LIVE-ATTENUATED VIRUS VACCINE

Information

  • Patent Application
  • 20240252616
  • Publication Number
    20240252616
  • Date Filed
    July 16, 2021
    3 years ago
  • Date Published
    August 01, 2024
    3 months ago
Abstract
This invention relates to a codon deoptimized severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) genome. In particular, embodiments of the invention concern a vaccine comprising live attenuated SARS-COV-2 comprising a partly codon deoptimized viral genome, SARS-COV-2 comprising a partly codon deoptimized viral genome, as well as their use in methods of treatment and prevention of viral infection. The ORF1a region of the viral genome has been codon deoptimized.
Description
RELATED APPLICATIONS

This application claims priority of Indian Provisional Patent Application No. 202041030397, filed 16 Jul. 2020, and Indian Provisional Patent Application No. 202041056151, filed 23 Dec. 2020, as well as the associated sequence listings filed on those same dates, the entire contents of which are incorporated herein by reference.


TECHNICAL FIELD

This invention generally relates to a codon deoptimized severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) genome. In particular, embodiments of the invention concern a vaccine comprising live attenuated SARS-COV-2 comprising a partly codon deoptimized viral genome, SARS-COV-2 comprising a partly codon deoptimized viral genome, as well as their use in methods of treatment and prevention of viral infection.


BACKGROUND ART

Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) is a strain of beta-coronavirus that causes respiratory illness and is responsible for the COVID-19 pandemic. Multiple other vaccine formulations are currently under development around the world (e.g. RNA and DNA vaccine, subunit vaccine, inactivated whole virus vaccine, and recombinant virus vaccine). Codon deoptimization technology, applicable for construction of live attenuated vaccine candidates, at the time of filing has not been used to develop a commercially available live attenuated SARS-COV-2 vaccine.


Codon usage bias refers to the redundancy of the genetic code, where amino acids are determined by synonymous codons that occur in different organisms at different frequencies. The process of codon optimization, where each amino acid is encoded by the most abundant codon, is frequently exploited to improve gene expression in heterologous systems, a strategy that is used to increase immune responses to antigens. In contrast, codon deoptimization (CD), where all or a selected number of amino acid residues are encoded by a less or the least abundant codon(s), is used to decrease gene expression leading to reduced viral protein production and consequently reduced replication while the composition of viral antigens remains the same. The approach can also result in additional virus attenuation by removing/altering of RNA secondary structures of functional importance (Song Y, Gorbatsevych O, Liu Y, Mugavero J, Shen S H, Ward C B, Asare E, Jiang P, Paul A V, Mueller S. Wimmer E. Limits of variation, specific infectivity, and genome packaging of massively recoded poliovirus genomes. Proc Natl Acad Sci USA. 2017 Oct. 10; 114(41): E8731-E8740. doi: 10.1073/pnas.1714385114. Epub 2017 Sep. 25).


SUMMARY OF THE INVENTION

Described herein, amongst other things, is a vaccine comprising live attenuated severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) comprising a partly codon deoptimized viral genome, SARS-COV-2 comprising a partly codon deoptimized viral genome, as well as their use in methods of treatment and prevention of viral infection.


According to a first embodiment of the present invention, there is provided a live attenuated severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid comprising a partly codon deoptimized SARS-COV-2 genome.


According to a second embodiment of the present invention, there is provided a recombinant, isolated or substantially purified nucleic acid comprising a partly codon deoptimized SARS-COV-2 genome or partly codon deoptimized region thereof.


According to a third embodiment of the present invention, there is provided a vector, plasmid or genetic construct comprising the nucleic acid of the second embodiment.


According to a fourth embodiment of the present invention, there is provided a cell or isolate containing the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of the first embodiment, the nucleic acid of the second embodiment, or the vector, plasmid or genetic construct of the third embodiment.


According to a fifth embodiment of the present invention, there is provided a vaccine comprising the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of the first embodiment, the recombinant, isolated or substantially purified nucleic acid of the second embodiment, the vector, plasmid or genetic construct of the third embodiment, or the cell or isolate of the fourth embodiment.


According to a sixth embodiment of the present invention, there is provided a pharmaceutical preparation comprising the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of the first embodiment, the recombinant, isolated or substantially purified nucleic acid of the second embodiment, the vector, plasmid or genetic construct of the third embodiment, or the cell or isolate of the fourth embodiment.


According to a seventh embodiment of the present invention, there is provided an immunogenic composition comprising the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of the first embodiment, the recombinant, isolated or substantially purified nucleic acid of the second embodiment, the vector, plasmid or genetic construct of the third embodiment, or the cell or isolate of the fourth embodiment.


According to an eighth embodiment of the present invention, there is provided a method of: (1) vaccinating a subject; (2) prophylactically immunizing a subject against SARS-CoV-2 or SARS-COV-2-like virus; (3) preventing a subject from contracting a SARS-COV-2 infection naturally or a SARS-COV-2-like infection naturally; (4) reducing the severity of a natural SARS-COV-2 disease or natural SARS-COV-2-like disease in a subject; or (5) treating a subject having a natural SARS-COV-2 infection or natural SARS-COV-2-like infection, said method comprising the step of administering to the subject: the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of the first embodiment; the recombinant, isolated or substantially purified nucleic acid of the second embodiment; the vector, plasmid or genetic construct of the third embodiment; the cell or isolate of the fourth embodiment; the vaccine of the fifth embodiment; the pharmaceutical preparation of the sixth embodiment; or the immunogenic composition of the seventh embodiment.


According to a ninth embodiment of the present invention, there is provided the use of: the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of the first embodiment; the recombinant, isolated or substantially purified nucleic acid of the second embodiment; the vector, plasmid or genetic construct of the third embodiment; the cell or isolate of the fourth embodiment; the vaccine of the fifth embodiment; the pharmaceutical preparation of the sixth embodiment; or the immunogenic composition of the seventh embodiment, in the preparation of a medicament for: (1) vaccinating a subject; (2) prophylactically immunizing a subject against SARS-COV-2 or SARS-COV-2-like virus; (3) preventing a subject from contracting a SARS-COV-2 infection naturally or a SARS-COV-2-like infection naturally; (4) reducing the severity of a natural SARS-COV-2 disease or natural SARS-COV-2-like disease in a subject; or (5) treating a subject having a natural SARS-COV-2 infection or natural SARS-COV-2-like infection.


According to a tenth embodiment of the present invention, there is provided: a live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of the first embodiment; a recombinant, isolated or substantially purified nucleic acid of the second embodiment; a vector, plasmid or genetic construct of the third embodiment; a cell or isolate of the fourth embodiment; a vaccine of the fifth embodiment; a pharmaceutical preparation of the sixth embodiment; or an immunogenic composition of the seventh embodiment, for use in: (1) vaccinating a subject; (2) prophylactically immunizing a subject against SARS-COV-2 or SARS-COV-2-like virus; (3) preventing a subject from contracting a SARS-COV-2 infection naturally or a SARS-COV-2-like infection naturally; (4) reducing the severity of a natural SARS-COV-2 disease or natural SARS-COV-2-like disease in a subject; or (5) treating a subject having a natural SARS-COV-2 infection or natural SARS-COV-2-like infection.


According to an eleventh embodiment of the present invention, there is provided a method of generating a live attenuated SARS-COV-2 vaccine, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid, or recombinant, isolated or substantially purified nucleic acid comprising a partly codon deoptimized SARS-COV-2 genome or partly codon deoptimized region thereof, comprising the step of partly codon deoptimizing a SARS-COV-2 genome.


According to a twelfth embodiment of the present invention, there is provided a method of preparing a vaccine comprising live attenuated SARS-COV-2, said method comprising the steps of: (1) codon deoptimizing a SARS-COV-2 genome to produce a partly codon deoptimized live attenuated SARS-COV-2; and (2) enabling the partly codon deoptimized live attenuated SARS-COV-2 to replicate.


According to a thirteenth embodiment of the present invention, there is provided a method of preparing a vaccine comprising codon deoptimized SARS-COV-2, said method comprising the steps of: optionally. (1) codon deoptimizing a SARS-COV-2 genome to produce a partly codon deoptimized live attenuated SARS-COV-2; (2) enabling the partly codon deoptimized live attenuated SARS-COV-2 to replicate; and (3) preparing a vaccine dose containing the replicated SARS-COV-2 of step (2).


According to a fourteenth embodiment of the present invention, there is provided a method of eliciting an immune response in a subject, said method comprising the step of administering a live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-CoV-2 nucleic acid of the first embodiment; the recombinant, isolated or substantially purified nucleic acid of the second embodiment; the vector, plasmid or genetic construct of the third embodiment; the cell or isolate of the fourth embodiment; the vaccine of the fifth embodiment; the pharmaceutical preparation of the sixth embodiment; or the immunogenic composition of the seventh embodiment to the subject to thereby elicit an immune response.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1. Schematic representation of the SARS-COV-2 genome, showing the open reading frame ORF1a, and expressed polypeptides.



FIG. 2. Schematic representation of a bacterial artificial chromosome (BAC) genetic construct comprising the cDNA of SARS-COV-2 genome, for use in a transfection strategy for obtaining a first generation of infectious virus or vaccine candidates.



FIG. 3. Schematic representation showing how ORF1a fragments 2 and 3 can be cleaved using restriction enzymes to produce sub-fragments 2A, 2B, 2C, 3A and 3B, wherein these sub-fragments can be used in the generation of SARS-COV-2 vaccine candidates (first generation).



FIG. 4. Table characterising deoptimized sub-fragments 2A, 2B, 2C, 3A and 3B. All fragments are within the ORF1a region. Genomic positions within the Wuhan virus strain are shown in brackets. Regions presumed or known for cis-activities such as frame-shift signal at the junction of ORF1a and ORF1b were excluded.



FIG. 5. Schematic representation of an immunisation trial using SARS-COV-2 vaccine candidates in a non-human primate model.



FIG. 6. Schematic representation of an immunisation trial using SARS-COV-2 vaccine candidates in a mouse model.



