LITHIUM/NICKEL/COBALT COMPOSITE OXIDE, PROCESS FOR PREPARING THE SAME, AND CATHODE ACTIVE MATERIAL FOR RECHARGEABLE BATTERY

Abstract
There can be provided a positive electrode active material for a secondary battry which is excellent in the charging and discharging cycle characteristics so that it retains high battery capacity that is comparable to the hitherto known LiNiO2 even by increasing the number of cycle, which has an improved cycle property (stability) at high temperature and which is a complex oxide represented by the general formula (I)
Description


TECHNICAL FIELD

[0001] The present invention relates to a lithium nickel cobalt complex oxide having a high purity, a high crystallinity, a high battery capacity and stable structure so that the degree of decrease in the capacity is little even with increasing the number of charging and discharging cycle, to a process for preparing the same, and to a positive electrode active material for a secondary battery.



BACKGROUND ART

[0002] As electronic appliances have been rendered small and portable in recent years, there has been increased a demand for a lithium ion secondary battery having a light weight and a high energy density in place of nickel/cadmium battery and nickel hydrogen battery.


[0003] As active materials of positive electrode for this lithium ion secondary battery, there are known LiNiO2 and LiCoO2 which are layered compounds capable of intercalating and deintercalating lithium ion. Of them, LiNiO2 is being expected owing to its higher electric capacity than LiCoO2.


[0004] However, LiNiO2 has not yet been put to practical use because it has problems in the charging and discharging cycle characteristics, the storage stability and the stability at a high temperature . Only LiCoO2 has been practically used as the positive electrode active material.


[0005] Although various attempts have been made to improve the above faults of LiNiO2 for its utilization as the positive electrode active material for a secondary battery, there has not yet been realized one wherein all of the above faults have been solved.


[0006] That is, in case of LiNiO2 it is known that when much lithium ions are liberated therefrom (during charge), the structure becomes unstable owing to the two dimention structure and therefore the cycle property, storage stability and high temperature stability of the lithium ion secondary battery are bad [for example, see J. Electrochem. Soc., 140 [7]p. 1862-1870 (1993), Solid State Ionics, 69 p. 265-270 (1994)]. Although many attempts have been made to stabilize the structure by replacing a part of Ni by other components (Co, Mn, Fe, Ti, V etc.) for the purpose of securing the structure stability with elimination of the above faults, it was difficult to obtain highly purified and completely doped crystals as a solid solution on an industrial scale because there have been practically applied dry blending and heating processes.


[0007] Also, an attempt has been made to control to certain specific level the physical properties such as shape and size of LiNiO2 particles and its doped product with other components as solid solution. However, the satisfactory results could not be achieved. For example, Japanese Patent Laid-open No. 151998/1993 proposes an improvement wherein the particle size distribution is specified to such extent that 10% cumulative size is 3˜15 μm, 50% cumulative size 8˜35 μm and 90% cumulative size 30˜80 μm, However, it is very difficult to adjust the particle size distribution to such extent by grinding the positive electrode active material and this is not practical process.


[0008] Usually, LiNiO2 has been prepared by mixing lithium components (LiOH, Li2CO3, LiNO3 etc.) with nickel components (hydroxide, carbonate etc.) in a dry state and thereafter subjecting the mixture to the reaction, and hence the heating at an elevated temperature for a long time was required. Consequently, the crystal growth proceeds but some of lithium is evaporated off and NiO as a by-product is formed, thereby the lowering of the purity is caused.


[0009] Therefore, it was difficult to prepare highly purified product by the dry process in case that the primary particle size is small. On the other hand, in case that the primary particle size is large, a considerable lattice defect in the structure is caused and results in lowering of the purity. It was impossible to adjust crystal size to a desired, with keeping crystallinity and purity at high level by the dry process.



DISCLOSURE OF THE INVENTION

[0010] An object of the present invention is to provide a novel lithium nickel cobalt complex oxide which has improved properties with respect to the above faults of the hitherto known LiNiO2 and its related complex oxide, namely which has a high purity, a high crystallinity, a high battery capacity and stable structure so that the degree of decrease in the capacity is little even by increasing the number of charging and discharging cycle.


[0011] Another object of the present invention is to provide a process for preparing said lithium nickel cobalt complex i oxide by a process via wet process which is different from the hitherto known dry process whereby the size of the formed spherical and secondary and primary particle may be set to a desired.


[0012] A further other object of the present invention is to provide a positive electrode active material for a lithium ion secondary battery containing as an effective component said lithium nickel cobalt complex oxide.


[0013] As a result of having studied ardently to achieve the above objects, the present inventors have found that a complex oxide which may be represented by the following general formula (I) and which may be prepared at the first time by a process via wet process described later coincides with the above objects;


LiyNi1-xCox1Mx 2O2  (I)


[0014] (wherein M represents at least one element selected from the group consisting of Al, Fe, Mn and B, y represents 0.9≦y≦1.3, x1+x2=x, x represents 0<x≦0.5, x1 represents 0<x1<0.5; when M is at least one element among Al, Fe and Mn, x2 represents 0<x2<0.3, when M is B, X2 represents 0<x2<0.1 and when M is a combination of B and at least one element among Al, Fe and Mn, x2 represents 0<x2<0.3 wherein the proportion of B is a range of from 0 to 0.1.


[0015] The novel complex oxide of the present invention has the following features.


[0016] The first feature lies in the composition represented by the above general formula (I) based on which with holding as high battery capacity as LiNiO2, not only its faults i.e. cycle property (deterioration of discharge capacity caused by increasing the number of cycle) and high temperature stability may be improved but also the amount used of an expensive cobalt may be suppressed to the minimum thereby economical merit may be realized.


[0017] The second feature of the complex oxide lies in that it has a high crystallinity and a high purity as identified by its X -ray diffraction pattern. That is, it is highly purified complex oxide to such extent that X- ray diffraction pattern shows that a ratio in the peak intensity of the face (003) to the face (104) i.e., (003) /(104) is 1.2 or higher and a ratio in the peak intensity of the face (006) to the face (101) i.e., (006)/(101) is 0.13 or lower, said face being defined by Miller indices hkl, the proportion of (Ni3→+Co3.) to the total (Ni +Co) being 99% by weight or higher, a BET specific surface area being 0.1˜2 m2/g, an average secondary particle size D being in the range of 5˜100 μm with 10% of the particle size distribution being 0.5 D or higher and 90% 2 D or lower, the surface of the spherical secondary particle being uneven as observed with a scanning electron microscope (SEM) and the primary particle constituting the spherical secondary particle being in the range of 0.2˜30 μm in terms of long diameter with the average diamter of 0.3˜30 μm as observed with a SEM.


[0018] In case of LiNiO2 and its related complex oxide, when a part of the Ni is intended to be doped with other component(s) as the solid solution it is difficult to dope them homogeneously by the hitherto known dry process because the homogeneity is lowered in proportion to the amount added of other component(s) whereby not only the battery capacity is lowered but also the improvement in the cycle property, the heat resistance and the electrolytic solution resistance are insufficient.


[0019] The lithium nickel cobalt complex oxide of the present invention can be kept in high purity, in spite of being one doped with at least one element selected from the group of consisting of Al, Fe, Mn and B. As shown in Examples described later, the interlayer distance may be efficiently shortened especially by using Co together with Al and /or B whereby the structural instability of Ni by reversible deintercalation of lithium ion can be avoided. The greatest feature of the present invention is that Co and at least one element selected from the group of consisting of Al, Fe, Mn and B may be doped as solid solution in a small amount and uniformly into the lithium nickel complex oxide. Such lithium nickel cobalt complex oxide of the present invention can be obtained as the composition having a high purity and a high crystallinity by the wet process as described later.


