A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the United States Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
The technology relates to interactive on-line customer service communications, and more specifically to systems, methods and computer readable media for changing the context of a user interface when a customer service agent changes the customer he is serving in a live online chat.
Customer service representatives who handle online chats often handle multiple chats at once. Besides the fact that this may be stressful, multiple ongoing chats may be difficult to manage. In fact, the more records an agent has to sift through for one case, the longer it may take that agent to solve all of the cases at hand.
The included drawings are for illustrative purposes and serve to provide examples of possible structures and operations for the disclosed inventive systems, apparatus, methods and computer-readable storage media. These drawings in no way limit any changes in form and detail that may be made by one skilled in the art without departing from the spirit and scope of the disclosed implementations.
Examples of systems, apparatus, computer-readable storage media, and methods according to the disclosed implementations are described in this section. These examples are being provided solely to add context and aid in the understanding of the disclosed implementations. It will thus be apparent to one skilled in the art that the disclosed implementations may be practiced without some or all of the specific details provided. In other instances, certain process or method operations, also referred to herein as “blocks,” have not been described in detail in order to avoid unnecessarily obscuring the disclosed implementations. Other implementations and applications also are possible, and as such, the following examples should not be taken as definitive or limiting either in scope or setting.
In the following detailed description, references are made to the accompanying drawings, which form a part of the description and in which are shown, by way of illustration, specific implementations. Although these disclosed implementations are described in sufficient detail to enable one skilled in the art to practice the implementations, it is to be understood that these examples are not limiting, such that other implementations may be used and changes may be made to the disclosed implementations without departing from their spirit and scope. For example, the blocks of the methods shown and described herein are not necessarily performed in the order indicated in some other implementations. Additionally, in some other implementations, the disclosed methods may include more or fewer blocks than are described. As another example, some blocks described herein as separate blocks may be combined in some other implementations. Conversely, what may be described herein as a single block may be implemented in multiple blocks in some other implementations. Additionally, the conjunction “or” is intended herein in the inclusive sense where appropriate unless otherwise indicated; that is, the phrase “A, B or C” is intended to include the possibilities of “A,” “B,” “C,” “A and B,” “B and C,” “A and C” and “A, B and C.”
Some implementations described and referenced herein are directed to systems, apparatus, computer-implemented methods and computer-readable storage media for dynamically updating emails.
A database system might display a case associated with a customer support query. The database system may initiate a search for other cases related to the new case. The database system may extract relevant terms from the title and/or description provided in the new case using a term weighting algorithm, such as more like this (MLT). The relevant terms are then used in a search query for identifying the related cases.
The database system identifies articles linked to the related cases, ranks the articles, and causes the articles to be displayed on a remote user system in an order based on the ranking. The database system may rank the articles based on a number of related cases linked to the articles. The database system also may rank the article based on other parameters, such as relevancy scores for the related cases, labels assigned to the cases, last modified dates of the related cases, etc.
The database system may identify more relevant articles by first finding related cases that use a similar vocabulary to describe similar customer problems. The database system then identifies the articles that were previously determined to help resolve the prior problems. Thus, the database system may bridge the gap between vocabularies used by customers to describe problems and vocabularies used in articles to describe solutions to those problems.
In some implementations, the users described herein are users (or “members”) of an interactive online “enterprise social network,” also referred to herein as an “enterprise social networking system,” an “enterprise collaborative network,” or more simply as an “enterprise network.” Such online enterprise networks are increasingly becoming a common way to facilitate communication among people, any of whom can be recognized as enterprise users. One example of an online enterprise social network is Chatter®, provided by salesforce.com, inc. of San Francisco, Calif. salesforce.com, inc. is a provider of enterprise social networking services, customer relationship management (CRM) services and other database management services, any of which can be accessed and used in conjunction with the techniques disclosed herein in some implementations. These various services can be provided in a cloud computing environment as described herein, for example, in the context of a multi-tenant database system. Some of the described techniques or processes can be implemented without having to install software locally, that is, on computing devices of users interacting with services available through the cloud. While the disclosed implementations may be described with reference to Chatter® and more generally to enterprise social networking, those of ordinary skill in the art should understand that the disclosed techniques are neither limited to Chatter® nor to any other services and systems provided by salesforce.com, inc. and can be implemented in the context of various other database systems such as cloud-based systems that are not part of a multi-tenant database system or which do not provide enterprise social networking services.
In some implementations, the users described herein are users (or “members”) of an interactive online “enterprise social network,” also referred to herein as an “enterprise social networking system,” an “enterprise collaborative network,” or more simply as an “enterprise network.” Such online enterprise networks are increasingly becoming a common way to facilitate communication among people, any of whom can be recognized as enterprise users. One example of an online enterprise social network is Chatter®, provided by salesforce.com, inc. of San Francisco, Calif. salesforce.com, inc. is a provider of enterprise social networking services, customer relationship management (CRM) services and other database management services, any of which can be accessed and used in conjunction with the techniques disclosed herein in some implementations. These various services can be provided in a cloud computing environment as described herein, for example, in the context of a multi-tenant database system. Some of the described techniques or processes can be implemented without having to install software locally, that is, on computing devices of users interacting with services available through the cloud. While the disclosed implementations may be described with reference to Chatter® and more generally to enterprise social networking, those of ordinary skill in the art should understand that the disclosed techniques are neither limited to Chatter® nor to any other services and systems provided by salesforce.com, inc. and can be implemented in the context of various other database systems such as cloud-based systems that are not part of a multi-tenant database system or which do not provide enterprise social networking services.
