1995 | A |
5507981 | Petticrew et al. | Apr 1996 | A |
5618763 | Frank et al. | Apr 1997 | A |
5628564 | Nenyei et al. | May 1997 | A |
5691256 | Taguchi et al. | Nov 1997 | A |
5698019 | Frank et al. | Dec 1997 | A |
5698482 | Frank et al. | Dec 1997 | A |
5702514 | Petticrew | Dec 1997 | A |
5707777 | Aoai et al. | Jan 1998 | A |
5872069 | Abe | Feb 1999 | A |
5874376 | Taguchi et al. | Feb 1999 | A |
5925180 | Frank et al. | Jul 1999 | A |
5938959 | Wang | Aug 1999 | A |
5968856 | Schweiger et al. | Oct 1999 | A |
6048589 | Suzuki | Apr 2000 | A |
6066584 | Krell et al. | May 2000 | A |
6095682 | Hollander et al. | Aug 2000 | A |
6106747 | Wohlwend | Aug 2000 | A |
6121175 | Drescher et al. | Sep 2000 | A |
6157004 | Bizzio | Dec 2000 | A |
6163020 | Bartusch et al. | Dec 2000 | A |
6174827 | Goto et al. | Jan 2001 | B1 |
6252202 | Zychek | Jun 2001 | B1 |
6267595 | Gratz | Jul 2001 | B1 |
6270876 | Abe et al. | Aug 2001 | B1 |
6287121 | Guiot et al. | Sep 2001 | B1 |
6342458 | Schweiger et al. | Jan 2002 | B1 |
6376397 | Petticrew | Apr 2002 | B1 |
6420288 | Cramer von Clausbruch et al. | Jul 2002 | B2 |
6441346 | Zychek | Aug 2002 | B1 |
6455451 | Brodkin | Sep 2002 | B1 |
6485849 | Petticrew | Nov 2002 | B2 |
6514893 | Schweiger et al. | Feb 2003 | B1 |
6517623 | Brodkin et al. | Feb 2003 | B1 |
6593257 | Nagata et al. | Jul 2003 | B1 |
6802894 | Brodkin et al. | Oct 2004 | B2 |
6818573 | Petticrew | Nov 2004 | B2 |
7162321 | Luthardt et al. | Jan 2007 | B2 |
7316740 | Schweiger | Jan 2008 | B2 |
7452836 | Apel et al. | Nov 2008 | B2 |
7655586 | Brodkin et al. | Feb 2010 | B1 |
7806694 | Brodkin et al. | Oct 2010 | B2 |
7816291 | Schweiger et al. | Oct 2010 | B2 |
7867930 | Apel et al. | Jan 2011 | B2 |
7867933 | Apel et al. | Jan 2011 | B2 |
7871948 | Apel et al. | Jan 2011 | B2 |
7892995 | Castillo | Feb 2011 | B2 |
7993137 | Apel et al. | Aug 2011 | B2 |
8042358 | Schweiger et al. | Oct 2011 | B2 |
8047021 | Schweiger et al. | Nov 2011 | B2 |
8444756 | Schweiger et al. | May 2013 | B2 |
20010006174 | Brennan | Jul 2001 | A1 |
20010031446 | Petticrew | Oct 2001 | A1 |
20020009600 | Peng et al. | Jan 2002 | A1 |
20020010063 | Schweiger et al. | Jan 2002 | A1 |
20020022563 | Schweiger et al. | Feb 2002 | A1 |
20020031670 | Goto et al. | Mar 2002 | A1 |
20020035025 | Schweiger et al. | Mar 2002 | A1 |
20020160694 | Wood et al. | Oct 2002 | A1 |
20030198838 | Petticrew | Oct 2003 | A1 |
20040182538 | Lambrecht | Sep 2004 | A1 |
20050098064 | Schweiger et al. | May 2005 | A1 |
20050127544 | Brodkin et al. | Jun 2005 | A1 |
20060082033 | Hauptmann et al. | Apr 2006 | A1 |
20060257823 | Pfeiffer et al. | Nov 2006 | A1 |
20060257824 | Pfeiffer et al. | Nov 2006 | A1 |
20070023971 | Saha et al. | Feb 2007 | A1 |
20070042889 | Apel et al. | Feb 2007 | A1 |
20080120994 | Schweiger et al. | May 2008 | A1 |
20080199823 | Miller | Aug 2008 | A1 |
20090023574 | Holand et al. | Jan 2009 | A1 |
20090038344 | Apel et al. | Feb 2009 | A1 |
20090038508 | Apel et al. | Feb 2009 | A1 |
20090042166 | Craig et al. | Feb 2009 | A1 |
20090256274 | Castillo | Oct 2009 | A1 |
20090258778 | Castillo | Oct 2009 | A1 |
20100083706 | Castillo | Apr 2010 | A1 |
20110030423 | Johannes et al. | Feb 2011 | A1 |
20110256409 | Ritzberger et al. | Oct 2011 | A1 |
20120094822 | Castillo et al. | Apr 2012 | A1 |
20120148988 | Castillo et al. | Jun 2012 | A1 |
20120248642 | Ritzberger et al. | Oct 2012 | A1 |
20120309607 | Durschang et al. | Dec 2012 | A1 |
20140141960 | Borczuch-Laczka et al. | May 2014 | A1 |
