Lithium Titanate And Method Of Forming The Same

Abstract
A lithium titanate has the following formula:
Description

BRIEF DESCRIPTION OF THE DRAWINGS

Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:



FIG. 1 is a schematic view of a rechargeable battery including lithium-based cells;



FIG. 2 is a schematic view of a vehicle including the rechargeable battery of FIG. 2;



FIG. 3 is a lithium titanate composition-valence diagram showing a relationship between ratios of lithium to titanium in lithium titanate to a valence of titanium in the lithium titanate, with diamonds indicating spinel structures, squares indicating non-spinel structures, with filled symbols indicating lithium titanates that include intercalated lithium ions;



FIG. 4 is an X-ray diffraction spectra for conventional Li4Ti5O12 of the prior art, synthesized according to Comp. Example 1 in Table 2;



FIG. 5 is an X-ray diffraction spectra for Li4Ti5O11.985 of the present invention, synthesized according to Example 2 in Table 1;



FIG. 6 is a graph showing a dependence of log(σ) vs. 1/T measured for Li4Ti5O11.985 of the present invention, synthesized according to Example 2 in Table 1 and measured by the 4-probe method;



FIG. 7 is a kinetic curve of a sintering step whereby Li4Ti5O12 is reduced by a H2/Argon gas mixture (4.81 vol. % H2), representing dependence of concentration of H2 on temperature during heating with constant temperature increase of 2.5° C./min.;



FIG. 8 is a kinetic curve of the sintering step of FIG. 7 in log(x) vs. 1/T coordinates, wherein x is x in Li4Ti5O12-x;



FIG. 9 is a graph showing a dependence of electric power generating capacity (mAh) vs. a number of cycles for a cell including an electrode with Li4Ti5O12-x of the present invention wherein a counter electrode is lithium metal;



FIG. 10 is a graph showing a first discharge of a cell including an electrode with Li4Ti5O12-x of the present invention wherein a counter electrode is lithium metal;



FIG. 11 is a graph showing a second charge of the cell including the electrode with Li4Ti5O12-x of the present invention wherein the counter electrode is lithium metal;



FIG. 12 is a graph showing a 382nd discharge of the cell including the electrode with Li4Ti5O12-x of the present invention wherein the counter electrode is lithium metal; and



FIG. 13 is a graph showing a 382nd charge of the cell including the electrode with Li4Ti5O12-x of the present invention wherein the counter electrode is lithium metal.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

A lithium titanate of the present invention is useful in lithium-based cells. The lithium-based cells including the lithium titanate of the present invention are useful in many applications, but are particularly useful in rechargeable batteries for vehicles 10, such as hybrid or electric vehicles 10; however, it is to be appreciated that the lithium-based cells may be used in non-rechargeable batteries. The rechargeable batteries are a power source for an electric motor of the vehicles 10.


The lithium-based cells include an electrolyte, an anode, and a cathode. Electrolytes for the lithium-based cells are typically non-aqueous lithium ion-conducting electrolytes and are known in the art. At least one of the anode and the cathode includes the lithium titanate of the present invention. For example, the lithium-based cell may be further defined as a lithium cell, wherein the cathode comprises the lithium titanate of the present invention. The lithium titanate is typically present in the cathode in an amount of at least 80 parts by weight, more typically from 80 to 90 parts by weight, most typically in an amount of about 82 parts by weight based on the total weight of the cathode. In addition to the lithium titanate, the cathode in the lithium cell also typically includes a conductive agent such as carbon black along with a binder agent, such as polyvinylidene fluoride, which make up the balance of the cathode. More specifically, the carbon black is typically present in an amount of from 8 to 10 parts by weight, more typically about 8 parts by weight based on the total weight of the cathode, and the binder agent is typically present in an amount of from 8 to 12 parts by weight, more typically about 10 parts by weight, based on the total weight of the cathode. The anode in the lithium cells is typically a lithium metal or lithium alloy with magnesium or aluminum.


Alternatively, the lithium-based cell may be further defined as one of a lithium ion cell and a lithium polymer cell, wherein the anode comprises the lithium titanate of the present invention in the amounts set forth above.


When used in rechargeable batteries for hybrid or electric vehicles 10, the cells are typically used in a battery pack, represented by 14 in FIGS. 1 and 2. The battery packs 14 typically include four rows of the cells that are interconnected and extend along each row in overlapping relationship. Each row typically includes five stacks of the cells. However, it is to be appreciated that other configurations of the cells within the battery pack 14 may also be used.