[0020] The third feature of the complex oxide of the present invention is that there can be obtained uniform and primary particle and that shape and size of the secondary paricle may be adjusted to the desired.


[0021] When an attention is paid to the size of the primary particle, in general the size of the primary particle is important for a layered compound represented by LiMO2 in the light of the reversible deintercalation of lithinm ion. Finer the primary particle, better ionic conductivity in the inside of the solid and lithium ion is more reversibly deintercalatable with the outside.


[0022] On the other hand, in considering the complex oxide from an aspect of the crystallization degree when the crystallization degree is small the crystal growth does not proceed sufficiently and the purity becomes low inevitably. Also, in case that the primary particle is small the storage stability is poor owing to moisture absorpbility and so good battery characteristics can not be achieved stably. Moreover, it is desirable that the primary particle is large taking the high temperature resistance and the reactivity with the electrolytic solution into consideration. As a result of having studied ardently, the present inventors have succeeded in the preparation of the complex oxide having an uniform primary particles of such that a long diameter of the primary particles is in the range of 0.2˜30 μm, preferably 1˜20 μm by combined wet process-spray (or freeze) drying process-press molding and heating processes as described later.


[0023] A complex oxide wherein both the primary and secondary particles are uniform may be prepared by employing especially spray drying-heating processes. A long diameter of the primary particles is in the range of 0.2˜30 μm, preferably 1˜20 μm and its average size is in the range of 0.3˜30 μm when observed with a SEM. An average size D of the spherical secondary particle formed by spray drying-heating processes is in the range of 5˜300 μm, preferably 5˜100 μm, more preferably 5˜20 μm and the particle is uniform to such extent that 10% of the particle size distribution is 0.5 D or higher and 90% 2D or lower, and the surface of the spherical secondary particle is uneven as can be seen under observation of a SEM.


[0024] Also, the particle ratio (a ratio of the long diameter to the short diameter) of the spherical secondary particles when observed with a SEM lies in the range of a maximum of 1.5 or less and an average of 1.2 or less with 90% or more of them being distributed in 1.3 or less, indicating that they are uniform particles even when there was included some particles having slightly larger particle ratio than defined above in the complex oxide prepared by pulverization after the heating.


[0025] It is understood from such physical properties that not only the spherical product of the present invention, preferably one prepared by the spray drying-heating processws is suitable for the closest packing density but also they have advantages when used as battery that the contact surface with each of an electrolyte and a conductive agent becomes large so that it is easy to reversibly deintercalate Li ions with the outside.


[0026] The size of the spherical secondary particles can be set to the range of from 5 μm to 100 μm as desired. However, an average size of about 5˜30 μm is desirable for use as the battery material from the viewpoint of processibility. Also, the BET specific surface area lies in the range of 0.1˜2 m2/g. When it was used as the battery material, since there is no increase in the viscosity of an electrolyte the lowering in conductivity is not caused.


[0027] Also, for the purpose of setting the average long diameter of the primary particle to the range of about 1 μm ˜30 μm it may be more simply and conveniently achieved by subjecting the spray (or freeze) dried product as above-mentioned to press molding. In case that the primary particle is large, it has physical properties that the purity and the crystallinity are high and that the high temperature stability is excellent, and therefore it may be preferably used as the positive electrode active material for a secondary battery which would be used under a severe condition. The bulk density becomes large due to press molding applied. That bulk density is high is plus for elevation of the battery capacity.


[0028] The following illustrates a process for preparing the complex oxide of the present invention which is represened by the above general formula (I) in details.


[0029] In preparing the complex oxide represened by the above general formula (I), the following processes are applied according to the three kinds of classifications that {circle over (1)} M is at least one element of Al, Fe and Mn, {circle over (2)} M is B and {circle over (3)} M is the combination of B and at least one element of Al, Fe and Mn.


[0030] That is, {circle over (1)} in a process for preparing a complex oxide represented by the general formula (I)


LiyNi1-xCox1Mx2O2  (I)


[0031] (wherein M is at least one element selected from the group consisting of Al, Fe and Mn), said complex oxide may be prepared by adding-an amount of a lithium compound corresponding to the number of atomic moles of Li indicated by y to a basic metal salt represented by the general formula (II)


Ni1-xCox1Mx2(OH)2 (1-x+x1)-3x2−n, (An),·mH2O   (II)


[0032] [wherein M represents at least one element selected from the group consisting of Al, Fe and Mn, x represents 0<x≦ 0.5, x, is 0<x1<0.5, x2 represents 0<x2≦ 0.3, x1+x2=x, An- represents an anion having a valence of n (n=1˜3) and z and m are positive numbers respectively satisfying the ranges of 0.03≦z ≦0.3, 0≦m<2] in an aqueous medium to form a slurry, spray or freeze drying the formed slurry and heating the spray or freeze dried product at a temperature of about 600° C.˜ 900° C. for 4 hours or more in an oxidative atmosphere.


[0033] {circle over (2)} In a process for preparing a complex oxide represented by the general formula (I)


LiyNi1-xCox1Mx 2 O2  (I)


[0034] (wherein M represents B), said complex oxide may be prepared by adding a boron compound containing X2 mol % of boron [x 2 represents 0<x2<0.1, the relationship among x, x1 and x2 is expressed by x2=x−x1] to a basic metal salt represented by the general formula (III)


Ni1-xCox1(OH)2 (1-x+x1)-nz (An-)z·mH2O   (III)


[0035] [wherein x represents 0<x≦0.5, x, represents 0<x 121 0.5, An- represents an anion having a valence of n ( n=1˜3) and z and m represent positive numbers respectively satisfying the ranges of 0.03≦z≦0.3, 0 ≦m<2] in an aqueous medium, subsequently adding thereto an amount of a lithium compound corresponding to the number of atomic moles of Li indicated by y to form a slurry, spray or freeze drying the formed slurry and heating the spray or freeze dried product at a temperature of about 600° C.˜900° C. for 4 hours or more in an oxidative atmosphere.


[0036] {circle over (3)} In a process for preparing a complex oxide represented by the general formula (I)


LiyNi1-xCox1Mx 2O2   (I)


[0037] (wherein M represents the combination of B and at least one element of Al, Fe and Mn), said complex oxide may be prepared by adding a boron compound containing x4 mol % of boron [x4 represents 0<x4<0.1, the relationship among x4, x3 and x2 is expressed by x4+x3=x2] and an amount of a lithium compound corresponding to the number of atomic moles of Li indicated by y to a basic metal salt represented by the general formula (IV)


Ni1-xCox1Nx3(OH)2 (1-x+x1)÷3x3−n z (An-)z·mH2O   (IV)


[0038] [wherein N represents at least one element of Al, Fe and Mn, in this case M in the general formula (I) contains both the N and B, and if the content of B therein is indicated by x4, x represents 0<x≦0.5, x1 represents 0<x1<0.5, x3 represents 0<x3≦0.3−x4, x1+x3+x4=x, An- represents an anion having a valence of n ( n=1˜3), and z and m represent positive numbers respectively satisfying the ranges of 0.03≦z≦0.3, 0≦m<2] in an aqueous medium, to form a slurry, spray or freeze drying the formed slurry and heating the spray or freeze dried product at a temperature of about 600° C.˜900° C. for 4 hours or more in an oxidative atmosphere.