In some implementations, the environment 10 is an environment in which an on-demand database service exists. An on-demand database service, such as that which can be implemented using the system 16, is a service that is made available to users outside of the enterprise(s) that own, maintain or provide access to the system 16. As described above, such users generally do not need to be concerned with building or maintaining the system 16. Instead, resources provided by the system 16 may be available for such users' use when the users need services provided by the system 16; that is, on the demand of the users. Some on-demand database services can store information from one or more tenants into tables of a common database image to form a multi-tenant database system (MTS). The term “multi-tenant database system” can refer to those systems in which various elements of hardware and software of a database system may be shared by one or more customers or tenants. For example, a given application server may simultaneously process requests for a great number of customers, and a given database table may store rows of data such as feed items for a potentially much greater number of customers. A database image can include one or more database objects. A relational database management system (RDBMS) or the equivalent can execute storage and retrieval of information against the database object(s).
Application platform 18 can be a framework that allows the applications of system 16 to execute, such as the hardware or software infrastructure of the system 16. In some implementations, the application platform 18 enables the creation, management and execution of one or more applications developed by the provider of the on-demand database service, users accessing the on-demand database service via user systems 12, or third party application developers accessing the on-demand database service via user systems 12.
In some implementations, the system 16 implements a web-based customer relationship management (CRM) system. For example, in some such implementations, the system 16 includes application servers configured to implement and execute CRM software applications as well as provide related data, code, forms, renderable web pages and documents and other information to and from user systems 12 and to store to, and retrieve from, a database system related data, objects, and Web page content. In some MTS implementations, data for multiple tenants may be stored in the same physical database object in tenant database 22. In some such implementations, tenant data is arranged in the storage medium(s) of tenant database 22 so that data of one tenant is kept logically separate from that of other tenants so that one tenant does not have access to another tenant's data, unless such data is expressly shared. The system 16 also implements applications other than, or in addition to, a CRM application. For example, the system 16 can provide tenant access to multiple hosted (standard and custom) applications, including a CRM application. User (or third party developer) applications, which may or may not include CRM, may be supported by the application platform 18. The application platform 18 manages the creation and storage of the applications into one or more database objects and the execution of the applications in one or more virtual machines in the process space of the system 16.
According to some implementations, each system 16 is configured to provide web pages, forms, applications, data and media content to user (client) systems 12 to support the access by user systems 12 as tenants of system 16. As such, system 16 provides security mechanisms to keep each tenant's data separate unless the data is shared. If more than one MTS is used, they may be located in close proximity to one another (for example, in a server farm located in a single building or campus), or they may be distributed at locations remote from one another (for example, one or more servers located in city A and one or more servers located in city B). As used herein, each MTS could include one or more logically or physically connected servers distributed locally or across one or more geographic locations. Additionally, the term “server” is meant to refer to a computing device or system, including processing hardware and process space(s), an associated storage medium such as a memory device or database, and, in some instances, a database application (for example, OODBMS or RDBMS) as is well known in the art. It should also be understood that “server system” and “server” are often used interchangeably herein. Similarly, the database objects described herein can be implemented as part of a single database, a distributed database, a collection of distributed databases, a database with redundant online or offline backups or other redundancies, etc., and can include a distributed database or storage network and associated processing intelligence.
The network 14 can be or include any network or combination of networks of systems or devices that communicate with one another. For example, the network 14 can be or include any one or any combination of a LAN (local area network), WAN (wide area network), telephone network, wireless network, cellular network, point-to-point network, star network, token ring network, hub network, or other appropriate configuration. The network 14 can include a TCP/IP (Transfer Control Protocol and Internet Protocol) network, such as the global internetwork of networks often referred to as the “Internet” (with a capital “I”). The Internet will be used in many of the examples herein. However, it should be understood that the networks that the disclosed implementations can use are not so limited, although TCP/IP is a frequently implemented protocol.
The user systems 12 can communicate with system 16 using TCP/IP and, at a higher network level, other common Internet protocols to communicate, such as HTTP, FTP, AFS, WAP, etc. In an example where HTTP is used, each user system 12 can include an HTTP client commonly referred to as a “web browser” or simply a “browser” for sending and receiving HTTP signals to and from an HTTP server of the system 16. Such an HTTP server can be implemented as the sole network interface 20 between the system 16 and the network 14, but other techniques can be used in addition to or instead of these techniques. In some implementations, the network interface 20 between the system 16 and the network 14 includes load sharing functionality, such as round-robin HTTP request distributors to balance loads and distribute incoming HTTP requests evenly over a number of servers. In MTS implementations, each of the servers can have access to the MTS data; however, other alternative configurations may be used instead.
The user systems 12 can be implemented as any computing device(s) or other data processing apparatus or systems usable by users to access the database system 16. For example, any of user systems 12 can be a desktop computer, a work station, a laptop computer, a tablet computer, a handheld computing device, a mobile cellular phone (for example, a “smartphone”), or any other Wi-Fi-enabled device, wireless access protocol (WAP)-enabled device, or other computing device capable of interfacing directly or indirectly to the Internet or other network. The terms “user system” and “computing device” are used interchangeably herein with one another and with the term “computer.” As described above, each user system 12 typically executes an HTTP client, for example, a web browsing (or simply “browsing”) program, such as a web browser based on the WebKit platform, Microsoft's Internet Explorer browser, Netscape's Navigator browser, Opera's browser, Mozilla's Firefox browser, or a WAP-enabled browser in the case of a cellular phone, PDA or other wireless device, or the like, allowing a user (for example, a subscriber of on-demand services provided by the system 16) of the user system 12 to access, process and view information, pages and applications available to it from the system 16 over the network 14.