FIG. 7. Flowchart shows steps from first generation SARS-COV-2 vaccine candidate construction, testing, to vaccine production.



FIG. 8. Codon deoptimized nucleotide sequence of sub-fragment 2A (SEQ ID NO:33). Codon deoptimized nucleotides have been underlined.



FIG. 9. Codon deoptimized nucleotide sequence of sub-fragment 2B (SEQ ID NO:34). Codon deoptimized nucleotides have been underlined.



FIG. 10. Codon deoptimized nucleotide sequence of sub-fragment 2C (SEQ ID NO:35). Codon deoptimized nucleotides have been underlined.



FIG. 11. Codon deoptimized nucleotide sequence of sub-fragment 3A (SEQ ID NO:36). Codon deoptimized nucleotides have been underlined.



FIG. 12. Codon deoptimized nucleotide sequence of sub-fragment 3B (SEQ ID NO:37). Codon deoptimized nucleotides have been underlined.



FIG. 13. Schematic representation of a bacterial artificial chromosome (BAC) construct comprising the cDNA of SARS-COV-2 genome, for use in a transfection strategy for obtaining a second generation of infectious virus or vaccine candidates.



FIG. 14. Schematic representation showing how the ORF1a can be cleaved using restriction enzymes to produce fragments 1, 2 and 3, wherein these fragments can be used in the generation of SARS-COV-2 vaccine candidates (second generation). Nucleotide positions within the Wuhan viral genome are indicated.



FIG. 15. Table characterising deoptimized fragments 1, 2 and 3. All fragments are within the ORF1a region. Nucleotide positions within the Wuhan viral genome are indicated. Regions presumed or known for cis-activities such as frame-shift signal at the junction of ORF1a and ORF1b were excluded.



FIG. 16. Flowchart showing steps from second generation SARS-COV-2 vaccine candidate construction, testing, to vaccine production.



FIG. 17. Growth curve of second generation clones/candidates SARS-COV-2 (circle symbol), SARS-COV-2-160-7 (square symbol), SARS-COV-2-4N-1 (triangle symbol) and SARS-COV-2-7N-1 (inverted triangle symbol) in Vero E6 cells at MOI 0.1 infection.



FIG. 18. Day 1 post infection CPE development in Vero E6 cells at MOI 0.1 infection A) Mock, B) SARS-COV-2, C) SARS-COV-2-160-7, D) SARS-COV-2-4N-1 and E) SARS-COV-2-7N-1.



FIG. 19. Day 2 post infection CPE development in Vero E6 cells at MOI 0.1 infection A) Mock, B) SARS-COV-2, C) SARS-COV-2-160-7, D) SARS-COV-2-4N-1 and E) SARS-COV-2-7N-1.



FIG. 20. Day 3 post infection CPE development in Vero E6 cells at MOI 0.1 infection A) Mock, B) SARS-COV-2, C) SARS-COV-2-160-7, D) SARS-COV-2-4N-1 and E) SARS-COV-2-7N-1.



FIG. 21. Plaque morphology in Vero E6 cells at MOI 0.1 infection A) SARS-CoV-2, B) SARS-COV-2-160-7, C) SARS-COV-2-4N-1 and D) SARS-COV-2-7N-1.



FIG. 22. Codon deoptimized nucleotide sequence between SanDI to PacI (SEQ ID NO:45) for clone SARS-COV-2-77. Codon deoptimized nucleotides are shown in red and boxed.



FIG. 23. Codon deoptimized nucleotide sequence between SanDI to PacI (SEQ ID NO:52) for clone SARS-COV-2-160. The sequence of SARS-COV-2 wildtype is shown above the clone. Codon deoptimized nucleotides are shown in red and boxed.



FIG. 24. Codon deoptimized nucleotide sequence between SanDI to PacI (SEQ ID NO:59) for clone SARS-COV-2-4N. The sequence of SARS-COV-2 wildtype is shown above the clone. Codon deoptimized nucleotides are shown in red and boxed.



FIG. 25. Codon deoptimized nucleotide sequence between SanDI to PacI (SEQ ID NO:66) for clone SARS-COV-2-7N. The sequence of SARS-COV-2 wildtype is shown above the clone. Codon deoptimized nucleotides are shown in red and boxed.



FIG. 26. Histopathological evaluation of hamster lungs, for cell and tissue damage and reactive inflammation, following infection with wild-type SARS-COV-2 or vaccine candidates 4N-1, 7N-1, 77-7, 160-4 and 160-7. The star symbol shows a bronchiole. The arrow shows tissue damage with reactive inflammatory cell infiltration. 26A—at day 3. 26B—at day 5. 26C—at day 7. 26D—at day 14.



FIG. 27. Histopathological evaluation of hamster lungs, for distribution of lesions, bronchial and peribronchial distribution of inflammatory cells, following infection with wild-type SARS-COV-2 or vaccine candidates 4N-1, 7N-1, 77-7, 160-4 and 160-7. The star symbol shows a bronchiole. The arrow shows bronchial and peribronchial distribution of inflammatory cells. 27A—at day 3. 27B—at day 5. 27C—at day 7. 27D—at day 14.



FIG. 28. Histopathological evaluation of hamster lungs, for circulatory and vascular lesions, including perivascular edema, desquamation of endothelial cells and endothelialitis, following infection with wild-type SARS-COV-2 or vaccine candidates 4N-1, 7N-1, 77-7, 160-4 and 160-7. The star symbol shows a bronchiole. The arrow shows perivascular edema and desquamation of endothelial cell with endothelialitis. 28A—at day 3. 28B—at day 5. 28C—at day 7. 28D—at day 14.



FIG. 29. Histopathological evaluation of hamster lungs, for regeneration and repair, following infection with wild-type SARS-COV-2 or vaccine candidates 4N-1, 7N-1, 77-7. 160-4 and 160-7. The star symbol shows a bronchiole. The arrow shows hyperplasia bronchial epithelial cells. 29A—at day 3. 29B—at day 5. 29C—at day 7. 29D—at day 14.



FIG. 30. Plotted results of a challenge experiment, showing the efficacy of vaccine candidate 7N-1. ‘7N-1 SC’ means subcutaneous administration. ‘7N-1 IN’ means intranasal administration. ‘WT nCOV’ means wild-type mouse-adapted SARS-COV. 7N-1 provided full protection from rechallenge mortality when given via an intranasal route in HFH4-hACE2 mice.



FIG. 31. Preclinical immunogenicity data in animal models. Hamsters were given a single dose of 104 PFU of live attenuated virus (‘LAV’) candidate 160-7 or 7N-1 subcutaneously. The graphs show neutralizing antibody titres on day 14 after immunisation with LAV, wherein: PRNT100 is the end point serum dilution where 100% neutralization was observed; PRNT90 is the end point serum dilution where 90% neutralization was observed; and, PRNT50 is the end point serum dilution where 50% neutralization was observed.



FIG. 32. Vaccine plaque size after multiple (2 and 4) in vitro passage. 32A—wildtype SARS-COV-2. 32B—vaccine candidate 160-7. 32C—vaccine candidates 77-7. 32D—vaccine candidate 160-4. 32E—vaccine candidate 4N-1. 32F—vaccine candidate 7N-1. Vaccine candidates 7N-1, 77-7, 4N-1, 160-4 and 160-7 were passaged up to 4 times in Vero GMP cells at multiplicity of infection of 0.01 PFU/cell. Each dot represents one plaque.



FIG. 33. Live attenuated COVID-19 vaccine showing attenuation in vitro. Multistep growth kinetics in Vero cells were obtained by infecting cells with WT SARS-COV-2 (Wildtype COVID-19) or LAV (vaccine candidate 7N-1) at an MOI of 0.01 PFU/cell.



FIG. 34. Survival plot. hACE-2 Tg mice were inoculated via the intranasal route with 105 PFU wildtype SARS-COV-2 or LAV (candidate 7N-1).



FIG. 35. Survival plot. hACE-2 Tg mice were immunised via the intranasal route with 103 PFU of vaccine 7N-1. Three weeks later, the mice were challenged with 105 PFU wild-type SARS-COV-2 intranasally and monitored over a 12-day period.



FIG. 36. Histopathological evaluation of hamster lungs following infection with wild-type SARS-COV-2 or vaccine candidate 7N-1. Day 7: Distribution of lesions—bronchial and peribronchial distribution of inflammatory cells.



FIG. 37. Vaccine candidate 7N-1 provided full protection from rechallenge mortality when given via intranasal route in HFH4-hACE2 mice. A. Survival plot. Plotted results of a challenge experiment, showing the efficacy of vaccine candidate 7N-1. ‘7N-1 SC’ means subcutaneous administration. ‘7N-1 IN’ means intranasal administration. ‘WT nCOV’ means wild-type mouse-adapted SARS-COV. B. Graphed results for PBS, being unimmunized mice. C. Graphed results for WT nCOV (nCOV WT). D. Graphed results for mouse body weights post infection. E. Graphed results for 7N-1 SC. F. Graphed results for 7N-1 IN. Disease scores are as follows: 1=no disease; 2=mild fur ruffling; 3=moderate fur ruffling/disease signs; 4=moribund; 5=dead/euthanized.





DESCRIPTION OF SEQUENCES
First Generation of Clones.

For the description of clones below, ‘D’ denotes deoptimized and ‘W’ denotes wildtype and therefore not deoptimized.


SEQ ID NO:1. Clone pCCI-4K-SARS-COV-2-DDDDD. All five sub-fragments were deoptimized.


SEQ ID NO:2. Clone pCCI-4K-SARS-COV-2-DDDDW. The first four sub-fragments were deoptimized.


SEQ ID NO:3. Clone pCCI-4K-SARS-COV-2-DDDWD. Sub-fragments one, two, three, and five were deoptimized.


SEQ ID NO:4. Clone pCCI-4K-SARS-COV-2-DDDWW. The first three sub-fragments were deoptimized.