[0039] As the water soluble lithium compound and the basic metal salt which may be represented by the general formulae (II) , (III) or (IV) (hereinafter, referred to as “the basic metal salt” collectively), there may be employed one each containing an anion which is evaporated off during the heating.


[0040] As the examples of the lithium compound, there may be selected one or more from among LiOH, LiNO3 Li2CO3 and hydrates thereof.


[0041] As the examples of the boron compound, boric acid and lithium tetraboric acid may be preferably employed.


[0042] As the example of An- in the basic metal salt there may be selected from among the anions shown by NO3, Cl , Br-, CH3COO-, CO32- and SO42-.


[0043] In these compounds, LiOH as the lithium compound, boric acid as the boron compound and a basic metal salt wherein an anion is nitrate ion are used from the viewpoint of yield, reactivity, effective utilization of the resources and oxidation accelerating effect. The combination of these 3 kinds of compounds is particularly preferred from the viewpoint of battery characteritics.


[0044] As the basic metal salt which may be employed in the present invention, is preferable the basic salt having a specific composition that size of the primary particle is as fine as below 0.1 μm when measured by the Scherrer's method.


[0045] Also, it is preferred that this fine particle has a BET specific surface area of 10 m2/g or higher, preferably 40 m2/g or higher, more preferably 100 m2/g or higher. As to the BET specific surface area, if it is measured after the basic metal salt in an aqueous solution has been dried, as the very fine primary particles aggregates during dry process, then BET specific surface area of the aggregate is measured. If aggregation power is strong, nitrogen gas cannot enter into it and the value of BET specific surface area becomes small. Accordingly the basic metal salt which is practically reacted with a lithium compound in aqueous solution shows a high BET specific surface area so that the surface is highly reactive. However, BET specific surface area was set to 10 m2/g or higher from the above actual circumstances. The basic metal salt having such specific composition has a layered structure, and the chemical composition and the crystal structure where M is at least one of Al, Fe and Mn are similar to those of hydroxide of Ni 1-xCox1Mx2. The chemical composition and the crystal structure where M is B are similar to those of hydroxide of Ni1-xCox 1. And the chemical composition and the crystal structure where M is the combination of B and at least one of Al, Fe and Mn are similar to those of hydroxide of Ni1Cox1Nix3. Moreover, in all cases, the basic metal salt is microcrystalline whose surface is highly active. When it is reacted with a lithium compound such as LiOH, an extremely desirable precursor of LiyNi1-xCox1Mx2O2 is formed.


[0046] Highly purified LiyNi1-xCox1M2O2 having an extremely high crystallinity at which the present invention aims can be obtained only when the basic metal salt having such a specific composition is used. The hydroxides in the above is inferior in the reactivity with the lithium compound to the basic metal salt. On the other hand, when the amount of an anion in the basic metal salt is increased, the basic metal salt is deviated from the layered structure, and the anion acts inhibitively on the formation of Li ,Ni1 xCox1Mx2 O 2 during the heating, thereby the desired compound having a high purity and an extremely high crystallization degree cannot be obtained.


[0047] The basic metal salt to be used in the present invention can be prepared by adding an amount of about 0.7 ˜0.95 equivalent, preferably about 0.8˜0.95 equivalent of an alkali based on Ni1-xCox1Nx3 salt, Ni1 x Cox1 salt or Ni1-xCox1Nx3 salt under the condition below about 80° C. to effect the reaction. Examples of the alkali to be used in the reaction include alkali metal hydroxides such as sodium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, amines and the like. In this connection, it is preferable that this basic metal salt is matured at 20˜70° C. for 0.1˜10 hours after its preparation. Subsequently, any by-products are removed by washing with water and the lithium compound is added, and the boron compound is further added for the purpose of preparing a complex oxide containing B.


[0048] For drying the slurry obtained by such a reaction, spray or freeze drying method is desirable. The spray drying method where drying can be instantaneously accomplished and the spherical particles can be obtained is preferred from the viewpoint of the spherical granulation nature and the uniformity of the composition (in dry process requiring some drying time, lithium migrates into the surface of particles to give a non-uniform composition).


[0049] The heating is effected at a temperature of 600° C.˜ 800° C., preferably 700° C.˜750° C. for 4 hours or higher, preferably about 4 - 72 hours, more preferably about 4˜ 20 hours under an oxidative atmosphere (under the flow of oxygen). If the heating time is 72 hours or, more, not only it makes cost up but also it causes evaporation of Li thereby the proportion of trivalent (Ni+Co) to the total (Ni+Co) becomes rather low and the purity becomes bad.


[0050] In the known technique by the drying process regarding the heating, the heating of at least 20 hours was required for Ni which is hard to convert into trivalent from divalent. In the light of the fact, the process of the present invention which may be carried out even at shorter heating time than 20 hours is very economical and advantageous.


[0051] The second process is press molding process which is advantageous for the purpose of making the primary particle large and further making the bulk density high.


[0052] The dry product obtained by the spray drying or freeze drying process above-mentioned is press molded and then heated, whereby not only the size of the primary particle may be optionally set within the range of 1 - 30 μm, but also there can be obtained the complex oxide having high bulk density, degree of crystallization and purity.


[0053] The spherical particle that is the spray dried product is excellent powder with respect to flowability, molding and filling properties, and is a good material to be pressed into a shape as it is according to the conventional manner.


[0054] Although the pressure for molding may be varied depending on the pressing machine to be applied and the amount to be fed and is not limited particularly, usually about 500˜3,000 kg/cm2 is suitable.


[0055] Pressing machine to be applied is not limited particularly and it may be one capable of pressing. However, tablet compressing machine, briquette, roller compactor may be suitably employed.


[0056] The density of the press molded product may be about 1 ˜4g/cc, preferably about 2˜3g/cc.


[0057] The press molding is very useful in that moving distance among molecules becomes short and crystal growth during the heating is accelerated. Accordingly, it is not always necessary that the material to be subjected to the press molding is spray dried spherical particle product. The freeze dried product may also be used.


[0058] This press molded product can be heated as it is. The heating is effected at a temperature of usually 600˜900° C. , preferably 700° C.˜800° C. for a period of 4 hours or higher, preferably 10˜72 hours under an atmosphere of oxygen.


[0059] The longer the heating time, the larger the size of the primary particle. Therefore, the heating time is determined depending on the desired size of the primary particle.


[0060] For accomplishing the heating in a short time, 2 times heating of pre-heating and after-heating may be applied. The slurry obtained by the process described previously is spray- or freeze-dried and the spray- or freeze-dried product is first pre-heated at a temperature of about 600° C. ˜900° C. for 0.5 hour or more (preferably 0.5˜4 hours) under an oxidative atmosphere, the obtained pre-heating product is pulverized if necessary and pressed into a shape, and then after-heated at a temperature of about 600° C.˜ 900° C. for 1 hour or more (preferably 4˜48 hours) under an oxidative atmosphere, The total time requird for the heating may be shortened by employing this process.


[0061] The thus obtained complex oxide of the present invention which may be represented by the general formula ( I) retains high battery capacity of 160˜180 mAh/g even after 100 charging and discharging cycles and has an improved high temperature cycle property (stability) as is apparent from the Examples described later, and hence it may be effectively utilized as a positive electrode active material for a secondary battery.







BRIEF DESCRIPTION OF THE DRAWINGS

[0062]
FIG. 1 is powder X -ray diffraction patterns of the complex oxides obtained in Examples 1˜4 and Comparative Examples 1˜2, respectively.