Each user system 12 also typically includes one or more user input devices, such as a keyboard, a mouse, a trackball, a touch pad, a touch screen, a pen or stylus or the like, for interacting with a graphical user interface (GUI) provided by the browser on a display (for example, a monitor screen, liquid crystal display (LCD), light-emitting diode (LED) display, among other possibilities) of the user system 12 in conjunction with pages, forms, applications and other information provided by the system 16 or other systems or servers. For example, the user interface device can be used to access data and applications hosted by system 16, and to perform searches on stored data, and otherwise allow a user to interact with various GUI pages that may be presented to a user. As discussed above, implementations are suitable for use with the Internet, although other networks can be used instead of or in addition to the Internet, such as an intranet, an extranet, a virtual private network (VPN), a non-TCP/IP based network, any LAN or WAN or the like.
The users of user systems 12 may differ in their respective capacities, and the capacity of a particular user system 12 can be entirely determined by permissions (permission levels) for the current user of such user system. For example, where a salesperson is using a particular user system 12 to interact with the system 16, that user system can have the capacities allotted to the salesperson. However, while an administrator is using that user system 12 to interact with the system 16, that user system can have the capacities allotted to that administrator. Where a hierarchical role model is used, users at one permission level can have access to applications, data, and database information accessible by a lower permission level user, but may not have access to certain applications, database information, and data accessible by a user at a higher permission level. Thus, different users generally will have different capabilities with regard to accessing and modifying application and database information, depending on the users' respective security or permission levels (also referred to as “authorizations”).
According to some implementations, each user system 12 and some or all of its components are operator-configurable using applications, such as a browser, including computer code executed using a central processing unit (CPU) such as an Intel Pentium® processor or the like. Similarly, the system 16 (and additional instances of an MTS, where more than one is present) and all of its components can be operator-configurable using application(s) including computer code to run using the processor system 17, which may be implemented to include a CPU, which may include an Intel Pentium® processor or the like, or multiple CPUs.
The system 16 includes tangible computer-readable media having non-transitory instructions stored thereon/in that are executable by or used to program a server or other computing system (or collection of such servers or computing systems) to perform some of the implementation of processes described herein. For example, computer program code 26 can implement instructions for operating and configuring the system 16 to intercommunicate and to process web pages, applications and other data and media content as described herein. In some implementations, the computer code 26 can be downloadable and stored on a hard disk, but the entire program code, or portions thereof, also can be stored in any other volatile or non-volatile memory medium or device as is well known, such as a ROM or RAM, or provided on any media capable of storing program code, such as any type of rotating media including floppy disks, optical discs, digital versatile disks (DVD), compact disks (CD), microdrives, and magneto-optical disks, and magnetic or optical cards, nanosystems (including molecular memory ICs), or any other type of computer-readable medium or device suitable for storing instructions or data. Additionally, the entire program code, or portions thereof, may be transmitted and downloaded from a software source over a transmission medium, for example, over the Internet, or from another server, as is well known, or transmitted over any other existing network connection as is well known (for example, extranet, VPN, LAN, etc.) using any communication medium and protocols (for example, TCP/IP, HTTP, HTTPS, Ethernet, etc.) as are well known. It will also be appreciated that computer code for the disclosed implementations can be realized in any programming language that can be executed on a server or other computing system such as, for example, C, C++, HTML, any other markup language, Java™, JavaScript, ActiveX, any other scripting language, such as VBScript, and many other programming languages as are well known may be used. (Java™ is a trademark of Sun Microsystems, Inc.).
In
The process space 28 includes system process space 102, individual tenant process spaces 104 and a tenant management process space 110. The application platform 18 includes an application setup mechanism 38 that supports application developers' creation and management of applications. Such applications and others can be saved as metadata into tenant database 22 by save routines 36 for execution by subscribers as one or more tenant process spaces 104 managed by tenant management process 110, for example. Invocations to such applications can be coded using PL/SOQL 34, which provides a programming language style interface extension to API 32. A detailed description of some PL/SOQL language implementations is discussed in commonly assigned U.S. Pat. No. 7,730,478, titled METHOD AND SYSTEM FOR ALLOWING ACCESS TO DEVELOPED APPLICATIONS VIA A MULTI-TENANT ON-DEMAND DATABASE SERVICE, by Craig Weissman, issued on Jun. 1, 2010, and hereby incorporated by reference in its entirety and for all purposes. Invocations to applications can be detected by one or more system processes, which manage retrieving application metadata 116 for the subscriber making the invocation and executing the metadata as an application in a virtual machine.
The system 16 of
Each application server 100 can be communicably coupled with tenant database 22 and system database 24, for example, having access to tenant data 23 and system data 25, respectively, via a different network connection. For example, one application server 1001 can be coupled via the network 14 (for example, the Internet), another application server 100N-1 can be coupled via a direct network link, and another application server 100N can be coupled by yet a different network connection. Transfer Control Protocol and Internet Protocol (TCP/IP) are examples of typical protocols that can be used for communicating between application servers 100 and the system 16. However, it will be apparent to one skilled in the art that other transport protocols can be used to optimize the system 16 depending on the network interconnections used.