As known in the art, the rechargeable batteries typically include a plurality of the battery packs 14 connected in a circuit in order to provide sufficient energy for powering the vehicle 10. As shown in FIGS. 1 and 2, the circuit is configured with switches 18 and a battery management system 20 disposed in the circuit 16. The battery management system 20 includes a switch control and interface circuit 22 to control energy usage from and recharge of the cells in the battery packs 14.


The lithium titanate of the present invention has the following formula:





Li4Ti5O12-x


wherein x is greater than 0. Typically, 0<x<0.02. In other words, the lithium titanate of the present invention is deficient of oxygen, which has excellent electronic conductivity, as compared to lithium titanate of the above formula that is not deficient of oxygen. At the same time, concentration of lithium in the lithium titanate of the present invention remains the same as for lithium titanate that is not deficient of oxygen. As a result, expected reversible electric power-generating capacity of the lithium titanate of the present invention will remain the same as the reversible electric power-generating capacity of lithium titanate that includes a stoichiometric amount of oxygen.


The effect on electronic conductivity as a result of the oxygen deficiency is attributable to changes in an oxidation state, i.e., valence, of the titanium in the lithium titanate. More specifically, lithium titanates that include titanium atoms in a +3 oxidation state exhibit high electronic conductivity that is characteristic of metal-like material, while lithium titanates that include titanium atoms in a +4 oxidation state exhibit low electronic conductivity that is characteristic of a dielectric material. Referring to FIG. 3, the oxidation state of various lithium titanates is represented on the vertical axis as v(Ti), i.e., valence of titanium. As such, FIG. 3 indicates the relative electronic conductivity of the various lithium titanates, at various states of intercalation, with higher v(Ti) correlating to lower electronic conductivity. Li4Ti5O12 is an example of lithium titanate having the titanium atoms in the +4 oxidation state.


During electrochemical intercalation or charging of conventional Li4Ti5O12, phase transition from spinel to “rock salt”-type occurs wherein three lithium atoms are intercalated into the conventional Li4Ti5O12 to produce Li7Ti5O12.Li7Ti5O12 has higher electronic conductivity than the conventional Li4Ti5O12 due to the transformation of titanium atoms in the conventional Li4Ti5O12 from the +4 oxidation state to the +3 oxidation state during intercalation, as shown in FIG. 3 and as represented by the following equation:





Li4Ti5O12+zLi++ze(1-z/3)Li4Ti4+5O12+z/3Li7Ti4+2Ti3+3O12


wherein z represents the number of lithium atoms that are intercalated into the Li4Ti5O12. As such, the conventional Li4Ti5O12 exhibits variable electronic conductivity based on the state of intercalation and zones of low and high electronic conductivity may exist during intercalation and discharge due to the disparate differences in electronic conductivity between the conventional Li4Ti5O12 and Li7Ti5O12. Poor electronic conductivity of the conventional Li4Ti5O12 causes initial “training” of the cells by low current as well as prevention of a complete charge. These circumstances extremely limit opportunities of use of the conventional Li4Ti5O12 for high rate applications.


In accordance with the present invention, it was surprisingly found that the following relationship exists:





Li4Ti5O12+δH2→Li4Ti4+5-2δTi3+O12-δ+δH2O↑


In effect, reduction of Li4Ti5O12 to form the Li4Ti5O12-x results in the transformation of titanium atoms in the Li4Ti5O12 from the +4 oxidation state to the +3 oxidation state as a result of charge compensation, thereby exhibiting increased electronic conductivity of the Li4Ti5O12-x while retaining the same number of lithium and titanium atoms in the lithium titanate. Stated differently, an average valence of titanium in the lithium titanate of the present invention is less than 4. The practical result of the above finding is that the lithium titanate will exhibit less drastic changes in electronic conductivity at all stages of charge and discharge processes, as opposed to the conventional Li4Ti5O12 that exhibits electronic conductivity that is near that of dielectric materials prior to charging, such that different zones of Li4Ti5O12-x and Li7Ti5O12-x will exhibit more uniform media for charge and discharge processes, as compared to conventional Li4Ti5O12, which is advantageous for high-rate applications.