[0063]
FIG. 2 is SEM photograph (×1,500 magnifications) indicating the primary particles of the complex oxide obtained in Example 1.


[0064]
FIG. 3 is SEM photograph (×1,500 magnifications) indicating the primary particles of the complex oxide obtained in Example 4.


[0065]
FIG. 4 is powder X -ray diffraction pattern of the complex oxide obtained in Example 5.


[0066]
FIG. 5 is powder X - ray diffraction pattern of the complex oxide obtained in Example 6.


[0067]
FIG. 6 is powder X -ray diffraction pattern of the complex oxide obtained in Example 7.


[0068]
FIG. 7 is SEM photogragh (×30,000) of the complex oxide obtained in Example 5.


[0069]
FIG. 8 is SEM photograph (×3,000 magnifications) indicating the primary particles of the complex oxide obtained in Example 6.


[0070]
FIG. 9 is SEM photograph (×10,000 magnifications) indicating the primary particles of the complex oxide obtained in Example 7.


[0071]
FIG. 10 is powder X -ray diffraction pattern of the complex oxide obtained in Example 8.


[0072]
FIG. 11 is powder X -ray diffraction pattern of the complex oxide obtained in Example 9.


[0073]
FIG. 12 is powder X -ray diffraction pattern of the complex oxide obtained in Example 10.


[0074]
FIG. 13 is powder X -ray diffraction pattern of the complex oxide obtained in Example 11.


[0075]
FIG. 14 is SEM photograph (×1,500 magnifications) indicating the primary particles of the complex oxide obtained in Example 8.


[0076]
FIG. 15 is SEM photograph (×1,500 magnifications) indicating the primary particles of the complex oxide obtained in Example 10.


[0077]
FIG. 16 is SEM photograph (×1,500 magnifications) indicating the primary particles of the complex oxide obtained in Example 11.



BEST MODES FOR CARRYING OUT THE INVENTION

[0078] The present invention is more specifically illustrated by the following examples.







EXAMPLE 1

[0079] There was prepared a mixed aqueous solution of 2.0 M nickel nitrate and cobalt nitrate wherein the molar ratio of Ni:Co was 80:19. This mixed aqueous solution and 1.0 M aqueous sodium hydroxide solution were added to a reaction vessel under stirring using quantitative pumps while the amount added of aqueous sodium hydroxide solution was adjusted so as to maintain pH 8.0 at a reaction temperature of 25° C., thereby the continuous reaction was carried out. The residence time of average 10 minutes was taken.


[0080] The reaction product overflowed from the reaction vessel during the continuous reaction was collected in the receiver tanc. The reaction was completed when the necessary amount of the reaction product was collected.


[0081] The obtained reaction product was filtered, washed with water (the portion was dried after washing and its composition was Ni0. 8Co0 19 (OH)1 833 (NO3) 0 147·0.16 H2O) and suspended in water. And then, boric acid was added to the suspension in an amount such that the molar ratio of Ni:Co:B became 80:19:1 with respect to the Ni and Co contents in the suspention. To the resultant slurry 3.0 M aqueous lithium hydroxide solution was added dropwisely in an amount such that the molar ratio of Li/(Ni +Co+B) became 1.05.


[0082] Thereafter, the reaction mixture was spray-dried. The obtained dry gel was put in an alumina boat and heated at 750° C. for 10 hours in an atmosphere of oxygen in a tube furnace (TF-630 type, a product of Yamada Electric Company)


[0083] The chemical composition of the heating product was LiNi0. 80Co0.19B0.01O2.



EXAMPLE 2

[0084] There was prepared a mixed aqueous solution of 2.0 M nickel nitrate and cobalt nitrate wherein the molar ratio of Ni:Co was 80:19.5. This mixed aqueous solution and 1.0 M aqueous sodium hydroxide solution were simultaneously added so as to maintain pH 8.0 according to similar manner as in Example 1, whereupon the continuous reaction was conducted at 25° C. for 10 minutes of the resident time.


[0085] The obtained reaction product was filtered, washed with water (the portion was dried after washing and its composition was Ni0.8Co0.195(OH)1.86 (NO3)0.130· 0. 22 H2O) and suspended in water. And then, boric acid was added to the suspension in such amount that the molar ratio of Ni:Co:B became 80:19.5:0.5 with respect to the Ni and Co contents in the suspension. To the resultant slurry 3.0 M aqueous lithium hydroxide solution was added dropwisely in an amount such that the molar ratio of Li/(Ni +Co+B) became 1.05. Thereafter, the reaction mixture was spray dried. The obtained dry gel was put in an alumina boat and heated at 750° C. for 10 hours in an atmosphere of oxygen in a tube furnace (TF-630 type, a product of Yamada Electric Company).


[0086] The chemical composition of the heating product was LiNi0. 80Co0. 195B0. 005 O2.



EXAMPLE 3

[0087] There was prepared a mixed aqueous solution of 2.0 M nickel nitrate and cobalt nitrate wherein the molar ratio of Ni:Co was 80:18. This mixed aqueous solution and 1.0 M aqueous sodium hydroxide solution were simultaneously added so as to maintain pH 8.0 according to similar manner as in Example 1, whereupon the continuous reaction was conducted at 25° C. for 10 minutes of the resident time.


[0088] The obtained reaction product was filtered, washed with water (the portion was dried after washing and its composition was Ni0.8Co0.18(OH)1.79(NO3)0.17·0.3 H2O) and suspended in water. And then, boric acid was added to the suspension in such amount that the molar ratio of Ni Co:B became 80:18:2 with respect to the Ni and Co contents in the suspension. To the resultant slurry 3.0 M aqueous lithium hydroxide solution was added dropwisely in an amount such that the molar ratio of Li/(Ni+Co|B) became 1.05. Thereafter, the reaction mixture was spray dried. The obtained dry gel was put in an alumina boat and heated at 750° C. for 10 hours in an atmosphere of oxygen in a tube furnace (TF-630 type, a product of Yamada Electric Company).


[0089] The chemical composition of the heating product was LiNi0.80Co0.18B0.02O2.



EXAMPLE 4

[0090] There was prepared a mixed aqueous solution of 2.0 M nickel nitrate and cobalt nitrate wherein the molar ratio of Ni:Co was 80:15. This mixed aqueous solution and 1.0 M aqueous sodium hydroxide solution were simultaneously added so as to maintain pH 8.0 according to similar manner as in Example 1, whereupon the continuous reaction was conducted at 25° C. for 10 minutes of the resident time.


[0091] The obtained reaction product was filtered, washed with water (the portion was dried after washing and its composition was Ni0.8Co0.15(OH)1.76(NO3)0.14·0.25 H2O) and suspended in water. And then, boric acid was added to the suspension in such amount that the molar ratio of Ni Co:B became 80:15:5 with respect to the Ni and Co contents in the suspension. To the resultant slurry 3.0 M aqueous lithium hydroxide solution was added dropwisely in an amount such that the molar ratio of Li/(Ni+Co+B) became 1.05. Thereafter, the reaction mixture was spray dried. The obtained dry gel was put in an alumina boat and heated at 750° C. for 10 hours in an atmosphere of oxygen in a tube furnace (TF-630 type, a product of Yamada Electric Company).


[0092] The chemical composition of the heating product was LiNi0.80Co0.15B0.05O2.