In some implementations, each application server 100 is configured to handle requests for any user associated with any organization that is a tenant of the system 16. Because it can be desirable to be able to add and remove application servers 100 from the server pool at any time and for various reasons, in some implementations there is no server affinity for a user or organization to a specific application server 100. In some such implementations, an interface system implementing a load balancing function (for example, an F5 Big-IP load balancer) is communicably coupled between the application servers 100 and the user systems 12 to distribute requests to the application servers 100. In one implementation, the load balancer uses a least-connections algorithm to route user requests to the application servers 100. Other examples of load balancing algorithms, such as round robin and observed-response-time, also can be used. For example, in some instances, three consecutive requests from the same user could hit three different application servers 100, and three requests from different users could hit the same application server 100. In this manner, by way of example, system 16 can be a multi-tenant system in which system 16 handles storage of, and access to, different objects, data and applications across disparate users and organizations.
In one example storage use case, one tenant can be a company that employs a sales force where each salesperson uses system 16 to manage aspects of their sales. A user can maintain contact data, leads data, customer follow-up data, performance data, goals and progress data, etc., all applicable to that user's personal sales process (for example, in tenant database 22). In an example of a MTS arrangement, because all of the data and the applications to access, view, modify, report, transmit, calculate, etc., can be maintained and accessed by a user system 12 having little more than network access, the user can manage his or her sales efforts and cycles from any of many different user systems. For example, when a salesperson is visiting a customer and the customer has Internet access in their lobby, the salesperson can obtain critical updates regarding that customer while waiting for the customer to arrive in the lobby.
While each user's data can be stored separately from other users' data regardless of the employers of each user, some data can be organization-wide data shared or accessible by several users or all of the users for a given organization that is a tenant. Thus, there can be some data structures managed by system 16 that are allocated at the tenant level while other data structures can be managed at the user level. Because an MTS can support multiple tenants including possible competitors, the MTS can have security protocols that keep data, applications, and application use separate. Also, because many tenants may opt for access to an MTS rather than maintain their own system, redundancy, up-time, and backup are additional functions that can be implemented in the MTS. In addition to user-specific data and tenant-specific data, the system 16 also can maintain system level data usable by multiple tenants or other data. Such system level data can include industry reports, news, postings, and the like that are sharable among tenants.
In some implementations, the user systems 12 (which also can be client systems) communicate with the application servers 100 to request and update system-level and tenant-level data from the system 16. Such requests and updates can involve sending one or more queries to tenant database 22 or system database 24. The system 16 (for example, an application server 100 in the system 16) can automatically generate one or more SQL statements (for example, one or more SQL queries) designed to access the desired information. System database 24 can generate query plans to access the requested data from the database. The term “query plan” generally refers to one or more operations used to access information in a database system.
Each database can generally be viewed as a collection of objects, such as a set of logical tables, containing data fitted into predefined or customizable categories. A “table” is one representation of a data object, and may be used herein to simplify the conceptual description of objects and custom objects according to some implementations. It should be understood that “table” and “object” may be used interchangeably herein. Each table generally contains one or more data categories logically arranged as columns or fields in a viewable schema. Each row or element of a table can contain an instance of data for each category defined by the fields. For example, a CRM database can include a table that describes a customer with fields for basic contact information such as name, address, phone number, fax number, etc. Another table can describe a purchase order, including fields for information such as customer, product, sale price, date, etc. In some MTS implementations, standard entity tables can be provided for use by all tenants. For CRM database applications, such standard entities can include tables for case, account, contact, lead, and opportunity data objects, each containing pre-defined fields. As used herein, the term “entity” also may be used interchangeably with “object” and “table.”
In some MTS implementations, tenants are allowed to create and store custom objects, or may be allowed to customize standard entities or objects, for example by creating custom fields for standard objects, including custom index fields. Commonly assigned U.S. Pat. No. 7,779,039, titled CUSTOM ENTITIES AND FIELDS IN A MULTI-TENANT DATABASE SYSTEM, by Weissman et al., issued on Aug. 17, 2010, and hereby incorporated by reference in its entirety and for all purposes, teaches systems and methods for creating custom objects as well as customizing standard objects in a multi-tenant database system. In some implementations, for example, all custom entity data rows are stored in a single multi-tenant physical table, which may contain multiple logical tables per organization. It is transparent to customers that their multiple “tables” are in fact stored in one large table or that their data may be stored in the same table as the data of other customers.
In embodiments, a method may include displaying a user interface comprising at least two windows, a first window displaying a live chat with a first individual and at least one of the remaining windows displaying content related to the live chat. The method may further include receiving an indication to pop-out the first window, and in response, displaying the first window as a separate moveable window, and displaying, within an original area of the first window, additional content related to one of the live chat or the first individual. The method may further include receiving an indication from a user to change the live chat to be with a second individual, and in response to the indication: displaying the live chat with the second individual in the separate moveable window; and displaying content related to the second individual in the at least one of the remaining windows.
In embodiments, a computer program may be stored on a storage medium for interactively displaying content. The computer program may include a set of instructions operable to cause a computer to cause a user interface to display at least two windows, a first window displaying a live chat with a first individual and at least one of the remaining windows displaying content related to the live chat. The instructions may be further operable to receive a first indication to pop-out the first window, and in response to the first indication, cause the first window to be displayed as a separate moveable window, and cause to be displayed, within an original area of the first window, additional content related to one of the live chat or the first individual. In embodiments, the instructions may be further operable to receive a second indication from a user to change the live chat to be with a second individual, and in response to the indication, cause the live chat with the second individual to be displayed in the separate moveable window, and cause content related to the second individual to be displayed in the at least one of the remaining windows.