Since the same numbers of electrochemically active lithium and titanium atoms are present as are present in the Li4Ti5O12, expected reversible electric power-generating capacity will be the same for the Li4Ti5O12-x as for the Li4Ti5O12. The Li4Ti5O12-x also retains the same spinel structure as Li4Ti5O12, which has excellent cycleability. As set forth above, typically, 0<x<0.02 in order to maintain the lithium titanate having the same spinel structure as the Li4Ti5O12. More specifically, referring to FIG. 3, the lithium titanate of the present invention, by having the oxygen deficiency, shifts the Li4Ti5O12-x to a position represented by “A” in FIG. 3 due to the transformation of titanium atoms in the Li4Ti5O12 from the +4 oxidation state to the +3 oxidation state, with the position represented by “B” indicating an intercalation state of the Li4Ti5O12-x. The value of x, in order to maintain the same spinel structure as Li4Ti5O12, is limited since lithium titanate with structure of Li2Ti3O7 will form if the amount of titanium in the +3 oxidation state becomes too high. Li2Ti3O7 has an orthorhombic crystal structure with space group Pbnm (62). Although Li2Ti3O7 may be suitable for certain applications, the spinel structure of Li4Ti5O12 is preferred due to the ability to intercalate more lithium into the structure than can be intercalated into the Li2Ti3O7 and also due to the fact that Li4Ti5O12 exhibits low volume change of from 8.3595 to 8.3538 Å between intercalated and deintercalated states, which provides the excellent cycleability.


A method of forming the Li4Ti5O12-x includes the step of providing a mixture of titanium dioxide and a lithium-based component. Titanium dioxide can be used both in the form of rutile and in the form of anatase, as well as any form of titanium oxide-hydroxide (such as Ti(OH)2xO2-x). Any lithium-based component that is typically used for forming Li4Ti5O12 may be used. Typically, the lithium-based component is selected from the group of lithium carbonate, lithium hydroxide, lithium oxide, and combinations thereof, and the lithium-based component is typically at least 99% pure. Lithium salts or organic acids can also be used. Typically, the lithium-based component and titanium oxide are present in the mixture in amounts necessary to ensure an atomic ratio Li/Ti=0.8 in the final lithium titanate of the present invention.


The mixture including the titanium dioxide and the lithium-based component is sintered in a gaseous atmosphere comprising a reducing agent to form the lithium titanate. More specifically, the mixture is sintered at a temperature of at least 450° C., more typically from about 500 to 925° C., most typically from about 700 to about 920° C., for a period of at least 30 minutes, more typically from about 60 to about 180 minutes.


The reducing agent may be any agent that is capable of reducing the oxygen in the Li4Ti5O12 and is typically selected from the group of hydrogen, a hydrocarbon, carbon monoxide and combinations thereof. The reducing agent is typically present in the gaseous atmosphere in a concentration of at least 0.1% by volume, more typically from about 1 to about 100% by volume, in order to sufficiently reduce the Li4Ti5O12 to form the Li4Ti5O12-x.


In addition to the reducing agent, the gaseous atmosphere typically includes another gas selected from the group of an inert, an inactive gas, and combinations thereof. Any inert gas may be used, such as any noble gas, in order to prevent unwanted side reactions during sintering and in order to prevent introduction of impurities into the Li4Ti5O12-x. Inactive gas that may be used is, for example, pure nitrogen.


The following examples are meant to illustrate the present invention and are not to be view in any way as limiting to the scope of the invention.


EXAMPLES

Lithium titanate of the present invention having the formula Li4Ti5O12-x is formed according to the method of the invention as set forth above. More specifically, conventional Li4Ti5O12 is first formed by forming a mixture including titanium dioxide and a lithium-based compound. The mixture is formed by introducing the titanium dioxide and the lithium-based compound into a vessel in the amounts shown in Table 1. The titanium dioxide and the lithium-based compound are mixed and milled in a ball mill for a period of about 60 minutes at least 150 rpm rotation speed using a particle size distribution measurement till particle size less than 5 mkm, more preferably less than 2 mkm, with unimodal distribution to ensure sufficient mixing of the titanium dioxide and the lithium-based component. The mixture is then sintered in a gaseous atmosphere, created by a gas or gas mixture with constant flow at temperatures and times as indicated in Table 1. The gas or gas mixture includes a reducing agent and an inert gas or inactive gas in the amounts indicated in Table 1. The resulting lithium titanate has the formula Li4Ti5O12-x with 0<x<0.02. Relevant properties of the lithium titanate of the present invention are also included in Table 1 below.