COMPARATIVE EXAMPLE 1

[0093] There was prepared a mixed aqueous solution of 2.0 M nickel nitrate and cobalt nitrate wherein the molar ratio of Ni:Co was 80:10. This mixed aqueous solution and 1.0 M aqueous sodium hydroxide solution were simultaneously added so as to maintain pH 8.0 according to similar manner as in Example 1, whereupon the continuous reaction was conducted at 25° C. for 10 minutes of the resident time.


[0094] The obtained reaction product was filtered, washed with water (the portion was dried after washing and its composition was Ni0.8Co0.01(OH)1.68(NO3)0.12·0.19 H2O) and suspended in water. And then, boric acid was added to the suspension in such amount that the molar ratio of Ni Co:B became 80:10:10 with respect to the Ni and Co contents in the suspension. To the resultant slurry 3.0 M aqueous lithium hydroxide solution was added dropwisely in an amount such that the molar ratio of Li/(Ni+Co+B) became 1.05. Thereafter, the reaction mixture was spray dried. The obtained dry gel was put in an alumina boat and heated at 750° C. for 10 hours in an atmosphere of oxygen in a tube furnace (TF-630 type, a product of Yamada Electric Company).


[0095] The chemical composition of the heating product was LiNi0.80Co0.10B0.10O2.



COMPARATIVE EXAMPLE 2

[0096] There was prepared a mixed aqueous solution of 2.0 M nickel nitrate and cobalt nitrate wherein the molar ratio of Ni:Co was 80:20. This mixed aqueous solution and 1.0 M aqueous sodium hydroxide solution were simultaneously added so as to maintain pH 8.0 according to similar manner as in Example 1, whereupon the continuous reaction was conducted at 25° C. for 10 minutes of the resident time.


[0097] The obtained reaction product was filtered, washed with water (the portion was dried after washing and its composition was Ni0.. 8Co0.2(OH)1.87 (NO3)0 13·0.14 H2O) and suspended in water. And then, 3.0 M aqueous lithium hydroxide solution was added dropwisely to the suspension in an amount such that the molar ratio of Li/(Ni+Co) became 1.05. Thereafter, the reaction mixture was spray dried. The obtained dry gel was put in an alumina boat and heated at 750° C. for 10 hours in an atmosphere of oxygen in a tube furnace (TF-630 type, a product of Yamada Electric Company).


[0098] The chemical composition of the firing product was LiNi 0.80Co0.20O2.



COMPARATIVE EXAMPLE 3 (dry process corresponding to Example 1)

[0099] 1.00 Mol lithium hydroxide, 0.80 mol nickel hydroxide, 0.19 mol cobalt hydroxide and 0.01 mol boric acid were sufficiently mixed in dry state and pulverized in a mortar, and then pelletized into size of 14 mm of a diameter x 2 mm of a thickness. The resultant pellets were heated at 750° C. for 48 hours in an atmosphere of oxygen.


[0100] The chemical composition of the heat-treated product was LiNi0.80Co0.19B0.01O2.


[0101] The respective powder X - ray diffraction patterns of the complex oxides obtained Examples 1˜4 and Comparative Examples 1˜2 are shown in FIG. 1. As is apparent from FIG. 1, any peak based on by-product was not recognized in each process and the complex oxides are estimated to have uniformly doped layered structure.


[0102] The respective SEM photographs (×1,500 magnifications) indicating the primary particles of the complex oxides obtained in Examples 1 and 4 are shown in FIGS. 2 and 3. The scale unit of—line shown in the lower part of the respective photographs indicates 10 μm.


[0103] Also, the respective crystalline sizes estimated from the X - ray diffraction measured with respect to the basic metal salts obtained by the continuous reaction in Examples 1˜4 stated above and Examples 5˜12 described later are summarized in table 1. It can be seen from table 1 that the crystalline size is below 0.1 μ in all cases, indicating that there was formed the basic metal salt having fine primary particle.
1TABLE 1Crystalline Size of Basic Metal Salt Obtainedby the Continuous ReactionNo.Crystalline Size (angstrom)Example 138.1Example 242.5Example 334.6Example 445.1Example 537.9Example 646.2Example 737.4Example 838.1Example 935.3Example 1040.5Example 1143.5Example 1241.4


[0104] Furthermore, the ratio of the trivalence in (Ni+Co) and the physical properties such as BET specific surface area, the peak intensity ratios (003)/(104) and (006)/(101) estimated by powder X -ray diffraction, an average secondary particle size measured by laser microtrack and long diameter of the primary particle obtained from observation of the SEM photograph, each measured with respect to these complex oxides are shown in table 2.


[0105] The trivalent (Ni+Co) ratio and the BET specific surface area were measured according to Experimental Examples 2 and 3, respectively.
2TABLE 2AverageRatioAverageLongof theSecond-DiameterTrivalenceRatioRatioaryofinofofParticlePrimary(Ni + Co)BET(003)/(006)/SizeParticleNo.(%)m2/g(104)(101)(μm)(μm)Example 199.80.11.3100.10115.210.72Example 299.70.21.3040.10217.210.65Example 399.90.11.2730.11118.010.62Example 499.10.11.2110.10616.420.68Comparative89.50.20.8730.26817.210.61Example 1Comparative99.60.11.2450.10418.210.67Example 2


[0106] From the results shown in table 2, in case that M in the general formula (I) is B, the complex oxide of Comparative Example 1 wherein the amount added (content) of B is 10 mol % has low trivalent ratio. The peak intensity ratio of (003)/(104) obtained by the powderX -ray diffraction is lower than 1.2 while that of (006)/(101) is higher than 0.13 and thus the crystallinity is low. For these facts, in case that M in the general formula (I) is B. it is more preferable that the numerical value of x2 is 0<x2≦0.05.


[0107] With respect to other physical properties, the complex oxides in the above Examples and Comparative Examples 1˜2 have the similar physical properties each other because all of them were prepared by wet-spray drying process.


[0108] Moreover, table 3 shows the results of the battery test (charge and discharge test) conducted according to Experimental Example 4 using the respective complex oxides of Examples 1˜4 and Comparative Examples 1˜2 to evaluate initial discharge capacity (mAh/g), discharge capacity at 100th cycle (mAh/g) and decrease rate of discharge capacity at 100th cycle (%). In comparison with the complex oxide of Comparative Example 3 prepared by dry process, the complex oxides of Examples 1˜4 were recognized to have the improved cycle characteristics and initial discharge capacity.
3TABLE 3InitialDecrease Rate ofDischargeDischarge CapacityDischarge CapacityCapacityat 100th Cycleat 100th CycleNo.(mAh/g)(mAh/g)(%)Example 11871822.7Example 21851745.9Example 31841783.3Example 41781676.2Comparative152 8941.4 Example 1Comparative1841719.3Example 2Comparative16311231.2 Example 3


[0109] It can be seen from table 3 that the complex oxides of Examples 1˜4, each containing boron have improved cycle characteristics in comparison with the complex oxide of Comparative Example 2 containing no boron, and especially the comlex oxides of Examples 1˜3 wherein the content of boron is in the range of 0.05˜2 mol% have further improved initial discharge capacity.



EXAMPLE 5

[0110] There was prepared a mixed aqueous solution of 2.0 mol/l nickel nitrate, cobalt nitrate and aluminum nitrate wherein the molar ratio of Ni:Co:Al was 8:1:1. This mixed aqueous solution and 1.0 mol/l aqueous sodium hydroxide solution were continuously added under the condition of the reaction pH of 8.0, the reaction temperature of 25° C. and vigorous stirring.