As illustrated, process 200 may include operations performed at blocks 210-255. In embodiments, the operations may be performed by User System 12 of
From block 210 process 200 may proceed to block 220, where the device may receive an indication to pop out the window of the UI that is displaying the live chat. The window may be, for example, Current Conversation window 715 of
Continuing with reference to block 220 of
Alternatively, the indication may be automatic, generated by the device itself. This “automatic pop-out” may be set by one or more system parameters. For example, the chat shown in the bottom of Current Conversations window 715 of
From block 220, process 200 may proceed to block 230, where the device, in response to the indication, may cause the first window to be displayed as a separate moveable window, either in front of the UI or on a separate monitor.
In some embodiments, following the first window being popped-out, a device may “fill the hole” left by the popping out of the chat window by displaying additional content related to the first live chat in the area of the Current Conversations window previously occupied by the display of the live chat. In embodiments, the additional content may include, for example, past chats with the first individual, or, for example, details relevant to the live chat or the first individual. An example of this is shown in window 930 of
It is here noted that in the embodiment shown in
From block 230, process 200 may proceed to query block 240, where the device may determine if it has received a user indication to change to a second live chat with a second individual. For example, as noted, a customer service agent may simultaneously hold several ongoing chats with customers, the one he currently responds to being known as the “live” or “active” chat. This may be an efficient use of time where, for example, the customer service agent proposes solutions to a given individual to go and try to resolve their problem or issue, or, for example, where the customer service agent has previously sent instructions, or links to instructions, for a customer to read, and there is some lag time before the individual reports back via a new chat message. In such situations, rather than just wait, the customer service agent may change the live chat to one of the other ongoing chats, where, for example, an individual from a previously live (but still ongoing) chat may post a new message for the customer service agent.
Thus, when such a new message is seen by the customer service agent in the UI, he or she may leverage a lull or lag in their current live chat, and may switch the live chat to the previous individual who sent the new message. In embodiments, the customer service agent may interact with the UI to signal such a change, such as, for example, is shown in
Thus, in embodiments, in an example UI or component-based console, the separate components may integrate with each other, so that changes in one are automatically reflected in the contents of the others. This same connection may apply in embodiments, when one component is “popped out” of the console space itself. Thus, the separate and moveable window will continue to be integrated to the other workspace components.
Continuing with reference to
However, if at query block 240 the determination is “Yes”, and thus the user has changed live chat partners, then process 200 may proceed to block 250, where, in response to the user indication, the device may cause the separate and moveable window to display the second live chat with the second individual, and cause the at least one of the remaining windows to display content related to one of the second individual or the second chat, as described above in connection with
Referring now to
Continuing with reference to
From block 310 process 300 may proceed to block 320, where the device may receive an indication to pop out the window of the UI that is displaying the active chat. The window may be, for example, Current Conversation window 715 of
Continuing with reference to block 320 of
Alternatively, the indication may be automatic, generated by the device itself. This “automatic pop-out” may be set by one or more system parameters. For example, the chat shown in the bottom of Current Conversations window 715 of
From block 320, process 300 may proceed to block 330, where the device, in response to the indication, may cause the UI to display the active chat in a first separate moveable window, and display prior messages of the active chat in the original active chat window of the UI, as shown, for example, in
From block 330, process 300 may proceed to block 340, where the device may receive a user indication to change the active chat to be with a second individual. From block 340, process 300 may proceed to block 350, where the device, in response to the user indication, may cause the UI to display the active chat with the second individual in the active chat window, and to display the popped-out chat window with the chat with the first individual as non-active. This is shown, for example, by comparison of
In these examples, an agent, seeing a new message arrive from Taylor Watson-Rice, as shown, for example, by indicator 1113 of
Finally, as also shown in
Continuing with reference to
From block 355, process 300 may proceed to block 360, where the device, in response to the indication, may cause the UI to display the active chat in a second separate moveable window, and display prior messages of the active chat (here with the second individual) in the original active chat window of the UI, as shown, for example, in
As noted above, an indication to pop-out the chat window may be communicated to the device in various ways, such as, for example, the user clicking on a button or widget, speaking a command, typing in a command or code for a command, or the like. For example, a user may communicate such a command by clicking or engaging with a pop-out button, such as, for example, button 1320 in
Finally, from block 360, process 300 may proceed to block 365, where it may terminate.
Referring now to
It is noted that blocks 331 through 361 of process 3A are completely analogous to blocks 330 through 360, respectively, of process 300, and need not be further described. Thus, after processing block 361, (analogous to block 360 of process 300) the device may display the active chat with the second individual in a second separate moveable window, and display prior chat messages with the second individual in the active chat window of the multi-window UI. As noted above, this situation is illustrated, for example, in
The noteworthy aspects of process 300A begin at block 366. Thus, from block 361, process 300A may proceed to block 366, where the device may receive a user indication to change the individual of the active chat back to the first individual. Thus, in the example of
In embodiments, the user indication to change the individual in the live chat may be performed using any of the methods as described above, or, for example, may be performed simply by a user clicking anywhere within an inactive separate and moveable window, if the individual desired to now be in the live chat was previously in a live chat with the user, and thus an inactive separate and moveable window is still being displayed for that individual. In embodiments, where a user is more or less in a round robin situation with, say, three individuals, the user may, in embodiments, easily change form one live chat to another simply by activating one of the displayed inactive separate moveable windows.