Number | Date | Country |
---|---|---|
2163792 | Dec 1994 | CA |
2213390 | Mar 1998 | CA |
2239865 | Dec 1998 | CA |
2239869 | Dec 1998 | CA |
2252660 | May 1999 | CA |
2351154 | Dec 2001 | CA |
2451121 | May 1975 | DE |
4303458 | Jan 1994 | DE |
4314817 | Nov 1994 | DE |
4423793 | Feb 1996 | DE |
4423794 | Feb 1996 | DE |
4428839 | Feb 1996 | DE |
19647739 | Mar 1998 | DE |
19725553 | Dec 1998 | DE |
19725555 | Dec 1998 | DE |
10031431 | Jan 2002 | DE |
102007011337 | Sep 2008 | DE |
231773 | Aug 1987 | EP |
0626353 | Nov 1994 | EP |
690031 | Jan 1996 | EP |
0827941 | Mar 1998 | EP |
0916625 | May 1999 | EP |
1152641 | Nov 2001 | EP |
1505041 | Feb 2005 | EP |
1688398 | Aug 2006 | EP |
2298228 | Mar 2011 | EP |
752243 | Jul 1956 | GB |
1495022 | Dec 1977 | GB |
2284655 | Jun 1995 | GB |
02196048 | Aug 1990 | JP |
H10323354 | Dec 1998 | JP |
1174418 | Mar 1999 | JP |
2001019485 | Jan 2001 | JP |
2005-062832 | Mar 2005 | JP |
2007028787 | Mar 2007 | WO |
2008106958 | Sep 2008 | WO |
2009126317 | Oct 2009 | WO |
2011076422 | Jun 2011 | WO |
Entry |
---|
Jakovac, M., et al., Measurement of ion elution from dental ceramics, Journal of the European Ceramic Society, May 6, 2006, vol. 26, pp. 1695-1700. |
Apel, E., et al., “Influence of Zr02 on the crystallization and properties of lithium disilicate glass-ceramics derived from multi-component system”, Journal of European Ceramic Society, 2007, 27, 1571-1577. |
Durschang, Dr. Bernhard, “Report of Results, Fraunhofer Institute for Silicate Research ISC Glass and Mineral Materials”, 2015. |
McMillan, P.W., et al., “The Structure and Properties of a Lithium Zinc Silicate Glass-Ceramic”, Journal of Material Science 1966, I. 269-279. |
Deubener, J., et al., “Induction time analysis of nucleation and crystal grown in di- and metasilicate glasses”, Journal of Non-Crystalline Solids 1993, 163, 1-12. |
Holand, W., et al., “Glass-ceramic technology”, American Chemical Society 2002, Westerville OH, USA. |
Holand, W., et al., “Control of nucleation in glass ceramics”, Phil. Trans. Soc. Lond. A 2003, 361, 575-589. |
Holand, W., et al., “Principles and phenomena of bioengineering with glass-ceramics of dental restoration”, Journal of the European Ceramics Society 2007, 27, 1571-1577. |
Ivoclar Vivadent, Inc., IPS e.max lithium disilicate, 627329, Rev. Feb. 2009. |
Borom, M.P., et al., “Strength and Microstructure in Lithium Disilicate Glass Ceramics”, J. Am. Ceram. Soc., 1975,58, 385-391. |
Stookey, S.D., “Chemical Machining of Photosensitive Glass,” Ind. Eng. Chem. 45:115-118 (1993). |
Von Clausbruch, et al., “Effect of ZnO on the Crystallization, Microstructure, and Properties of Glass-Ceramics in the SiO2—Li2O—K2O—P2O5 System,” Glastech. Ber. Glass Sci. Technol. 74(8)223-229(2001). |
Von Clausbruch, et al., “Effect of P2O5 on the Crystallization and Microstructure of Glass-Ceramics in the SiO2—Li2O—Zn)-P2O5 System,” Glastech. Ber. Glass Sci. Technol. 74(8):223-229(2001). |
Oliveria et al., “Sintering and Crystallization of a GlassPowder in the Li2O—ZrO2—SiO2 System,” J. Amer. Ceramic Soc. 81(3):777-780 (1998). |
Giassi, et al., “Injection Moulding of LiO2—ZrO2—SiO2—A12O3 (LZSA) Glass Ceramics,” Glass Technol., 46(3), 277-280 (2005). |
http://en.wikipedia.org/wiki/Nucleation ; Sep. 20, 2012. |
Montedo, et al., “Low Thermal Expansion Sintered LZSA Glass Ceramics,” American Ceramic Society Bulletin, vol. 87, No. 7, pp. 34-40. Jul. 2008. |
Number | Date | Country | |
---|---|---|---|
20140223965 A1 | Aug 2014 | US |