[0111] The obtained reaction mixture was filtered, washed with water and suspended in water thereby obtaining a Ni0 80Co 0.10Al0.10(OH)1.7(NO3)0.40 slurry. A 3.0 mol/l aqueous lithium hydroxide solution was added dropwisely to the obtained slurry in an amount such that the atomic ratio of Li/(Ni+Co+Al) was 1.05 with respect to the (Ni+ Co+Al) content in the above slurry to effect reaction. Thereafter, the reaction mixture was spray dried. The obtained dry gel was put in an alumina boat and heated at 750° C. for 10 hours in an atmosphere of oxygen in a tube furnace, and pulverized in a mortar to obtain powdery LiNi 0. 797Co0.101Al0.102O2.



EXAMPLE 6

[0112] There was prepared a mixed aqueous solution of 2.0 mol/l nickel nitrate, cobalt nitrate and aluminum nitrate wherein the molar ratio of Ni:Co:Al was 16:3:1. This mixed aqueous solution and 1.0 mol/l aqueous sodium hydroxide solution were continuously added under the condition of the reaction pH of 8.0, the reaction temperature of 25° C. and vigorous stirring.


[0113] The obtained reaction mixture was filtered, washed with water and suspended in water thereby obtaining a Ni0 80Co 0.15Al0.05(OH)1.7(NO3)0.35 slurry. A 3.0 mol/l aqueous lithium hydroxide solution was added dropwisely to the obtained slurry in an amount such that the atomic ratio of Li/(Ni+Co+Al) was 1.05 with respect to the (Ni+ Co+Al) content in the above slurry to effect reaction. Thereafter, the reaction mixture was spray dried. The obtained dry gel was pressed into a pellet having ø14 and a thickness of 2 mm under pressure of 2 t/cm2 using a static compressor. The pellet was put in an alumina boat and heated at 750° C. for 48 hours in an atmosphere of oxygen in a tube furnace, and pulverized in a mortar to obtain powdery LiNi 0.785Co0.151Al0.054O2.



EXAMPLE 7

[0114] There was prepared a mixed aqueous solution of 2.0 mol/l nickel nitrate, cobalt nitrate and aluminum nitrate wherein the molar ratio of Ni:Co:Al was 16:3:1. This mixed aqueous solution and 1.0 mol/l aqueous sodium hydroxide solution were continuously added under the condition of the reaction pH of 8.0, the reaction temperature of 25° C. and vigorous stirring.


[0115] The obtained reaction mixture was filtered, washed with water and suspended in water thereby obtaining a Ni0 80Co 0.15Al0.05(OH)1.7(NO3)0.35 slurry. A 3.0 mol/l aqueous lithium hydroxide solution was added dropwisely to the obtained slurry in an amount such that the atomic ratio of Li/(Ni+Co+Al) was 1.05 with respect to the (Ni+ Co+Al) content in the above slurry to effect reaction. Thereafter, the reaction mixture was freeze dried. The obtained dry gel was pressed into a pellet having ø14 and a thickness of 2 mm under pressure of 2 t/cm2using a static compressor. The pellet was put in an alumina boat and heated at 750° C. for 48 hours in an atmosphere of oxygen in a tube furnace, and pulverized in a mortar to obtain powdery LiNi 0.789Co0.151Al0.051O2.


[0116] The respective powder X -ray diffraction patterns of the complex oxides obtained in Examples 5, 6 and 7 are shown in FIGS. 4, 5 and 6. As is apparent from them, any peak based on by-product was not recognized in each process and the complex oxides are estimated to have uniformly doped layered structure.


[0117] Furthermore, the ratio of the trivalence in (Ni+Co) and the physical properties such as BET specific surface area, the peak intensity ratios (003)/(104) and (006)/(101) obtained by powder X -ray diffraction and the bulk density, each measured with respect to these complex oxides are shown in table 4. A SEM photograph (×30,000 magnifications) indicating the primary particles of the complex oxide of Example 5 is shown in FIG. 7, that (× 30,000 magnifications) indicating the primary particles of the complex oxide of Example 6 in FIG. 8 and that (× 10,000 magnifications) indicating the primary particles of the complex oxide of Example 7 in FIG. 9. The scale unit of —line shown in the lower part of the respective photographs indicates 1 μm.


[0118] The trivalent (Ni+Co) ratio and the BET specific surface area were measured according to Experimental Examples 2 and 3, respectively.
4TABLE 4RatioBulkof theDensityTrivalenceParticlein (Ni + Co)BETRatio ofRatio ofSizeNo.(%)m2/g(003)/(104)(006)/(101)(g/ml)Example 51000.431.4660.1151.75Example 699.70.681.5570.1112.24Example 799.20.611.3510.1192.21


[0119] As is apparent from table 4, the trivarent (Ni+Co) ratio is approximately 100% and the peak intensity ratio of (003)/(104) obtained by the powder X - ray diffraction is lower than 1.2 while that of (006)/(101) is higher than 0.13 and thus the degree of crystallization is exceedingly high. Furthermore, it can be seen from the SEM photographs that the primary particle grow to a great extent and the bulk density became sufficently high in case of the complex oxides of Examples 6 and 7 each subjected to press molding.



EXAMPLE 8

[0120] There was prepared a mixed aqueous solution of 2.0 mol/l nickel nitrate, cobalt nitrate and aluminum nitrate wherein the molar ratio of Ni:Co:Al was 790:165:25. This mixed aqueous solution and 1.0 mol/l aqueous sodium hydroxide solution were simultaneously added at 25° C. under vigorous stirring so as to keep pH to 10.0 therby effecting the continuous reaction.


[0121] The obtained reaction product was filtered, washed with water (the portion was dried after washing and its composition was Ni0.79Co0.165Al0 025(OH)1 845(NO3) 0.14·0.2 H2O) and suspended in water. Thereafter, boric acid was added to the suspension in an amount such that the molar ration of Ni:Co:Al:B became 790:165:25:20 with respect to the Ni, Co and Al contents in the suspension. To the resultant slurry was added dropwisely a 3.0 M aqueous lithium hydroxide solution in an amount such that the atomic ratio of Li/(Ni+Co+Al+B) was 1.05. Thereafter, the reaction mixture was spray-dried. The obtained dry gel was put in an alumina boat and heated at 750° C. for 10 hours in an atmosphere of oxygen in a tube furnace (TF-630 type, a product of Yamada Electric Company) and then pulverized in a mortar to obtain powdery LiNi0 79 0Co0.165Al0.025B0.020O2.



EXAMPLE 9

[0122] There was prepared a mixed aqueous solution of 2.0 mol/l nickel nitrate, cobalt nitrate and aluminum nitrate wherein the molar ratio of Ni:Co:Al was 790:140:50. This mixed aqueous solution and 1.0 mol/l aqueous sodium hydroxide solution were simultaneously added so as to keep pH to 9.75 at 25° C. under vigorous stirring, thereby effecting the continuous reaction.


[0123] The obtained reaction product was filtered, washed with water (the portion was dried after washing and its composition was Ni0.79Co0.14Al0.05(OH)1.86(NO3)0.15·0.24H2O) and suspended in water. Thereafter, boric acid was added to the suspension in an amount such that the molar ration of Ni:Co:Al:B became 790:140:50:20 with respect to the Ni, Co and Al contents in the suspension. To the resultant slurry was added dropwisely a 3.0 M aqueous lithium hydroxide solution in an amount such that the atomic ratio of Li/(Ni+Co+Al+B) was 1.05. Thereafter, the reaction mixture was spray - dried. The obtained dry gel was put in an alumina boat and heated at 775° C. for 10 hours in an atmosphere of oxygen in a tube furnace (TF-630 type, a product of Yamada Electric Company) , and then pulverized in a mortar to obtain powdery LiNi0 79 0Co0.140Al0.050B0.020O2.