From block 366, process 300A may proceed to block 371, where the device may, in response to the user indication, display the first separate moveable window as active, display prior chat messages with the first individual in the designated active chat window of the multi-window UI, and display the second separate moveable window as inactive. This is illustrated, for example, in
Finally, from block 371, process 300A may proceed to block 376, where it may terminate.
It is here noted that by the example mechanisms as illustrated in
To clear the display monitor of such multiple windows, when a chat is finally over, and the individual's issue resolved, the user may pop the separate moveable window back in to the UI, such as, for example, by clicking on pop-in icon 925, as shown in
Referring now to
Additionally, computer device 400 may include mass storage device(s) 406 (such as solid state drives), input/output device interface 408 (to interface with various input/output devices, such as, mouse, cursor control, display device (including touch sensitive screen), and so forth) and communication interfaces 510 (such as network interface cards, modems and so forth). In embodiments, communication interfaces 510 may support wired or wireless communication, including near field communication. The elements may be coupled to each other via system bus 512, which may represent one or more buses. In the case of multiple buses, they may be bridged by one or more bus bridges (not shown).
Each of these elements may perform its conventional functions known in the art. In particular, system memory 404 and mass storage device(s) 406 may be employed to store a working copy and a permanent copy of the executable code of the programming instructions of an operating system, one or more applications, Web Browser 221, Extension 223, Email Server 231, Other 233, Message Hosting Module 241 and Notification Module 242, as well as each of their respective counterparts shown in the alternate system 200B of
The permanent copy of the executable code of the programming instructions or the bit streams for configuring hardware accelerator 405 may be placed into permanent mass storage device(s) 406 in the factory, or in the field, through, for example, a distribution medium (not shown), such as a compact disc (CD), or through communication interface 410 (from a distribution server (not shown)).
The number, capability and/or capacity of these elements 410-412 may vary, depending on the intended use of example computer device 400, e.g., whether example computer device 400 is a smartphone, tablet, ultrabook, a laptop, a server, a set-top box, a game console, a camera, and so forth. The constitutions of these elements 410-412 are otherwise known, and accordingly will not be further described.
Referring back to
Referring now to
With reference to
Continuing with reference to
Referring now to
Referring now to
Similarly,
Referring now to
Continuing with reference to
Referring now to
Referring now to
Finally, flag button 2160 is shown, highlighted in a lightly shaded circle. Customer service agent Jason may click on it, or otherwise interact with it, as described above, to ask his supervisor's help. The result of interacting with flag button 2160 is depicted in
Referring now to
Referring now to
The specific details of the specific aspects of implementations disclosed herein may be combined in any suitable manner without departing from the spirit and scope of the disclosed implementations. However, other implementations may be directed to specific implementations relating to each individual aspect, or specific combinations of these individual aspects. Additionally, while the disclosed examples may include those with reference to an implementation in which an on-demand database service environment is implemented in a system having an application server providing a front end for an on-demand database service capable of supporting multiple tenants, the present implementations are not limited to multi-tenant databases or deployment on application servers. Implementations may be practiced using other database architectures, i.e., ORACLE®, DB2® by IBM and the like without departing from the scope of the implementations claimed. Thus, in general, implementations may be practiced without use of multi-tenant databases, and without deployment on application servers.
It should also be understood that some of the disclosed implementations can be embodied in the form of various types of hardware, software, firmware, or combinations thereof, including in the form of control logic, and using such hardware or software in a modular or integrated manner. Other ways or methods are possible using hardware and a combination of hardware and software. Additionally, any of the software components or functions described in this application can be implemented as software code to be executed by one or more processors using any suitable computer language such as, for example, Java, C++ or Perl using, for example, existing or object-oriented techniques. The software code can be stored as a computer- or processor-executable instructions or commands on a physical non-transitory computer-readable medium. Examples of suitable media include random access memory (RAM), read only memory (ROM), magnetic media such as a hard-drive or a floppy disk, or an optical medium such as a compact disk (CD) or DVD (digital versatile disk), flash memory, and the like, or any combination of such storage or transmission devices.
Computer-readable media encoded with the software/program code may be packaged with a compatible device or provided separately from other devices (for example, via Internet download). Any such computer-readable medium may reside on or within a single computing device or an entire computer system, and may be among other computer-readable media within a system or network. A computer system, or other computing device, may include a monitor, printer, or other suitable display for providing any of the results mentioned herein to a user.