SEQ ID NO:5. Clone pCCI-4K-SARS-COV-2-DDWDD. Sub-fragments one, two, four, and five were deoptimized.


SEQ ID NO:6. Clone pCCI-4K-SARS-COV-2-DDWDW. Sub-fragments one, two, and four were deoptimized.


SEQ ID NO:7. Clone pCCI-4K-SARS-COV-2-DDWWD. Sub-fragments one, two, and five were deoptimized.


SEQ ID NO:8. Clone pCCI-4K-SARS-COV-2-DDWWW. The first two sub-fragments were deoptimized.


SEQ ID NO:9. Clone pCCI-4K-SARS-COV-2-DWDDD. First, third, fourth, and fifth sub-fragments were deoptimized.


SEQ ID NO:10. Clone pCCI-4K-SARS-COV-2-DWDDW. First, third, and fourth sub-fragments were deoptimized.


SEQ ID NO:11. Clone pCCI-4K-SARS-COV-2-DWDWD. First, third, and fifth sub-fragments were deoptimized.


SEQ ID NO:12. Clone pCCI-4K-SARS-COV-2-DWDWW. First and third sub-fragments were deoptimized.


SEQ ID NO:13. Clone pCCI-4K-SARS-COV-2-DWWDD. The first, fourth, and fifth sub-fragments were deoptimized.


SEQ ID NO:14. Clone pCCI-4K-SARS-COV-2-DWWDW. The first and fourth sub-fragments were deoptimized.


SEQ ID NO:15. Clone pCCI-4K-SARS-COV-2-DWWWD. The first and fifth sub-fragments were deoptimized.


SEQ ID NO:16. Clone pCCI-4K-SARS-COV-2-DWWWW. The first sub-fragment was deoptimized.


SEQ ID NO:17. Clone pCCI-4K-SARS-COV-2-WDDDW. The second, third, and fourth sub-fragments were deoptimized.


SEQ ID NO:18. Clone pCCI-4K-SARS-COV-2-WDDWD. The second, third, and fifth sub-fragments were deoptimized.


SEQ ID NO:19. Clone pCCI-4K-SARS-COV-2-WDDWW. The second and third sub-fragments were deoptimized.


SEQ ID NO:20. Clone pCCI-4K-SARS-COV-2-WDWDD. The second, fourth, and fifth sub-fragments were deoptimized.


SEQ ID NO:21. Clone pCCI-4K-SARS-COV-2-WDWDW. The second and fourth sub-fragments were deoptimized.


SEQ ID NO:22. Clone pCCI-4K-SARS-COV-2-WDWWD. The second and fifth sub-fragments were deoptimized.


SEQ ID NO:23. Clone pCCI-4K-SARS-COV-2-WDWWW. The second sub-fragment was deoptimized.


SEQ ID NO:24. Clone pCCI-4K-SARS-COV-2-WWDDD. The last three sub-fragments were deoptimized.


SEQ ID NO:25. Clone pCCI-4K-SARS-COV-2-WWDDW. The third and fourth sub-fragments were deoptimized.


SEQ ID NO:26. Clone pCCI-4K-SARS-COV-2-WWDWD. The third and fifth sub-fragments were deoptimized.


SEQ ID NO:27. Clone pCCI-4K-SARS-COV-2-WWDWW. The third sub-fragment was deoptimized.


SEQ ID NO:28. Clone pCCI-4K-SARS-COV-2-WWWDD. The last two sub-fragments were deoptimized.


SEQ ID NO:29. Clone pCCI-4K-SARS-COV-2-WWWDW. The fourth sub-fragment was deoptimized.


SEQ ID NO:30. Clone pCCI-4K-SARS-COV-2-WWWWD. The last sub-fragment was deoptimized.


SEQ ID NO:31. Clone pCCI-4K-SARS-COV-2-WDDDD. The last four sub-fragments were deoptimized.


SEQ ID NO:32. Clone pCCI-4K-SARS-COV-2. No sub-fragment was deoptimized (wild-type).


SEQ ID NO:33. Codon deoptimized nucleotide sequence of sub-fragment 2A.


SEQ ID NO:34. Codon deoptimized nucleotide sequence of sub-fragment 2B.


SEQ ID NO:35. Codon deoptimized nucleotide sequence of sub-fragment 2C.


SEQ ID NO:36. Codon deoptimized nucleotide sequence of sub-fragment 3A.


SEQ ID NO:37. Codon deoptimized nucleotide sequence of sub-fragment 3B.


SEQ ID NO:38. Wild-type nucleotide sequence encoding the E protein of the SARS-COV-2 genome.


Second Generation of Clones.










SEQ ID NO: 39 - Clone pCC1-4K-SARS-CoV-2-77-1. Only fragment 3 has been



deoptimized:


GGGTCCCACGTGCTAGCGCTAACATAGGTTGTAACCATACAGGTGTTG


TTGGAGAAGGTTCCGAAGGTCTTAATGACAACCTTCTTGAAATACTCCAAAAAG


AGAAAGTCAACATCAATATTGTTGGTGACTTTAAACTTAATGAAGAGATCGCCAT


TATTTTGGCATCTTTTTCTGCTTCCACAAGTGCTTTTGTGGAAACTGTGAAAGGTT


TGGATTATAAAGCATTCAAACAAATTGTTGAATCCTGTGGTAATTTTAAAGTTAC


AAAAGGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAACAGAAATCAATACT


GAGTCCTCTTTATGCATTTGCATCAGAGGCTGCTCGTGTTGTACGATCAATTTTCT


CCCGCACTCTTGAAACTGCTCAAAATTCTGTGCGTGTTTTACAGAAGGCCGCTAT


AACAATACTAGATGGAATTTCACAGTATTCACTGAGACTCATTGATGCTATGATG


TTCACATCTGATTTGGCTACTAACAATCTAGTTGTAATGGCCTACATTACAGGTG


GTGTTGTTCAGTTGACTTCGCAGTGGCTAACTAACATCTTTGGCACTGTTTATGAA


AAACTCAAACCCGTCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGGTGTAGAG


TTTCTTAGAGACGGTTGGGAAATTGTTAAATTTATCTCAACCTGTGCTTGTGAAAT


TGTCGGTGGACAAATTGTCACCTGTGCAAAGGAAATTAAGGAGAGTGTTCAGAC


ATTCTTTAAGCTTGTAAATAAATTTTTGGCTTTGTGTGCTGACTCTATCATTATTG


GTGGAGCTAAACTTAAAGCCTTGAATTTAGGTGAAACATTTGTCACGCACTCAAA


GGGATTGTACAGAAAGTGTGTTAAATCCAGAGAAGAAACTGGCCTACTCATGCC


TCTAAAAGCCCCAAAAGAAATTATCTTCTTAGAGGGAGAAACACTTCCCACAGA


AGTGTTAACAGAGGAAGTTGTCTTGAAAACTGGTGATTTACAACCATTAGAACA


ACCTACTAGTGAAGCTGTTGAAGCTCCATTGGTTGGTACACCAGTTTGTATTAAC


GGGCTTATGTTGCTCGAAATCAAAGACACAGAAAAGTACTGTGCCCTTGCACCTA


ATATGATGGTAACAAACAATACCTTCACACTCAAAGGCGGTGCACCAACAAAGG


TTACTTTTGGTGATGACACTGTGATAGAAGTGCAAGGTTACAAGAGTGTGAATAT


CACTTTTGAACTTGATGAAAGGATTGATAAAGTACTTAATGAGAAGTGCTCTGCC


TATACAGTTGAACTCGGTACAGAAGTAAATGAGTTCGCCTGTGTTGTGGCAGATG


CTGTCATAAAAACTTTGCAACCAGTATCTGAATTACTTACACCACTGGGCATTGA


TTTAGATGAGTGGAGTATGGCTACATACTACTTATTTGATGAGTCTGGTGAGTTT


AAATTGGCTTCACATATGTATTGTTCTTTCTACCCTCCAGATGAGGATGAAGAAG


AAGGTGATTGTGAAGAAGAAGAGTTTGAGCCATCAACTCAATATGAGTATGGTA


CTGAAGATGATTACCAAGGTAAACCTTTGGAATTTGGTGCCACTTCTGCTGCTCT


TCAACCTGAAGAAGAGCAAGAAGAAGATTGGTTAGATGATGATAGTCAACAAAC


TGTTGGTCAACAAGACGGCAGTGAGGACAATCAGACAACTACTATTCAAACAAT


TGTTGAGGTTCAACCTCAATTAGAGATGGAACTTACACCAGTTGTTCAGACTATT


GAAGTGAATAGTTTTAGTGGTTATTTAAAACTTACTGACAATGTATACATTAAAA


ATGCAGACATTGTGGAAGAAGCTAAAAAGGTAAAACCAACAGTGGTTGTTAATG


CAGCCAATGTTTACCTTAAACATGGAGGAGGTGTTGCAGGAGCCTTAAATAAGG


CTACTAACAATGCCATGCAAGTTGAATCTGATGATTACATAGCTACTAATGGACC


ACTTAAAGTGGGTGGTAGTTGTGTTTTAAGCGGACACAATCTTGCTAAACACTGT


CTTCATGTTGTCGGCCCAAATGTTAACAAAGGTGAAGACATTCAACTTCTTAAGA


GTGCTTATGAAAATTTTAATCAGCACGAAGTTCTACTTGCACCATTATTATCAGCT


GGTATTTTTGGTGCTGACCCTATACATTCTTTAAGAGTTTGTGTAGATACTGTTCG


CACAAATGTCTACTTAGCTGTCTTTGATAAAAATCTCTATGACAAACTTGTTTCAA


GCTTTTTGGAAATGAAGAGTGAAAAGCAAGTTGAACAAAAGATCGCTGAGATTC


CTAAAGAGGAAGTTAAGCCATTTATAACTGAAAGTAAACCTTCAGTTGAACAGA


GAAAACAAGATGATAAGAAAATCAAAGCTTGTGTTGAAGAAGTTACAACAACTC


TGGAAGAAACTAAGTTCCTCACAGAAAACTTGTTACTTTATATTGACATTAATGG


CAATCTTCATCCAGATTCTGCCACTCTTGTTAGTGACATTGACATCACTTTCTTAA


AGAAAGATGCTCCATATATAGTGGGTGATGTTGTTCAAGAGGGTGTTTTAACTGC


TGTGGTTATACCTACTAAAAAGGCTGGTGGCACTACTGAAATGCTAGCGAAAGC


TTTGAGAAAAGTGCCAACAGACAATTATATAACCACTTACCCGGGTCAGGGTTTA


AATGGTTACACTGTAGAGGAGGCAAAGACAGTGCTTAAAAAGTGTAAAAGTGCC


TTTTACATTCTACCATCTATTATCTCTAATGAGAAGCAAGAAATTCTTGGAACTGT


TTCTTGGAATTTGCGAGAAATGCTTGCACATGCAGAAGAAACACGCAAATTAAT


GCCTGTCTGTGTGGAAACTAAAGCCATAGTTTCAACTATACAGCGTAAATATAAG


GGTATTAAAATACAAGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTTACA


CCAGTAAAACAACTGTAGCGTCACTTATCAACACACTTAACGATCTAAATGAAA


CTCTTGTTACAATGCCACTTGGCTATGTAACACATGGCTTAAATTTGGAAGAAGC


TGCTCGGTATATGAGATCTCTCAAAGTGCCAGCTACAGTTTCTGTTTCTTCACCTG


ATGCTGTTACAGCGTATAATGGTTATCTTACTTCTTCTTCTAAAACACCTGAAGAA


CATTTTATTGAAACCATCTCACTTGCTGGTTCCTATAAAGATTGGTCCTATTCTGG


ACAATCTACACAACTAGGTATAGAATTTCTTAAGAGAGGTGATAAAAGTGTATAT


TACACTAGTAATCCTACCACATTCCACCTAGATGGTGAAGTTATCACCTTTGACA


ATCTTAAGACACTTCTTTCTTTGAGAGAAGTGAGGACTATTAAGGTGTTTACAAC


AGTAGACAACATTAACCTCCACACGCAAGTTGTGGACATGTCAATGACATATGG


ACAACAGTTTGGTCCAACTTATTTGGATGGAGCTGATGTTACTAAAATAAAACCT