EXAMPLE 10

[0124] There was prepared a mixed aqueous solution of 2.0 mol/l nickel nitrate, cobalt nitrate and aluminum nitrate wherein the molar ratio of Ni:Co:Al was 790:90:100. This mixed aqueous solution and 1.0 mol/l aqueous sodium hydroxide solution were simultaneously added so as to keep pH to 9.5 at 25° C. under vigorous stirring thereby effecting the continuous reaction.


[0125] The obtained reaction product was filtered, washed with water (the portion was dried after washing and its composition was Ni0.79Co0.09Al0.10(OH)1.92(NO3)0.14·0.18 H2O) and suspended in water. Thereafter, boric acid was added to the suspension in an amount such that the molar ration of Ni:Co:Al:B became 790:90:100:20 with respect to the Ni, Co and Al contents in the suspension. To the resultant slurry was added dropwisely a 3.0 M aqueous lithium hydroxide solution in an amount such that the atomic ratio of Li/(Ni+Co+Al+B) was 1.05. Thereafter, the reaction mixture was spray - dried. The obtained dry gel was put in an alumina boat and heated at 775° C. for 10 hours in an atmosphere of oxygen in a tube furnace (TF-630 type, a product of Yamada Electric Company) , and then pulverized in a mortar to obtain powdery LiNi0 79 0Co0.090Al0.100B0 020O2.



EXAMPLE 11

[0126] There was prepared a mixed aqueous solution of 2.0 mol/l nickel nitrate, cobalt nitrate, aluminum nitrate and ferric nitrate wherein the molar ratio of Ni:Co:Al:Fe was 800:100:50:50. This mixed aqueous solution and 1.0 mol/l aqueous sodium hydroxide solution were simultaneously added so as to keep pH to 9.5 at 25° C. under vigorous stirring thereby effecting the continuous reaction.


[0127] The obtained reaction product was filtered, washed with water (the portion was dried after washing and its composition was Ni0.8Co0.01Al0 05Fe0 05(OH)1 96NO3) 0.14·0.18 H2O) and suspended in water to form a slurry. To the resultant slurry was added dropwisely a 3.0 M aqueous lithium hydroxide solution in an amount such that the atomic ratio of Li/(Ni+Co+Al+Fe) was 1.05. Thereafter, the reaction mixture was spray-dried. The obtained dry gel was put in an alumina boat and heated at 725° C. for 15 hours in an atmosphere of oxygen in a tube furnace (TF-630 type, a product of Yamada Electric Company) , and then pulverized in a mortar to obtain powdery LiNi0.80 0Co0.100Al0.050Fe0.050O2.



EXAMPLE 12

[0128] There was prepared a mixed aqueous solution of 2.0 mol/l nickel nitrate, cobalt nitrate and manganese nitrate wherein the molar ratio of Ni:Co:Mn was 800:150:50. This mixed aqueous solution and 1.0 mol/l aqueous sodium hydroxide solution were simultanuously added so as to keep pH to 9.0 at 25° C. under vigorous stirring thereby effecting the continuous reaction.


[0129] The obtained reaction product was filtered, washed with water and suspended in water to form a slurry. To the resultant slurry was added dropwisely a 3.0 M aqueous lithium hydroxide solution in an amount such that the atomic ratio of Li/(Ni+Co+Mn) was 1.05. Thereafter, the reaction mixture was spray-dried. The obtained dry gel was put in an alumina boat and heated at 750° C. for 10 hours in an atmosphere of oxygen in a tube furnace (TF-630 type, a product of Yamada Electric Company), and then pulverized in a mortar to obtain powdery LiNi0.800Co0.150Mn0.050O2.



COMPARATIVE EXAMPLE 4 (dry process corresponding to Example 5)

[0130] 1.00 Mol lithium hydroxide, 0.80 mol nickel hydroxide, 0.10 mol cobalt hydroxide and 0.01 mol aluminum hydroxide were sufficiently mixed in dry state and pulverized in a mortar, and then pelletized into size of 14 mm of a diameter×2 mm of a thickness. The resultant pellets were heated at 750° C. for 48 hours in an atmosphere of oxygen.


[0131] The chemical composition of the heating product was LiNi0.80Co0.10Al0.10O2.



COMPARATIVE EXAMPLE 5 (dry process corresponding to Example 8)

[0132] 1.00 Mol lithium hydroxide, 0.79 mol nickel hydroxide, 0.165 mol cobalt hydroxide, 0.025 mol aluminum hydroxide and 0.02 mol boric acid were sufficiently mixed in dry state and pulverized in a mortar, and then pelletized into size of 14 mm of a diameter×2 mm of a thickness. The resultant pellets were heated at 750° C. for 48 hours in an atmosphere of oxygen.


[0133] The chemical composition of the heating product was LiNi0.79Co0.165Al0.025B0.02O2.


[0134] The powder X - ray diffraction patterns of the complex oxides obtained in Examples 8˜11 are shown in FIGS. 10˜ 13, respectively. As is apparent from them, any peak based on by-product was not recognized in each process and the complex oxides are estimated to have uniformly doped layered structure.


[0135] Furthermore, the trivalent (Ni+Co) ratio and the physical properties such as BET specific surface area, the peak intensity ratios (003)/(104) and (006)/(101) obtained by powder X -ray diffraction, each measured with respect to these complex oxides are shown in table 5. A SEM photograph (×1,500 magnifications) indicating the primary particles of the complex oxide of Example 8 is shown in FIG. 14, that (×1,500 magnifications) indicating the primary particles of the complex oxide of Example 10 is shown in FIG. 15 and that (×1,500 magnifications) indicating the primary particles of the complex oxide of Example 11 is shown in FIG. 16. The scale unit of—line shown in the lower part of the respective photographs indicates 10 μm.


[0136] The trivalent (Ni+Co) ratio and the BET specific surface area were measured according to Experimental Examples 2 and 3, respectively.
5TABLE 5Ratio of theTrivalencein (Ni + Co)BETRatio ofRatio ofNo.(%)m2/g(003)/(104)(006)/(101)Example 8100.00.441.3300.105Example 9100.00.621.2360.102Example 10 99.80.571.3110.114Example 11 99.90.691.3340.099


[0137] As is apparent from table 5, each of the complex oxides of the above Examples has the physical property satisfying sufficiently the range defined in the appended claims.


[0138] Moreover, table 6 shows the results of the battery test (charge and discharge test) conducted according to Experimental Example 4 using the respective complex oxides of Examples 5˜11 and Comparative Examples 4˜5 to evaluate initial discharge capacity (mAh/g), discharge capacity at 100th cycle (mAh/g) and decrease rate of discharge capacity at 100th cycle (%).
6TABLE 6InitialDecrease Rate ofDischargeDischarge CapacityDischarge CapacityCapacityat 100th Cycleat 100th CycleNo.(mAh/g)(mAh/g)(%)Example 51731617.2Example 61761656.4Example 71761656.0Example 81851774.3Example 91861803.2Example 101761694.2Example 111591477.6Comparative14811124.7 Example 4Comparative139 9829.6 Example 5


[0139] It is recognized from table 6 that the lithium nickel cobalt complex oxides have a tendency to decrease the initial discharge capacity with the increase in the Al content therein and correspondingly with decrease in the Co content as compared with the complex oxide of the Comparative Example 3 shown in table 3, and that the improvement in the cycle characteristics may be achieved by the addition of boron. Furthermore, it is understood that the addition of Fe shows a great tendency to decrease the initial discharge capacity as compared with the case of Al addition. However, the complex oxide of the present invention is superior in the initial capacity and the cycle characteristics to those of the Comparative Examples 4 and 5.