TABLE 1






Component
Example 1
Example 2
Example 3



















Mixture
Titanium Dioxide, pbw
72.992
80.655
76.632



based on total weight of



mixture



Lithium-based
27.008

14.178



Component A, pbw



based on total weight of



mixture



Lithium-based

19.345
9.190



Component B, pbw



based on total weight of



mixture






Total
100.0
100.0
100.0


Gaseous
Reducing Agent A flow,
0.002




Atmosphere
L/(min · kg) based on



total weight of mixture



Reducing Agent B flow,

0.0025




L/(min · kg) based on



total weight of mixture



Reducing Agent C flow,


0.05



L/(min · kg) based on



total weight of mixture



Inert Gas A flow,
0.048
0.0225




L/(min · kg) based on



total weight of mixture



Inactive Gas B flow,


0.095



L/(min · kg) based on



total weight of mixture






Total
0.05
0.025
0.1



Sintering Time, min
120
100
180



Sintering Temperature,
850
900
800



° C.



X value in Li4Ti5O12−x
0.009 ± 0.001
0.015 ± 0.001
0.005 ± 0.001



Reversible Electric
168
170
160



Power-Generating



Capacity, mA * hrs/g



Crystal Structure
8.36012
8.35978
8.36023



Parameter (a), Å, at 300 K



Logarithm of DC
−5.2
−4.7
−5.9



Electronic Conductivity,



(S cm−1), at 300 K









Lithium-based Component A is Li2CO3.


Lithium-based Component B is LiOH.


Reducing Agent A is H2.


Reducing Agent B is CH4 (methane).


Reducing Agent C is CO (carbon monoxide).


Inert Gas A is Argon.


Inactive Gas B is N2 (nitrogen).


Comparative Example

Conventional lithium titanate having the formula Li4Ti5O12 is formed in the same manner as set forth above; however the reducing agent is not present in the gaseous atmosphere. The amounts of the components used to form the conventional lithium titanate are shown below in Table 2, along with relevant properties of the conventional lithium titanate.












TABLE 2







Comp.
Comp.



Component
Example 1
Example 2


















Mixture
Titanium Dioxide, pbw
72.992
80.655



based on total weight of



mixture



Lithium-based
27.008




Component A, pbw



based on total weight of



mixture



Lithium-based

19.345



Component B, pbw



based on total weight of



mixture





Total
100.0
100.0


Gaseous
Inert Gas A flow,
0.1



Atmosphere
L/(min · kg) based on



total weight of mixture



Inactive Gas B flow,

0.2



L/(min · kg) based on



total weight of mixture





Total
0.1
0.2



Sintering Time, min
180
120



Sintering Temperature,
850
900



° C.



X value in Li4Ti5O12−x
0 ± 0.0005
0 ± 0.0005



formula



Reversible Electric
145
150



Power-Generating



Capacity, mA * hrs/g



Crystal Structure
8.36055
8.35915



Parameter (a), Å, at 300 K



Logarithm of DC
<−9
~−9



Electronic Conductivity,



(S cm−1), at 300 K









Results

With reference to the reversible electric power-generating capacity and the electronic conductivity of the Examples and the Comparative Example, it is apparent that the lithium titanates of the present invention exhibit higher electronic conductivity than conventional lithium titanates of the Comparative Examples, while exhibiting even higher reversible electric power-generating capacity.


Specifically, XRD spectra are received on an x-ray diffractometer Bruker D4 on CuKα radiation with Sol-X detector. All samples listed in Table 1 and 2 give well-defined spectra correspond to cubic structure (Sp. gr. Fd-3m (227)). Small amounts of residual TiO2 (<0.5%) are present in most of samples. Using a full-profile analysis method, with conventional structure model (see for example, S. Scharner, W. Wepner, P. Schmid-Beurmann. Evidence of Two-Phase Formation upon Lithium insertion into the Li1.33Ti1.67O4 Spinel, Journal of the Electrochemical Society. v. 146, 1. 3, pp. 857-861, 1999), parameter (a) of a cubic crystal lattice is calculated, and is shown in the Tables 1 and 2. Two typical spectra, one for Li4Ti5O12 of the prior art represented by Comp. Examples 1 and 2, and one for Li4Ti5O11.985 of the present invention represented by Example 2, are presented on FIGS. 4 and 5, respectively.


Electronic conductivity of the Examples is measured on 20 mm diameter, 2-3 mm thick pellets that have been pressed and tempered inside powder samples under synthesis conditions until an equilibrium state is reached. Measurements are made by the 4-probe method on direct current, under potential of 90 volts. Attempts to receive reliable data for Li4Ti5O12 samples (Table 2, Comp. Examples 1 and 2) are unsatisfactory, as the conductivity of these samples lies very close to a low limit of measurement for this method. Therefore, only order of conductivity is determinate. Results of measurements for Li4Ti5O11.985, synthesized according to Example 2 in Table 1, in a narrow temperature interval of about room temperature, are shown on FIG. 6. Main sources of measurement discrepancies are the nature of compacted powder samples with significant porosity, as well as proximity to grain boundaries and contact effects.