While some implementations have been described herein, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present application should not be limited by any of the implementations described herein, but should be defined only in accordance with the following and later-submitted claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
5577188 | Zhu | Nov 1996 | A |
5608872 | Schwartz et al. | Mar 1997 | A |
5649104 | Carleton et al. | Jul 1997 | A |
5715450 | Ambrose et al. | Feb 1998 | A |
5761419 | Schwartz et al. | Jun 1998 | A |
5819038 | Carleton et al. | Oct 1998 | A |
5821937 | Tonelli et al. | Oct 1998 | A |
5831610 | Tonelli et al. | Nov 1998 | A |
5873096 | Lim et al. | Feb 1999 | A |
5918159 | Fomukong et al. | Jun 1999 | A |
5963953 | Cram et al. | Oct 1999 | A |
5983227 | Nazem et al. | Nov 1999 | A |
6092083 | Brodersen et al. | Jul 2000 | A |
6161149 | Achacoso et al. | Dec 2000 | A |
6169534 | Raffel et al. | Jan 2001 | B1 |
6178425 | Brodersen et al. | Jan 2001 | B1 |
6189011 | Lim et al. | Feb 2001 | B1 |
6216133 | Masthoff | Apr 2001 | B1 |
6216135 | Brodersen et al. | Apr 2001 | B1 |
6233617 | Rothwein et al. | May 2001 | B1 |
6236978 | Tuzhilin | May 2001 | B1 |
6266669 | Brodersen et al. | Jul 2001 | B1 |
6288717 | Dunkle | Sep 2001 | B1 |
6295530 | Ritchie et al. | Sep 2001 | B1 |
6324568 | Diec et al. | Nov 2001 | B1 |
6324693 | Brodersen et al. | Nov 2001 | B1 |
6336137 | Lee et al. | Jan 2002 | B1 |
D454139 | Feldcamp et al. | Mar 2002 | S |
6367077 | Brodersen et al. | Apr 2002 | B1 |
6393605 | Loomans | May 2002 | B1 |
6405220 | Brodersen et al. | Jun 2002 | B1 |
6411949 | Schaffer | Jun 2002 | B1 |
6434550 | Warner et al. | Aug 2002 | B1 |
6446089 | Brodersen et al. | Sep 2002 | B1 |
6535909 | Rust | Mar 2003 | B1 |
6549908 | Loomans | Apr 2003 | B1 |
6553563 | Ambrose et al. | Apr 2003 | B2 |
6560461 | Fomukong et al. | May 2003 | B1 |
6574635 | Stauber et al. | Jun 2003 | B2 |
6577726 | Huang et al. | Jun 2003 | B1 |
6601087 | Zhu et al. | Jul 2003 | B1 |
6604117 | Lim et al. | Aug 2003 | B2 |
6604128 | Diec et al. | Aug 2003 | B2 |
6609150 | Lee et al. | Aug 2003 | B2 |
6621834 | Scherpbier et al. | Sep 2003 | B1 |
6654032 | Zhu et al. | Nov 2003 | B1 |
6665648 | Brodersen et al. | Dec 2003 | B2 |
6665655 | Warner et al. | Dec 2003 | B1 |
6684438 | Brodersen et al. | Feb 2004 | B2 |
6711565 | Subramaniam et al. | Mar 2004 | B1 |
6724399 | Katchour et al. | Apr 2004 | B1 |
6728702 | Subramaniam et al. | Apr 2004 | B1 |
6728960 | Loomans et al. | Apr 2004 | B1 |
6732095 | Warshavsky et al. | May 2004 | B1 |
6732100 | Brodersen et al. | May 2004 | B1 |
6732111 | Brodersen et al. | May 2004 | B2 |
6754681 | Brodersen et al. | Jun 2004 | B2 |
6763351 | Subramaniam et al. | Jul 2004 | B1 |
6763501 | Zhu et al. | Jul 2004 | B1 |
6768904 | Kim | Jul 2004 | B2 |
6772229 | Achacoso et al. | Aug 2004 | B1 |
6782383 | Subramaniam et al. | Aug 2004 | B2 |
6804330 | Jones et al. | Oct 2004 | B1 |
6826565 | Ritchie et al. | Nov 2004 | B2 |
6826582 | Chatterjee et al. | Nov 2004 | B1 |
6826745 | Coker | Nov 2004 | B2 |
6829655 | Huang et al. | Dec 2004 | B1 |
6842748 | Warner et al. | Jan 2005 | B1 |
6850895 | Brodersen et al. | Feb 2005 | B2 |
6850949 | Warner et al. | Feb 2005 | B2 |
6907566 | McElfresh et al. | Jun 2005 | B1 |
7062502 | Kesler | Jun 2006 | B1 |
7069231 | Cinarkaya | Jun 2006 | B1 |
7069497 | Desai | Jun 2006 | B1 |
7100111 | McElfresh et al. | Aug 2006 | B2 |
7181758 | Chan | Feb 2007 | B1 |
7269590 | Hull et al. | Sep 2007 | B2 |
7289976 | Kihneman et al. | Oct 2007 | B2 |
7340411 | Cook | Mar 2008 | B2 |
7356482 | Frankland et al. | Apr 2008 | B2 |
7373599 | McElfresh et al. | May 2008 | B2 |
7401094 | Kesler | Jul 2008 | B1 |
7406501 | Szeto et al. | Jul 2008 | B2 |
7412455 | Dillon | Aug 2008 | B2 |
7454509 | Boulter et al. | Nov 2008 | B2 |
7508789 | Chan | Mar 2009 | B2 |
7599935 | La Rotonda et al. | Oct 2009 | B2 |
7603331 | Tuzhilin et al. | Oct 2009 | B2 |
7603483 | Psounis et al. | Oct 2009 | B2 |
7620655 | Larsson et al. | Nov 2009 | B2 |
7644122 | Weyer et al. | Jan 2010 | B2 |
7668861 | Steven | Feb 2010 | B2 |
7698160 | Beaven et al. | Apr 2010 | B2 |
7730478 | Weissman | Jun 2010 | B2 |