[0140] It can be seen from the above results that although the addition of Al has a significance in respect of making the amount used of the expensive Co decreased, it causes minus effect in the battery performance. However, the positive electrode employed hitherto as the material for lithium ionic secondary battery have a problem of the thermal stability. On the other hand, the complex oxides obtained by the present invention cause a good improvement effect with respect to the thermal stability.


[0141] As an index for the thermal stability of the positive electrode material, there is a means wherein differential thermal analysis is conducted with respect to the positive electrode material placed in charged state and the exothermic temperature at which oxygen evolution occurs is measured. Then, the test results of the thermal stability test carried out according to Experimental Example 5 with respect to the complex oxides obtained by the present invention are shown in table 7.
7TABLE 7Exothermic Peak Temperature at whichNo.Oxygen Evolution Occurs (° C.)Example 1215Example 2212Example 3218Example 4220Example 5236Example 6253Example 7253Example 8252Example 9249Example 10236Comparative198Example 2


[0142] It can be seen from table 7 that the introduction of Al into the lithium nickel cobalt complex oxide causes the elevation in the exothermic temperature at which oxigen evolution occurs in comparison with the complex oxide of Comparative Example 2, and further large primary particle as in Examples 6 and 7 causes the elevation in the exothermic temperature similarly so that the thermal stability can be improved.


[0143] As stated above, the lithium nickel cobalt complex oxide of the present invention, especially one doped completely with Al and/or B as the solid liquid is satisfactory secondary battery positive electrode material as the battery performance.



EXPERIMENTAL EXAMPLE 1

[0144] Scherrer's method:


[0145] It is a method wherein the size of crystallite is calculated by the following equation (1) on the assumption that the width of diffraction pattern is dependent on the size of crystallite alone owing to uniformity in the size of crystallite and no strain in the crystals.




D


h k l
=()/(βcosθ)  (Equation 1)



[0146] wherein Dh k l (angstrom) represents size of crystallite in vertical direction to the face (hkl), A (angstrom) the wave length of X-ray, G (rad) the width of diffraction pattern, θ (° ) angle of diffraction, and k a constant.



EXPERIMENTAL EXAMPLE 2

[0147] A method for measuring trivalent (Ni+Co):


[0148] The trivalent (Ni+Co) ratio is value expressed in percentage the ratio of the trivalent (Ni+Co) to the total (Ni+Co), and is measured by oxidation-reduction titration. 0.2 Gram of a sample was dissolved in 0.25 M FeSO4-3.6 N H2SO4 solution, and 2 ml of a concentrated phosphoric acid was added to the solution. The mixture was titrated with a 0.1 N KMnO4 solution. Blank test was carried out in the same manner as in the above. The trivalent (Ni+Co) % was calculated by the following equation. In the equation, f represents the factor of the 0.1 N KMnO4 solution, X0 the titer of the blank test (ml) , X the titer of the sample (ml), m the amount of the sample (g), A the content of Ni (%) and B the content of Co (%) The trivalent (Ni+Co) ratio (%) in the sample=10f ( X0−X)/m (A/5.871+B/5.893)



EXPERIMENTAL EXAMPLE 3

[0149] A method for measuring BET specific surface area:


[0150] The sample was degassed by heating under the flow of a mixed gas of 30% nitrogen and, 70% helium, and thereafter specific surface area was measured according to the BET one point continuous flowing method using “MONOSORB” (a product of Yuasa Ionics Co., Ltd.).



EXPERIMENTAL EXAMPLE 4

[0151] A battery test method


[0152] The lithium nickel complex oxide, acetylene black as a conductive agent and tetrafluoroethylene as a binder were mixed in a ratio of 88:6.0:6.0% by weight. Thereafter, the mixture was subjected to compression molding on stainless steel mesh, thereby obtaining pellets each having a diammeter of 18 mm. The resultant pellets were dried at 200° C. for 2 hours, and used as a positive electrode material.


[0153] As a negative electrode material was used a rolled lithium metal sheet pressed-bonded to a stainless substrate. As a diaphragm, porous membrane made of polypropylene (“Cell Guard 2502”) and a glass filter-paper filter were used. There was used an electrolyte in which 1 M LiClO4 was dissolved in an ethylene carbonate/dimethylmeth oxyethane mixture (1:1 weight ratio). The procedures up to completion from setup of a test cell (semi-open type cell) were conducted in an argon replaced dry box. The charging and discharging for this lithium battery were performed under a voltage control between 3.0 V and 4.3 V at a constant current density of 0.4 mA/ cm2.



EXPERIMENTAL EXAMPLE 5

[0154] A thermal stability test method:


[0155] A cell was prepared by a similar manner as in Experimantal Example 3 and charging was conducted under the constant current density of 0.4 mA/cm3 until it reached 4.4 V. After the completion of charging, the cell was decomposed to take out the positive electrode. The positive electrode was washed with the electrolyte solution and dried under vacuum. The dried positive electrode was subjected to a differential thermal-analysis apparatus under flow of nitrogen at a heating rate of 2° C./min. to examine the exothermic peak temperature at which oxygen evolution occurs.


[0156] Industrial Applicability:


[0157] As explained above, according to the present invention there can be provided a novel complex oxide which may be represented by the general formula (I)


LiyNi1-xCox1Mx2O2  (I)


[0158] and which is a positive electrode active material for a secondary battery which is excellent in the charging and discharging cycle characteristics so that it retaines high battery capacity that is comparable to the hitherto known LiNiO2 even by increasing the number of cycle and which has an improved cycle property (stability) at high temperature.


[0159] Also, since the amount used of the expensive Co can be suppresed to the minimum by introducing further the metal represented by M, it is advantageous from the viewpoint of cost.


Claims
  • 1. A complex oxide represented by the general formula (I)
  • 2. A complex oxide represented by the general formula (I)
  • 3. A complex oxide represented by the general formula (I)
  • 4. The complex oxide as claimed in claims 1˜3 wherein said M is at least one selected from the group consisting of Al and B.
  • 5. In a process for preparing a complex oxide represented by the general formula ( I)
  • 6. In a process for preparing a complex oxide represented by the general formula (I)
  • 7. In a process for preparing a complex oxide represented by the general formula (I)
  • 8. In a process for preparing a complex oxide represented by the general formula (I)
  • 9. In a process for preparing a complex oxide represented by the general formula (I)
  • 10. In a process for preparing a complex oxide represented by the general formula (I)
  • 11. In a process for preparing a complex oxide represented by the general formula (I)
  • 12. In a process for preparing a complex oxide represented by the general formula (I)
  • 13. In a process for preparing a complex oxide represented by the general formula (I)
  • 14. A positive electrode active material for a secondary battery which contains as an effective ingredient the complex oxide as claimed in claim 1, 2, 3 or 4.
Priority Claims (2)
Number Date Country Kind
8/231396 Aug 1996 JP
8/355120 Dec 1996 JP
PCT Information
Filing Document Filing Date Country Kind
PCT/JP97/02803 8/11/1997 JP