The kinetics of the sintering step for reducing the Li4Ti5O12 is tested through the Temperature Controlled Reduction method. During linear heating of samples under gaseous atmosphere including the reducing agent, gas concentration is measured after flowing past the sample. Referring to FIG. 7, dependence of concentration of hydrogen, i.e., the reducing agent, against temperature of Li4Ti5O12 is shown. A difference between initial concentration of hydrogen and concentration of hydrogen after the gaseous atmosphere flows past the sample gives an amount of hydrogen used for the sintering process. By integration of this curve, using values of sample mass and gas mixture flow, it is possible to calculate the value of x in the formula Li4Ti5O12-x as a function of temperature. The reduction during the sintering step becomes appreciable after 450° C. and proceeds smoothly until 925° C. FIG. 8 shows a dependence of the logarithm of x in formula Li4Ti5O12-x against reverse absolute temperature (in Kelvin). This curve has an Arrhenius-like character and is close to linear in the temperature interval 500° C.<T<925° C.



FIG. 9 shows that the lithium-based cell that includes the Li4Ti5O12-x maintains electric power generating capacity after many cycles, and FIGS. 10-13 illustrate flat charge and discharge curves of the Li4Ti5O12-x, even after many cycles of charge and discharge.


The invention has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Obviously, many modifications and variations of the present invention are possible in light of the above teachings, and the invention may be practiced otherwise than as specifically described.

Claims
  • 1. A lithium titanate having the following formula: Li4Ti5O12-x wherein x is greater than 0.
  • 2. A lithium titanate as set forth in claim 1 wherein x is less than 0.02.
  • 3. A lithium titanate as set forth in claim 1 wherein an average valence of titanium in said lithium titanate is less than 4.
  • 4. A method of forming a lithium titanate having the following formula: Li4Ti5O12-x wherein x is greater than 0, said method comprising the steps of:providing a mixture of titanium dioxide and a lithium-based component; andsintering the mixture in a gaseous atmosphere comprising a reducing agent to form the lithium titanate.
  • 5. A method as set forth in claim 4 wherein the lithium-based component is selected from the group of lithium carbonate, lithium hydroxide, lithium oxide, and combinations thereof.
  • 6. A method as set forth in claim 4 wherein the reducing agent is selected from the group of hydrogen, a hydrocarbon, carbon monoxide, and combinations thereof.
  • 7. A method as set forth in claim 4 wherein the reducing agent is present in the gaseous atmosphere in a concentration of at least 0.1% by volume.
  • 8. A method as set forth in claim 4 wherein the gaseous atmosphere further comprises another gas selected from the group of an inert gas, an inactive gas, and combinations thereof.
  • 9. A method as set forth in claim 4 wherein the mixture is sintered at a temperature of at least 450° C.
  • 10. A method as set forth in claim 9 wherein the mixture is sintered for a period of at least 30 minutes.
  • 11. A lithium-based cell comprising: an electrolyte;an anode; anda cathode;wherein at least one of said anode and said cathode comprises lithium titanate having the following formula: Li4Ti5O12-x wherein x is greater than 0.
  • 12. A lithium-based cell as set forth in claim 11 wherein x is less than 0.02.
  • 13. A lithium-based cell as set forth in claim 11 further defined as a lithium cell.
  • 14. A lithium-based cell as set forth in claim 13 wherein said cathode comprises said lithium titanate.
  • 15. A lithium-based cell as set forth in claim 14 wherein said lithium titanate is present in said cathode in an amount of at least 80 parts by weight based on the total weight of said cathode.
  • 16. A lithium-based cell as set forth in claim 11 further defined as one of a lithium ion cell and a lithium polymer cell.
  • 17. A lithium-based cell as set forth in claim 16 wherein said anode comprises said lithium titanate.
  • 18. A lithium-based cell as set forth in claim 17 wherein said lithium titanate is present in said anode in an amount of at least 80 parts by weight based on the total weight of said anode.
  • 19. A rechargeable battery including said lithium-based cell as set forth in claim 11.
  • 20. A rechargeable battery as set forth in claim 19 further comprising a battery management system.
  • 21. A vehicle including said rechargeable battery as set forth in claim 20.
RELATED APPLICATIONS

This patent application claims priority to and all advantages of U.S. Provisional Patent Application No. 60/744,635 filed Apr. 11, 2006.

Provisional Applications (1)
Number Date Country
60744635 Apr 2006 US