7747648 | Kraft et al. | Jun 2010 | B1 |
7779039 | Weissman et al. | Aug 2010 | B2 |
7779475 | Jakobson et al. | Aug 2010 | B2 |
7827208 | Bosworth et al. | Nov 2010 | B2 |
7853881 | Aly Assal et al. | Dec 2010 | B1 |
7945653 | Zukerberg et al. | May 2011 | B2 |
8005896 | Cheah | Aug 2011 | B2 |
8014943 | Jakobson | Sep 2011 | B2 |
8015495 | Achacoso et al. | Sep 2011 | B2 |
8032297 | Jakobson | Oct 2011 | B2 |
8073850 | Hubbard et al. | Dec 2011 | B1 |
8082301 | Ahlgren et al. | Dec 2011 | B2 |
8095413 | Beaven | Jan 2012 | B1 |
8095531 | Weissman et al. | Jan 2012 | B2 |
8095594 | Beaven et al. | Jan 2012 | B2 |
8103611 | Tuzhilin et al. | Jan 2012 | B2 |
8150913 | Cheah | Apr 2012 | B2 |
8209308 | Rueben et al. | Jun 2012 | B2 |
8209333 | Hubbard et al. | Jun 2012 | B2 |
8275836 | Beaven et al. | Sep 2012 | B2 |
8457545 | Chan | Jun 2013 | B2 |
8484111 | Frankland et al. | Jul 2013 | B2 |
8490025 | Jakobson et al. | Jul 2013 | B2 |
8504945 | Jakobson et al. | Aug 2013 | B2 |
8510045 | Rueben et al. | Aug 2013 | B2 |
8510664 | Rueben et al. | Aug 2013 | B2 |
8566301 | Rueben et al. | Oct 2013 | B2 |
8646103 | Jakobson et al. | Feb 2014 | B2 |
20010044791 | Richter et al. | Nov 2001 | A1 |
20020072951 | Lee et al. | Jun 2002 | A1 |
20020082892 | Raffel et al. | Jun 2002 | A1 |
20020129352 | Brodersen et al. | Sep 2002 | A1 |
20020140731 | Subramaniam et al. | Oct 2002 | A1 |
20020143997 | Huang et al. | Oct 2002 | A1 |
20020162090 | Parnell et al. | Oct 2002 | A1 |
20020165742 | Robbins | Nov 2002 | A1 |
20030004971 | Gong | Jan 2003 | A1 |
20030018705 | Chen et al. | Jan 2003 | A1 |
20030018830 | Chen et al. | Jan 2003 | A1 |
20030066031 | Laane et al. | Apr 2003 | A1 |
20030066032 | Ramachandran et al. | Apr 2003 | A1 |
20030069936 | Warner et al. | Apr 2003 | A1 |
20030070000 | Coker et al. | Apr 2003 | A1 |
20030070004 | Mukundan et al. | Apr 2003 | A1 |
20030070005 | Mukundan et al. | Apr 2003 | A1 |
20030074418 | Coker et al. | Apr 2003 | A1 |
20030120675 | Stauber et al. | Jun 2003 | A1 |
20030151633 | George et al. | Aug 2003 | A1 |
20030159136 | Huang et al. | Aug 2003 | A1 |
20030187921 | Diec et al. | Oct 2003 | A1 |
20030189600 | Gune et al. | Oct 2003 | A1 |
20030204427 | Gune et al. | Oct 2003 | A1 |
20030206192 | Chen et al. | Nov 2003 | A1 |
20030225730 | Warner et al. | Dec 2003 | A1 |
20040001092 | Rothwein et al. | Jan 2004 | A1 |
20040010489 | Rio et al. | Jan 2004 | A1 |
20040015981 | Coker et al. | Jan 2004 | A1 |
20040027388 | Berg et al. | Feb 2004 | A1 |
20040128001 | Levin et al. | Jul 2004 | A1 |
20040145608 | Fay | Jul 2004 | A1 |
20040186860 | Lee et al. | Sep 2004 | A1 |
20040193510 | Catahan et al. | Sep 2004 | A1 |
20040199489 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199536 | Barnes Leon et al. | Oct 2004 | A1 |
20040199543 | Braud et al. | Oct 2004 | A1 |
20040249854 | Barnes-Leon et al. | Dec 2004 | A1 |
20040260534 | Pak et al. | Dec 2004 | A1 |
20040260659 | Chan et al. | Dec 2004 | A1 |
20040268299 | Lei et al. | Dec 2004 | A1 |
20050050555 | Exley et al. | Mar 2005 | A1 |
20050091098 | Brodersen et al. | Apr 2005 | A1 |
20070208802 | Barman | Sep 2007 | A1 |
20080249972 | Dillon | Oct 2008 | A1 |
20090049385 | Blinnikka | Feb 2009 | A1 |
20090063415 | Chatfield et al. | Mar 2009 | A1 |
20090100342 | Jakobson | Apr 2009 | A1 |
20090177744 | Marlow et al. | Jul 2009 | A1 |
20090282421 | Jaffer | Nov 2009 | A1 |
20110218958 | Warshavsky | Sep 2011 | A1 |
20110247051 | Bulumulla | Oct 2011 | A1 |
20120042218 | Cinarkaya | Feb 2012 | A1 |
20120159349 | Kansky | Jun 2012 | A1 |
20120233137 | Jakobson et al. | Sep 2012 | A1 |
20120290407 | Hubbard et al. | Nov 2012 | A1 |
20130055113 | Chazin | Feb 2013 | A1 |
20130212497 | Zelenko et al. | Aug 2013 | A1 |
20130218948 | Jakobson | Aug 2013 | A1 |
20130218949 | Jakobson | Aug 2013 | A1 |
20130218966 | Jakobson | Aug 2013 | A1 |
20130247216 | Cinarkaya | Sep 2013 | A1 |
20130268837 | Braithwaite | Oct 2013 | A1 |
20140359537 | Jackobson et al. | Dec 2014 | A1 |
20140365957 | Louch | Dec 2014 | A1 |
20160036649 | Kansky | Feb 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20190220154 A1 | Jul 2019 | US |