CATAATTCACATGAAGGTAAAACATTTTATGTTTTACCTAATGATGACACTCTAC


GTGTTGAGGCTTTTGAGTACTACCACACAACTGATCCTAGTTTTCTGGGTAGGTA


CATGTCAGCATTAAATCACACTAAAAAGTGGAAATACCCACAAGTTAATGGTTT


AACTTCTATTAAATGGGCAGATAACAACTGTTATCTTGCCACTGCATTGTTAACA


CTCCAACAAATAGAGTTGAAGTTTAATCCACCTGCTCTACAAGATGCTTATTACA


GAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGCACTTATCTTAGCCTACTGTAA


TAAGACAGTAGGTGAGTTAGGTGATGTTAGAGAAACAATGAGTTACTTGTTTCAA


CATGCCAATTTAGATTCTTGCAAAAGAGTCTTGAACGTGGTGTGTAAAACTTGTG


GACAACAGCAGACAACCCTTAAGGGTGTAGAAGCTGTTATGTACATGGGCACAC


TTTCTTATGAACAATTTAAGAAAGGTGTTCAGATACCTTGTACGTGTGGTAAACA


AGCTACAAAATATCTAGTACAACAGGAGTCACCTTTTGTTATGATGTCAGCACCA


CCTGCTCAGTATGAACTTAAGCATGGTACATTTACTTGTGCTAGTGAGTACACTG


GTAATTACCAGTGTGGTCACTATAAACATATAACTTCTAAAGAAACTTTGTATTG


CATAGACGGTGCTTTACTTACAAAGTCCTCAGAATACAAAGGTCCTATTACGGAT


GTTTTCTACAAAGAAAACAGTTACACAACAACCATAAAACCAGTTACTTATAAAT


TGGATGGTGTTGTTTGTACAGAAATTGACCCTAAGTTGGACAATTATTATAAGAA


AGACAATTCTTATTTCACAGAGCAACCAATTGATCTTGTACCAAACCAACCATAT


CCAAACGCAAGCTTCGATAATTTTAAGTTTGTATGTGATAATATCAAATTTGCTG


ATGATTTAAACCAGTTAACTGGTTATAAGAAACCTGCTTCAAGAGAGCTTAAAGT


TACATTTTTCCCTGACTTAAATGGTGATGTGGTGGCTATTGATTATAAACACTACA


CACCCTCTTTTAAGAAAGGAGCTAAATTGTTACATAAACCTATTGTTTGGCATGT


TAACAATGCAACTAATAAAGCCACGTATAAACCAAATACCTGGTGTATACGTTGT


CTTTGGAGCACAAAACCAGTTGAAACATCAAATTCGTTTGATGTACTGAAGTCAG


AGGACGCGCAGGGAATGGATAATCTTGCCTGCGAAGATCTAAAACCAGTCTCTG


AAGAAGTAGTGGAAAATCCTACCATACAGAAAGACGTTCTTGAGTGTAATGTGA


AAACTACCGAAGTTGTAGGAGACATTATACTTAAACCAGCAAATAATAGTTTAA


AAATTACAGAAGAGGTTGGCCACACAGATCTAATGGCTGCTTATGTAGACAATT


CTAGTCTTACTATTAAGAAACCTAATGAATTATCTAGAGTATTAGGTTTGAAAAC


CCTTGCTACTCATGGTTTAGCTGCTGTTAATAGTGTCCCTTGGGATACTATAGCTA


ATTATGCTAAGCCTTTTCTTAACAAAGTTGTTAGTACAACTACTAACATAGTTAC


ACGGTGTTTAAACCGTGTTTGTACTAATTATATGCCTTATTTCTTTACTTTATTGCT


ACAATTGTGTACTTTTACTAGAAGTACAAATTCTAGAATTAAAGCATCTATGCCG


ACTACTATAGCAAAGAATACTGTTAAGAGTGTCGGTAAATTTTGTCTAGAGGCTT


CATTTAATTATTTGAAGTCACCTAATTTTTCTAAACTGATAAATATTATAATTTGG


TTTTTACTATTAAGTGTTTGCCTAGGTTCGTTAATCTACTCAACCGCTGCTTTAGG


TGTTTTAATGTCGAATTTAGGCATGCCTTCTTACTGTACTGGTTACAGAGAAGGCT


ATTTGAACTCGACTAATGTCACTATTGCAACCTACTGTACTGGTTCTATACCTTGT


TCGGTTTGTCTTAGTGGTTTAGATTCTTTAGACACCTATCCTTCGTTAGAAACTAT


ACAAATTACCATTTCATCTTTTAAATGGGATTTAACTGCTTTTGGCTTAGTTGCAG


AGTGGTTTTTGGCATATATTCTTTTCACTAGGTTTTTCTATGTACTTGGATTGGCT


GCAATCATGCAATTGTTTTTCTCGTATTTTGCAGTACATTTTATTAGTAATTCGTG


GCTTATGTGGTTAATAATTAATCTTGTACAAATGGCCCCGATTTCAGCTATGGTTA


GAATGTACATCTTCTTTGCATCGTTTTATTATGTATGGAAAAGTTATGTGCATGTT


GTAGACGGTTGTAATTCGTCAACTTGTATGATGTGTTACAAACGTAATAGAGCAA


CAAGAGTCGAATGTACAACTATTGTTAATGGTGTTAGAAGGTCGTTTTATGTCTA


TGCTAATGGAGGTAAAGGCTTTTGCAAACTACACAATTGGAATTGTGTTAATTGT


GATACATTCTGTGCTGGTAGTACATTTATTTCGGATGAAGTTGCGAGAGACTTGT


CACTACAGTTTAAAAGACCAATAAATCCTACTGACCAGTCGTCTTACATCGTTGA


TAGTGTTACAGTGAAGAATGGTTCGATCCATCTTTACTTTGATAAAGCTGGTCAA


AAGACTTATGAAAGACATTCTCTCTCGCATTTTGTTAACTTAGACAACCTGAGAG


CTAATAACACTAAAGGTTCATTGCCTATTAATGTTATAGTTTTTGATGGTAAATCG


AAATGTGAAGAATCATCGGCAAAATCAGCGTCGGTTTACTACAGTCAGCTTATGT


GTCAACCTATACTGTTACTAGATCAGGCATTAGTGTCGGATGTTGGTGATAGTGC


GGAAGTTGCAGTTAAAATGTTTGATGCTTACGTTAATACGTTTTCGTCAACTTTTA


ACGTACCAATGGAAAAACTCAAAACACTAGTTGCAACTGCAGAAGCTGAACTTG


CAAAGAATGTGTCCTTAGACAATGTCTTATCGACTTTTATTTCAGCAGCTCGGCA


AGGGTTTGTTGATTCGGATGTAGAAACTAAAGATGTTGTTGAATGTCTTAAATTG


TCACATCAATCGGACATAGAAGTTACTGGCGATAGTTGTAATAACTATATGCTCA


CCTATAACAAAGTTGAAAACATGACACCCCGTGACCTTGGTGCTTGTATTGACTG


TTCGGCGCGTCATATTAATGCGCAGGTAGCAAAAAGTCACAACATTGCTTTGATA


TGGAACGTTAAAGATTTCATGTCGTTGTCTGAACAACTACGAAAACAAATACGTT


CGGCTGCTAAAAAGAATAACTTACCTTTTAAGTTGACATGTGCAACTACTAGACA


AGTTGTTAATGTTGTAACAACAAAGATAGCACTTAAGGGTGGTAAAATTGTTAAT


AATTGGTTGAAGCAGTTAATTAAA





SEQ ID NO: 40 - Clone pCC1-4K-SARS-COV-2-77-2. Only fragment 2 has been


deoptimized:


GGGTCCCACGTGCTAGCGCTAACATAGGTTGTAACCATACAGGTGTTG


TTGGAGAAGGTTCCGAAGGTCTTAATGACAACCTTCTTGAAATACTCCAAAAAG


AGAAAGTCAACATCAATATTGTTGGTGACTTTAAACTTAATGAAGAGATCGCCAT


TATTTTGGCATCTTTTTCTGCTTCCACAAGTGCTTTTGTGGAAACTGTGAAAGGTT


TGGATTATAAAGCATTCAAACAAATTGTTGAATCCTGTGGTAATTTTAAAGTTAC


AAAAGGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAACAGAAATCAATACT


GAGTCCTCTTTATGCATTTGCATCAGAGGCTGCTCGTGTTGTACGATCAATTTTCT


CCCGCACTCTTGAAACTGCTCAAAATTCTGTGCGTGTTTTACAGAAGGCCGCTAT


AACAATACTAGATGGAATTTCACAGTATTCACTGAGACTCATTGATGCTATGATG


TTCACATCTGATTTGGCTACTAACAATCTAGTTGTAATGGCCTACATTACAGGTG


GTGTTGTTCAGTTGACTTCGCAGTGGCTAACTAACATCTTTGGCACTGTTTATGAA


AAACTCAAACCCGTCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGGTGTAGAG


TTTCTTAGAGACGGTTGGGAAATTGTTAAATTTATCTCAACCTGTGCTTGTGAAAT


TGTCGGTGGACAAATTGTCACCTGTGCAAAGGAAATTAAGGAGAGTGTTCAGAC


ATTCTTTAAGCTTGTAAATAAATTTTTGGCTTTGTGTGCTGACTCTATCATTATTG


GTGGAGCTAAACTTAAAGCCTTGAATTTAGGTGAAACATTTGTCACGCACTCAAA


GGGATTGTACAGAAAGTGTGTTAAATCCAGAGAAGAAACTGGCCTACTCATGCC


TCTAAAAGCCCCAAAAGAAATTATCTTCTTAGAGGGAGAAACACTTCCCACAGA


AGTGTTAACAGAGGAAGTTGTCTTGAAAACTGGTGATTTACAACCATTAGAACA


ACCTACTAGTGAAGCTGTTGAAGCTCCATTGGTTGGTACACCAGTTTGTATTAAC


GGGCTTATGTTGCTCGAAATCAAAGACACAGAAAAGTACTGTGCCCTTGCACCTA


ATATGATGGTAACAAACAATACCTTCACACTCAAAGGCGGTGCACCAACAAAGG


TTACTTTTGGTGATGACACTGTGATAGAAGTGCAAGGTTACAAGAGTGTGAATAT


CACTTTTGAACTTGATGAAAGGATTGATAAAGTACTTAATGAGAAGTGCTCTGCC


TATACAGTTGAACTCGGTACAGAAGTAAATGAGTTCGCCTGTGTTGTGGCAGATG


CTGTCATAAAAACTTTGCAACCAGTATCTGAATTACTTACACCACTGGGCATTGA


TTTAGATGAGTGGAGTATGGCTACATACTACTTATTTGATGAGTCTGGTGAGTTT


AAATTGGCTTCACATATGTATTGTTCTTTCTACCCTCCAGATGAGGATGAAGAAG


AAGGTGATTGTGAAGAAGAAGAGTTTGAGCCATCAACTCAATATGAGTATGGTA


CTGAAGATGATTACCAAGGTAAACCTTTGGAATTTGGTGCCACTTCTGCTGCTCT


TCAACCTGAAGAAGAGCAAGAAGAAGATTGGTTAGATGATGATAGTCAACAAAC


TGTTGGTCAACAAGACGGCAGTGAGGACAATCAGACAACTACTATTCAAACAAT


TGTTGAGGTTCAACCTCAATTAGAGATGGAACTTACACCAGTTGTTCAGACTATT


GAAGTGAATAGTTTTAGTGGTTATTTAAAACTTACTGACAATGTATACATTAAAA


ATGCAGACATTGTGGAAGAAGCTAAAAAGGTAAAACCAACAGTGGTTGTTAATG


CAGCCAATGTTTACCTTAAACATGGAGGAGGTGTTGCAGGAGCCTTAAATAAGG


CTACTAACAATGCCATGCAAGTTGAATCTGATGATTACATAGCTACTAATGGACC


ACTTAAAGTGGGTGGTAGTTGTGTTTTAAGCGGACACAATCTTGCTAAACACTGT


CTTCATGTTGTCGGCCCAAATGTTAACAAAGGTGAAGACATTCAACTTCTTAAGA


GTGCTTATGAAAATTTTAATCAGCACGAAGTTCTACTTGCACCATTATTATCAGCT


GGTATTTTTGGTGCTGACCCTATACATTCTTTAAGAGTTTGTGTAGATACTGTTCG


CACAAATGTCTACTTAGCTGTCTTTGATAAAAATCTCTATGACAAACTTGTTTCAA


GCTTTTTGGAAATGAAGAGTGAAAAGCAAGTTGAACAAAAGATCGCTGAGATTC


CTAAAGAGGAAGTTAAGCCATTTATAACTGAAAGTAAACCTTCAGTTGAACAGA


GAAAACAAGATGATAAGAAAATCAAAGCTTGTGTTGAAGAAGTTACAACAACTC


TGGAAGAAACTAAGTTCCTCACAGAAAACTTGTTACTTTATATTGACATTAATGG


CAATCTTCATCCAGATTCTGCCACTCTTGTTAGTGACATTGACATCACTTTCTTAA


AGAAAGATGCTCCATATATAGTGGGTGATGTTGTTCAAGAGGGTGTTTTAACTGC


TGTGGTTATACCTACTAAAAAGGCTGGTGGCACTACTGAAATGCTAGCGAAAGC


TTTGAGAAAAGTGCCAACAGACAATTATATAACCACTTACCCGGGTCAGGGTTTA


AATGGTTACACTGTAGAGGAGGCAAAGACAGTGCTTAAAAAGTGTAAATCGGCC


TTTTACATTCTACCATCTATTATCTCGAATGAGAAGCAAGAAATTCTTGGAACTG


TTTCTTGGAATTTGCGAGAAATGCTTGCACATGCAGAAGAAACACGCAAATTAAT


GCCTGTCTGTGTGGAAACTAAAGCCATAGTTTCGACTATACAGCGTAAATATAAG


GGTATTAAAATACAAGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTTACA


CCAGTAAAACAACTGTAGCGTCGCTTATCAACACACTTAACGATCTAAATGAAA


CTCTTGTTACAATGCCACTTGGCTATGTAACACATGGCTTAAATTTGGAAGAAGC


TGCTCGGTATATGAGATCTCTCAAAGTGCCAGCTACAGTTTCGGTTTCTTCGCCTG


ATGCTGTTACAGCGTATAATGGTTATCTTACTTCTTCGTCTAAAACACCTGAAGA


ACATTTTATTGAAACCATCTCACTTGCTGGTTCGTATAAAGATTGGTCCTATTCGG


GACAATCTACACAACTAGGTATAGAATTTCTTAAGAGAGGTGATAAATCGGTAT


ATTACACTAGTAATCCTACCACATTCCACCTAGATGGTGAAGTTATCACCTTTGA


CAATCTTAAGACACTTCTTTCGTTGAGAGAAGTGAGGACTATTAAGGTGTTTACA


ACAGTAGACAACATTAACCTCCACACGCAAGTTGTGGACATGTCAATGACATAT


GGACAACAGTTTGGTCCAACTTATTTGGATGGAGCTGATGTTACTAAAATAAAAC


CTCATAATTCGCATGAAGGTAAAACATTTTATGTTTTACCTAATGATGACACTCT


ACGTGTTGAGGCTTTTGAGTACTACCACACAACTGATCCTAGTTTTCTGGGTAGG


TACATGTCGGCATTAAATCACACTAAAAAGTGGAAATACCCACAAGTTAATGGT


TTAACTTCTATTAAATGGGCAGATAACAACTGTTATCTTGCCACTGCATTGTTAAC


ACTCCAACAAATAGAGTTGAAGTTTAATCCACCTGCTCTACAAGATGCTTATTAC


AGAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGCACTTATCTTAGCCTACTGTA


ATAAGACAGTAGGTGAGTTAGGTGATGTTAGAGAAACAATGTCGTACTTGTTTCA


ACATGCCAATTTAGATTCTTGCAAAAGAGTCTTGAACGTGGTGTGTAAAACTTGT


GGACAACAGCAGACAACCCTTAAGGGTGTAGAAGCTGTTATGTACATGGGCACA


CTTTCGTATGAACAATTTAAGAAAGGTGTTCAGATACCTTGTACGTGTGGTAAAC


AAGCTACAAAATATCTAGTACAACAGGAGTCACCTTTTGTTATGATGTCGGCACC


ACCTGCTCAGTATGAACTTAAGCATGGTACATTTACTTGTGCTAGTGAGTACACT


GGTAATTACCAGTGTGGTCACTATAAACATATAACTTCGAAAGAAACTTTGTATT


GCATAGACGGTGCTTTACTTACAAAGTCCTCGGAATACAAAGGTCCTATTACGGA


TGTTTTCTACAAAGAAAACAGTTACACAACAACCATAAAACCAGTTACTTATAAA


TTGGATGGTGTTGTTTGTACAGAAATTGACCCTAAGTTGGACAATTATTATAAGA


AAGACAATTCGTATTTCACAGAGCAACCAATTGATCTTGTACCAAACCAACCATA


TCCAAACGCAAGCTTCGATAATTTTAAGTTTGTATGTGATAATATCAAATTTGCT


GATGATTTAAACCAGTTAACTGGTTATAAGAAACCTGCTTCGAGAGAGCTTAAAG


TTACATTTTTCCCTGACTTAAATGGTGATGTGGTGGCTATTGATTATAAACACTAC


ACACCCTCTTTTAAGAAAGGAGCTAAATTGTTACATAAACCTATTGTTTGGCATG


TTAACAATGCAACTAATAAAGCCACGTATAAACCAAATACCTGGTGTATACGTTG


TCTTTGGTCGACAAAACCAGTTGAAACATCAAATTCGTTTGATGTACTGAAGTCA


GAGGACGCGCAGGGAATGGATAATCTTGCCTGCGAAGATCTAAAACCAGTCTCG


GAAGAAGTAGTGGAAAATCCTACCATACAGAAAGACGTTCTTGAGTGTAATGTG


AAAACTACCGAAGTTGTAGGAGACATTATACTTAAACCAGCAAATAATAGTTTA


AAAATTACAGAAGAGGTTGGCCACACAGATCTAATGGCTGCTTATGTAGACAAT


TCGAGTCTTACTATTAAGAAACCTAATGAATTATCTAGAGTATTAGGTTTGAAAA


CCCTTGCTACTCATGGTTTAGCTGCTGTTAATTCGGTCCCTTGGGATACTATAGCT


AATTATGCTAAGCCTTTTCTTAACAAAGTTGTTAGTACAACTACTAACATAGTTA


CACGGTGTTTAAACCGTGTTTGTACTAATTATATGCCTTATTTCTTTACTTTATTGC


TACAATTGTGTACTTTTACTAGATCGACAAATTCTAGAATTAAAGCATCGATGCC


GACTACTATAGCAAAGAATACTGTTAAGAGTGTCGGTAAATTTTGTCTAGAGGCT


TCGTTTAATTATTTGAAGTCACCTAATTTTTCGAAACTGATAAATATTATAATTTG


GTTTTTACTATTAAGTGTTTGCCTAGGTTCTTTAATCTACTCAACCGCTGCTTTAG


GTGTTTTAATGTCTAATTTAGGCATGCCTTCTTACTGTACTGGTTACAGAGAAGGC


TATTTGAACTCTACTAATGTCACTATTGCAACCTACTGTACTGGTTCTATACCTTG


TAGTGTTTGTCTTAGTGGTTTAGATTCTTTAGACACCTATCCTTCTTTAGAAACTA


TACAAATTACCATTTCATCTTTTAAATGGGATTTAACTGCTTTTGGCTTAGTTGCA


GAGTGGTTTTTGGCATATATTCTTTTCACTAGGTTTTTCTATGTACTTGGATTGGC


TGCAATCATGCAATTGTTTTTCAGCTATTTTGCAGTACATTTTATTAGTAATTCTT


GGCTTATGTGGTTAATAATTAATCTTGTACAAATGGCCCCGATTTCAGCTATGGTT


AGAATGTACATCTTCTTTGCATCATTTTATTATGTATGGAAAAGTTATGTGCATGT


TGTAGACGGTTGTAATTCATCAACTTGTATGATGTGTTACAAACGTAATAGAGCA


ACAAGAGTCGAATGTACAACTATTGTTAATGGTGTTAGAAGGTCCTTTTATGTCT


ATGCTAATGGAGGTAAAGGCTTTTGCAAACTACACAATTGGAATTGTGTTAATTG


TGATACATTCTGTGCTGGTAGTACATTTATTAGTGATGAAGTTGCGAGAGACTTG


TCACTACAGTTTAAAAGACCAATAAATCCTACTGACCAGTCTTCTTACATCGTTG


ATAGTGTTACAGTGAAGAATGGTTCCATCCATCTTTACTTTGATAAAGCTGGTCA


AAAGACTTATGAAAGACATTCTCTCTCTCATTTTGTTAACTTAGACAACCTGAGA


GCTAATAACACTAAAGGTTCATTGCCTATTAATGTTATAGTTTTTGATGGTAAATC


AAAATGTGAAGAATCATCTGCAAAATCAGCGTCTGTTTACTACAGTCAGCTTATG


TGTCAACCTATACTGTTACTAGATCAGGCATTAGTGTCTGATGTTGGTGATAGTG


CGGAAGTTGCAGTTAAAATGTTTGATGCTTACGTTAATACGTTTTCATCAACTTTT


AACGTACCAATGGAAAAACTCAAAACACTAGTTGCAACTGCAGAAGCTGAACTT


GCAAAGAATGTGTCCTTAGACAATGTCTTATCTACTTTTATTTCAGCAGCTCGGC


AAGGGTTTGTTGATTCAGATGTAGAAACTAAAGATGTTGTTGAATGTCTTAAATT


GTCACATCAATCTGACATAGAAGTTACTGGCGATAGTTGTAATAACTATATGCTC


ACCTATAACAAAGTTGAAAACATGACACCCCGTGACCTTGGTGCTTGTATTGACT


GTAGTGCGCGTCATATTAATGCGCAGGTAGCAAAAAGTCACAACATTGCTTTGAT


ATGGAACGTTAAAGATTTCATGTCATTGTCTGAACAACTACGAAAACAAATACGT


AGTGCTGCTAAAAAGAATAACTTACCTTTTAAGTTGACATGTGCAACTACTAGAC


AAGTTGTTAATGTTGTAACAACAAAGATAGCACTTAAGGGTGGTAAAATTGTTAA


TAATTGGTTGAAGCAGTTAATTAAA





SEQ ID NO: 41 - Clone pCC1-4K-SARS-COV-2-77-3. Only fragment 1 has been


deoptimized:


GGGTCCCACGTGCTAGCGCTAACATAGGTTGTAACCATACAGGTGTTG


TTGGAGAAGGTTCGGAAGGTCTTAATGACAACCTTCTTGAAATACTCCAAAAAG


AGAAAGTCAACATCAATATTGTTGGTGACTTTAAACTTAATGAAGAGATCGCCAT


TATTTTGGCATCTTTTTCGGCTTCCACATCGGCTTTTGTGGAAACTGTGAAAGGTT


TGGATTATAAAGCATTCAAACAAATTGTTGAATCCTGTGGTAATTTTAAAGTTAC


AAAAGGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAACAGAAATCGATACT


GAGTCCTCTTTATGCATTTGCATCGGAGGCTGCTCGTGTTGTACGATCAATTTTCT


CGCGCACTCTTGAAACTGCTCAAAATTCTGTGCGTGTTTTACAGAAGGCCGCTAT


AACAATACTAGATGGAATTTCGCAGTATTCACTGAGACTCATTGATGCTATGATG


TTCACATCGGATTTGGCTACTAACAATCTAGTTGTAATGGCCTACATTACAGGTG


GTGTTGTTCAGTTGACTTCGCAGTGGCTAACTAACATCTTTGGCACTGTTTATGAA


AAACTCAAACCCGTCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGGTGTAGAG


TTTCTTAGAGACGGTTGGGAAATTGTTAAATTTATCTCAACCTGTGCTTGTGAAAT


TGTCGGTGGACAAATTGTCACCTGTGCAAAGGAAATTAAGGAGTCGGTTCAGAC


ATTCTTTAAGCTTGTAAATAAATTTTTGGCTTTGTGTGCTGACTCTATCATTATTG


GTGGAGCTAAACTTAAAGCCTTGAATTTAGGTGAAACATTTGTCACGCACTCGAA


GGGATTGTACAGAAAGTGTGTTAAATCCAGAGAAGAAACTGGCCTACTCATGCC


TCTAAAAGCCCCAAAAGAAATTATCTTCTTAGAGGGAGAAACACTTCCCACAGA


AGTGTTAACAGAGGAAGTTGTCTTGAAAACTGGTGATTTACAACCATTAGAACA


ACCTACTTCGGAAGCTGTTGAAGCTCCATTGGTTGGTACACCAGTTTGTATTAAC


GGGCTTATGTTGCTCGAAATCAAAGACACAGAAAAGTACTGTGCCCTTGCACCTA


ATATGATGGTAACAAACAATACCTTCACACTCAAAGGCGGTGCACCAACAAAGG


TTACTTTTGGTGATGACACTGTGATAGAAGTGCAAGGTTACAAGAGTGTGAATAT


CACTTTTGAACTTGATGAAAGGATTGATAAAGTACTTAATGAGAAGTGCTCGGCC


TATACAGTTGAACTCGGTACAGAAGTAAATGAGTTCGCCTGTGTTGTGGCAGATG


CTGTCATAAAAACTTTGCAACCAGTATCTGAATTACTTACACCACTGGGCATTGA


TTTAGATGAGTGGTCGATGGCTACATACTACTTATTTGATGAGTCTGGTGAGTTT


AAATTGGCTTCGCATATGTATTGTTCTTTCTACCCTCCAGATGAGGATGAAGAAG


AAGGTGATTGTGAAGAAGAAGAGTTTGAGCCATCGACTCAATATGAGTATGGTA


CTGAAGATGATTACCAAGGTAAACCTTTGGAATTTGGTGCCACTTCTGCTGCTCT


TCAACCTGAAGAAGAGCAAGAAGAAGATTGGTTAGATGATGATTCGCAACAAAC


TGTTGGTCAACAAGACGGCAGTGAGGACAATCAGACAACTACTATTCAAACAAT


TGTTGAGGTTCAACCTCAATTAGAGATGGAACTTACACCAGTTGTTCAGACTATT


GAAGTGAATTCGTTTAGTGGTTATTTAAAACTTACTGACAATGTATACATTAAAA


ATGCAGACATTGTGGAAGAAGCTAAAAAGGTAAAACCAACAGTGGTTGTTAATG


CAGCCAATGTTTACCTTAAACATGGAGGAGGTGTTGCAGGAGCCTTAAATAAGG


CTACTAACAATGCCATGCAAGTTGAATCGGATGATTACATAGCTACTAATGGACC


ACTTAAAGTGGGTGGTTCGTGTGTTTTAAGCGGACACAATCTTGCTAAACACTGT


CTTCATGTTGTCGGCCCAAATGTTAACAAAGGTGAAGACATTCAACTTCTTAAGT


CGGCTTATGAAAATTTTAATCAGCACGAAGTTCTACTTGCACCATTATTATCAGC


TGGTATTTTTGGTGCTGACCCTATACATTCGTTAAGAGTTTGTGTAGATACTGTTC


GCACAAATGTCTACTTAGCTGTCTTTGATAAAAATCTCTATGACAAACTTGTTTCA


TCGTTTTTGGAAATGAAGAGTGAAAAGCAAGTTGAACAAAAGATCGCTGAGATT


CCTAAAGAGGAAGTTAAGCCATTTATAACTGAATCGAAACCTTCAGTTGAACAG


AGAAAACAAGATGATAAGAAAATCAAAGCTTGTGTTGAAGAAGTTACAACAACT


CTGGAAGAAACTAAGTTCCTCACAGAAAACTTGTTACTTTATATTGACATTAATG


GCAATCTTCATCCAGATTCGGCCACTCTTGTTAGTGACATTGACATCACTTTCTTA


AAGAAAGATGCTCCATATATAGTGGGTGATGTTGTTCAAGAGGGTGTTTTAACTG


CTGTGGTTATACCTACTAAAAAGGCTGGTGGCACTACTGAAATGCTAGCGAAAG


CTTTGAGAAAAGTGCCAACAGACAATTATATAACCACTTACCCGGGTCAGGGTTT


AAATGGTTACACTGTAGAGGAGGCAAAGACAGTGCTTAAAAAGTGTAAAAGTGC


CTTTTACATTCTACCATCTATTATCTCTAATGAGAAGCAAGAAATTCTTGGAACTG


TTTCTTGGAATTTGCGAGAAATGCTTGCACATGCAGAAGAAACACGCAAATTAAT


GCCTGTCTGTGTGGAAACTAAAGCCATAGTTTCAACTATACAGCGTAAATATAAG


GGTATTAAAATACAAGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTTACA


CCAGTAAAACAACTGTAGCGTCACTTATCAACACACTTAACGATCTAAATGAAA


CTCTTGTTACAATGCCACTTGGCTATGTAACACATGGCTTAAATTTGGAAGAAGC


TGCTCGGTATATGAGATCTCTCAAAGTGCCAGCTACAGTTTCTGTTTCTTCACCTG


ATGCTGTTACAGCGTATAATGGTTATCTTACTTCTTCTTCTAAAACACCTGAAGAA


CATTTTATTGAAACCATCTCACTTGCTGGTTCCTATAAAGATTGGTCCTATTCTGG


ACAATCTACACAACTAGGTATAGAATTTCTTAAGAGAGGTGATAAAAGTGTATAT


TACACTAGTAATCCTACCACATTCCACCTAGATGGTGAAGTTATCACCTTTGACA


ATCTTAAGACACTTCTTTCTTTGAGAGAAGTGAGGACTATTAAGGTGTTTACAAC


AGTAGACAACATTAACCTCCACACGCAAGTTGTGGACATGTCAATGACATATGG


ACAACAGTTTGGTCCAACTTATTTGGATGGAGCTGATGTTACTAAAATAAAACCT


CATAATTCACATGAAGGTAAAACATTTTATGTTTTACCTAATGATGACACTCTAC


GTGTTGAGGCTTTTGAGTACTACCACACAACTGATCCTAGTTTTCTGGGTAGGTA


CATGTCAGCATTAAATCACACTAAAAAGTGGAAATACCCACAAGTTAATGGTTT


AACTTCTATTAAATGGGCAGATAACAACTGTTATCTTGCCACTGCATTGTTAACA


CTCCAACAAATAGAGTTGAAGTTTAATCCACCTGCTCTACAAGATGCTTATTACA


GAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGCACTTATCTTAGCCTACTGTAA


TAAGACAGTAGGTGAGTTAGGTGATGTTAGAGAAACAATGAGTTACTTGTTTCAA


CATGCCAATTTAGATTCTTGCAAAAGAGTCTTGAACGTGGTGTGTAAAACTTGTG


GACAACAGCAGACAACCCTTAAGGGTGTAGAAGCTGTTATGTACATGGGCACAC


TTTCTTATGAACAATTTAAGAAAGGTGTTCAGATACCTTGTACGTGTGGTAAACA


AGCTACAAAATATCTAGTACAACAGGAGTCACCTTTTGTTATGATGTCAGCACCA


CCTGCTCAGTATGAACTTAAGCATGGTACATTTACTTGTGCTAGTGAGTACACTG


GTAATTACCAGTGTGGTCACTATAAACATATAACTTCTAAAGAAACTTTGTATTG


CATAGACGGTGCTTTACTTACAAAGTCCTCAGAATACAAAGGTCCTATTACGGAT


GTTTTCTACAAAGAAAACAGTTACACAACAACCATAAAACCAGTTACTTATAAAT


TGGATGGTGTTGTTTGTACAGAAATTGACCCTAAGTTGGACAATTATTATAAGAA


AGACAATTCTTATTTCACAGAGCAACCAATTGATCTTGTACCAAACCAACCATAT


CCAAACGCAAGCTTCGATAATTTTAAGTTTGTATGTGATAATATCAAATTTGCTG


ATGATTTAAACCAGTTAACTGGTTATAAGAAACCTGCTTCAAGAGAGCTTAAAGT


TACATTTTTCCCTGACTTAAATGGTGATGTGGTGGCTATTGATTATAAACACTACA


CACCCTCTTTTAAGAAAGGAGCTAAATTGTTACATAAACCTATTGTTTGGCATGT


TAACAATGCAACTAATAAAGCCACGTATAAACCAAATACCTGGTGTATACGTTGT


CTTTGGAGCACAAAACCAGTTGAAACATCAAATTCGTTTGATGTACTGAAGTCAG


AGGACGCGCAGGGAATGGATAATCTTGCCTGCGAAGATCTAAAACCAGTCTCTG


AAGAAGTAGTGGAAAATCCTACCATACAGAAAGACGTTCTTGAGTGTAATGTGA


AAACTACCGAAGTTGTAGGAGACATTATACTTAAACCAGCAAATAATAGTTTAA


AAATTACAGAAGAGGTTGGCCACACAGATCTAATGGCTGCTTATGTAGACAATT


CTAGTCTTACTATTAAGAAACCTAATGAATTATCTAGAGTATTAGGTTTGAAAAC


CCTTGCTACTCATGGTTTAGCTGCTGTTAATAGTGTCCCTTGGGATACTATAGCTA


ATTATGCTAAGCCTTTTCTTAACAAAGTTGTTAGTACAACTACTAACATAGTTAC


ACGGTGTTTAAACCGTGTTTGTACTAATTATATGCCTTATTTCTTTACTTTATTGCT


ACAATTGTGTACTTTTACTAGAAGTACAAATTCTAGAATTAAAGCATCTATGCCG


ACTACTATAGCAAAGAATACTGTTAAGAGTGTCGGTAAATTTTGTCTAGAGGCTT


CATTTAATTATTTGAAGTCACCTAATTTTTCTAAACTGATAAATATTATAATTTGG


TTTTTACTATTAAGTGTTTGCCTAGGTTCTTTAATCTACTCAACCGCTGCTTTAGG


TGTTTTAATGTCTAATTTAGGCATGCCTTCTTACTGTACTGGTTACAGAGAAGGCT


ATTTGAACTCTACTAATGTCACTATTGCAACCTACTGTACTGGTTCTATACCTTGT


AGTGTTTGTCTTAGTGGTTTAGATTCTTTAGACACCTATCCTTCTTTAGAAACTAT


ACAAATTACCATTTCATCTTTTAAATGGGATTTAACTGCTTTTGGCTTAGTTGCAG


AGTGGTTTTTGGCATATATTCTTTTCACTAGGTTTTTCTATGTACTTGGATTGGCT


GCAATCATGCAATTGTTTTTCAGCTATTTTGCAGTACATTTTATTAGTAATTCTTG


GCTTATGTGGTTAATAATTAATCTTGTACAAATGGCCCCGATTTCAGCTATGGTTA


GAATGTACATCTTCTTTGCATCATTTTATTATGTATGGAAAAGTTATGTGCATGTT


GTAGACGGTTGTAATTCATCAACTTGTATGATGTGTTACAAACGTAATAGAGCAA


CAAGAGTCGAATGTACAACTATTGTTAATGGTGTTAGAAGGTCCTTTTATGTCTA


TGCTAATGGAGGTAAAGGCTTTTGCAAACTACACAATTGGAATTGTGTTAATTGT


GATACATTCTGTGCTGGTAGTACATTTATTAGTGATGAAGTTGCGAGAGACTTGT


CACTACAGTTTAAAAGACCAATAAATCCTACTGACCAGTCTTCTTACATCGTTGA


TAGTGTTACAGTGAAGAATGGTTCCATCCATCTTTACTTTGATAAAGCTGGTCAA


AAGACTTATGAAAGACATTCTCTCTCTCATTTTGTTAACTTAGACAACCTGAGAG


CTAATAACACTAAAGGTTCATTGCCTATTAATGTTATAGTTTTTGATGGTAAATCA


AAATGTGAAGAATCATCTGCAAAATCAGCGTCTGTTTACTACAGTCAGCTTATGT


GTCAACCTATACTGTTACTAGATCAGGCATTAGTGTCTGATGTTGGTGATAGTGC


GGAAGTTGCAGTTAAAATGTTTGATGCTTACGTTAATACGTTTTCATCAACTTTTA


ACGTACCAATGGAAAAACTCAAAACACTAGTTGCAACTGCAGAAGCTGAACTTG


CAAAGAATGTGTCCTTAGACAATGTCTTATCTACTTTTATTTCAGCAGCTCGGCA


AGGGTTTGTTGATTCAGATGTAGAAACTAAAGATGTTGTTGAATGTCTTAAATTG


TCACATCAATCTGACATAGAAGTTACTGGCGATAGTTGTAATAACTATATGCTCA


CCTATAACAAAGTTGAAAACATGACACCCCGTGACCTTGGTGCTTGTATTGACTG


TAGTGCGCGTCATATTAATGCGCAGGTAGCAAAAAGTCACAACATTGCTTTGATA


TGGAACGTTAAAGATTTCATGTCATTGTCTGAACAACTACGAAAACAAATACGTA


GTGCTGCTAAAAAGAATAACTTACCTTTTAAGTTGACATGTGCAACTACTAGACA


AGTTGTTAATGTTGTAACAACAAAGATAGCACTTAAGGGTGGTAAAATTGTTAAT


AATTGGTTGAAGCAGTTAATTAAA





SEQ ID NO: 42 - Clone pCC1-4K-SARS-COV-2-77-4. Only fragments 1 and 2


have been deoptimized:


GGGTCCCACGTGCTAGCGCTAACATAGGTTGTAACCATACAGGTGTTG


TTGGAGAAGGTTCGGAAGGTCTTAATGACAACCTTCTTGAAATACTCCAAAAAG


AGAAAGTCAACATCAATATTGTTGGTGACTTTAAACTTAATGAAGAGATCGCCAT


TATTTTGGCATCTTTTTCGGCTTCCACATCGGCTTTTGTGGAAACTGTGAAAGGTT


TGGATTATAAAGCATTCAAACAAATTGTTGAATCCTGTGGTAATTTTAAAGTTAC


AAAAGGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAACAGAAATCGATACT


GAGTCCTCTTTATGCATTTGCATCGGAGGCTGCTCGTGTTGTACGATCAATTTTCT


CGCGCACTCTTGAAACTGCTCAAAATTCTGTGCGTGTTTTACAGAAGGCCGCTAT


AACAATACTAGATGGAATTTCGCAGTATTCACTGAGACTCATTGATGCTATGATG


TTCACATCGGATTTGGCTACTAACAATCTAGTTGTAATGGCCTACATTACAGGTG


GTGTTGTTCAGTTGACTTCGCAGTGGCTAACTAACATCTTTGGCACTGTTTATGAA


AAACTCAAACCCGTCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGGTGTAGAG


TTTCTTAGAGACGGTTGGGAAATTGTTAAATTTATCTCAACCTGTGCTTGTGAAAT


TGTCGGTGGACAAATTGTCACCTGTGCAAAGGAAATTAAGGAGTCGGTTCAGAC


ATTCTTTAAGCTTGTAAATAAATTTTTGGCTTTGTGTGCTGACTCTATCATTATTG


GTGGAGCTAAACTTAAAGCCTTGAATTTAGGTGAAACATTTGTCACGCACTCGAA


GGGATTGTACAGAAAGTGTGTTAAATCCAGAGAAGAAACTGGCCTACTCATGCC


TCTAAAAGCCCCAAAAGAAATTATCTTCTTAGAGGGAGAAACACTTCCCACAGA


AGTGTTAACAGAGGAAGTTGTCTTGAAAACTGGTGATTTACAACCATTAGAACA


ACCTACTTCGGAAGCTGTTGAAGCTCCATTGGTTGGTACACCAGTTTGTATTAAC


GGGCTTATGTTGCTCGAAATCAAAGACACAGAAAAGTACTGTGCCCTTGCACCTA


ATATGATGGTAACAAACAATACCTTCACACTCAAAGGCGGTGCACCAACAAAGG


TTACTTTTGGTGATGACACTGTGATAGAAGTGCAAGGTTACAAGAGTGTGAATAT


CACTTTTGAACTTGATGAAAGGATTGATAAAGTACTTAATGAGAAGTGCTCGGCC


TATACAGTTGAACTCGGTACAGAAGTAAATGAGTTCGCCTGTGTTGTGGCAGATG


CTGTCATAAAAACTTTGCAACCAGTATCTGAATTACTTACACCACTGGGCATTGA


TTTAGATGAGTGGTCGATGGCTACATACTACTTATTTGATGAGTCTGGTGAGTTT


AAATTGGCTTCGCATATGTATTGTTCTTTCTACCCTCCAGATGAGGATGAAGAAG


AAGGTGATTGTGAAGAAGAAGAGTTTGAGCCATCGACTCAATATGAGTATGGTA


CTGAAGATGATTACCAAGGTAAACCTTTGGAATTTGGTGCCACTTCTGCTGCTCT


TCAACCTGAAGAAGAGCAAGAAGAAGATTGGTTAGATGATGATTCGCAACAAAC


TGTTGGTCAACAAGACGGCAGTGAGGACAATCAGACAACTACTATTCAAACAAT


TGTTGAGGTTCAACCTCAATTAGAGATGGAACTTACACCAGTTGTTCAGACTATT


GAAGTGAATTCGTTTAGTGGTTATTTAAAACTTACTGACAATGTATACATTAAAA


ATGCAGACATTGTGGAAGAAGCTAAAAAGGTAAAACCAACAGTGGTTGTTAATG


CAGCCAATGTTTACCTTAAACATGGAGGAGGTGTTGCAGGAGCCTTAAATAAGG


CTACTAACAATGCCATGCAAGTTGAATCGGATGATTACATAGCTACTAATGGACC


ACTTAAAGTGGGTGGTTCGTGTGTTTTAAGCGGACACAATCTTGCTAAACACTGT


CTTCATGTTGTCGGCCCAAATGTTAACAAAGGTGAAGACATTCAACTTCTTAAGT


CGGCTTATGAAAATTTTAATCAGCACGAAGTTCTACTTGCACCATTATTATCAGC


TGGTATTTTTGGTGCTGACCCTATACATTCGTTAAGAGTTTGTGTAGATACTGTTC


GCACAAATGTCTACTTAGCTGTCTTTGATAAAAATCTCTATGACAAACTTGTTTCA


TCGTTTTTGGAAATGAAGAGTGAAAAGCAAGTTGAACAAAAGATCGCTGAGATT


CCTAAAGAGGAAGTTAAGCCATTTATAACTGAATCGAAACCTTCAGTTGAACAG


AGAAAACAAGATGATAAGAAAATCAAAGCTTGTGTTGAAGAAGTTACAACAACT


CTGGAAGAAACTAAGTTCCTCACAGAAAACTTGTTACTTTATATTGACATTAATG


GCAATCTTCATCCAGATTCGGCCACTCTTGTTAGTGACATTGACATCACTTTCTTA


AAGAAAGATGCTCCATATATAGTGGGTGATGTTGTTCAAGAGGGTGTTTTAACTG


CTGTGGTTATACCTACTAAAAAGGCTGGTGGCACTACTGAAATGCTAGCGAAAG


CTTTGAGAAAAGTGCCAACAGACAATTATATAACCACTTACCCGGGTCAGGGTTT


AAATGGTTACACTGTAGAGGAGGCAAAGACAGTGCTTAAAAAGTGTAAATCGGC


CTTTTACATTCTACCATCTATTATCTCGAATGAGAAGCAAGAAATTCTTGGAACT


GTTTCTTGGAATTTGCGAGAAATGCTTGCACATGCAGAAGAAACACGCAAATTA


ATGCCTGTCTGTGTGGAAACTAAAGCCATAGTTTCGACTATACAGCGTAAATATA


AGGGTATTAAAATACAAGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTTA


CACCAGTAAAACAACTGTAGCGTCGCTTATCAACACACTTAACGATCTAAATGA


AACTCTTGTTACAATGCCACTTGGCTATGTAACACATGGCTTAAATTTGGAAGAA


GCTGCTCGGTATATGAGATCTCTCAAAGTGCCAGCTACAGTTTCGGTTTCTTCGC


CTGATGCTGTTACAGCGTATAATGGTTATCTTACTTCTTCGTCTAAAACACCTGAA


GAACATTTTATTGAAACCATCTCACTTGCTGGTTCGTATAAAGATTGGTCCTATTC


GGGACAATCTACACAACTAGGTATAGAATTTCTTAAGAGAGGTGATAAATCGGT


ATATTACACTAGTAATCCTACCACATTCCACCTAGATGGTGAAGTTATCACCTTT


GACAATCTTAAGACACTTCTTTCGTTGAGAGAAGTGAGGACTATTAAGGTGTTTA


CAACAGTAGACAACATTAACCTCCACACGCAAGTTGTGGACATGTCAATGACAT


ATGGACAACAGTTTGGTCCAACTTATTTGGATGGAGCTGATGTTACTAAAATAAA


ACCTCATAATTCGCATGAAGGTAAAACATTTTATGTTTTACCTAATGATGACACT


CTACGTGTTGAGGCTTTTGAGTACTACCACACAACTGATCCTAGTTTTCTGGGTA


GGTACATGTCGGCATTAAATCACACTAAAAAGTGGAAATACCCACAAGTTAATG


GTTTAACTTCTATTAAATGGGCAGATAACAACTGTTATCTTGCCACTGCATTGTTA


ACACTCCAACAAATAGAGTTGAAGTTTAATCCACCTGCTCTACAAGATGCTTATT


ACAGAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGCACTTATCTTAGCCTACTG


TAATAAGACAGTAGGTGAGTTAGGTGATGTTAGAGAAACAATGTCGTACTTGTTT


CAACATGCCAATTTAGATTCTTGCAAAAGAGTCTTGAACGTGGTGTGTAAAACTT


GTGGACAACAGCAGACAACCCTTAAGGGTGTAGAAGCTGTTATGTACATGGGCA


CACTTTCGTATGAACAATTTAAGAAAGGTGTTCAGATACCTTGTACGTGTGGTAA


ACAAGCTACAAAATATCTAGTACAACAGGAGTCACCTTTTGTTATGATGTCGGCA


CCACCTGCTCAGTATGAACTTAAGCATGGTACATTTACTTGTGCTAGTGAGTACA


CTGGTAATTACCAGTGTGGTCACTATAAACATATAACTTCGAAAGAAACTTTGTA


TTGCATAGACGGTGCTTTACTTACAAAGTCCTCGGAATACAAAGGTCCTATTACG


GATGTTTTCTACAAAGAAAACAGTTACACAACAACCATAAAACCAGTTACTTATA


AATTGGATGGTGTTGTTTGTACAGAAATTGACCCTAAGTTGGACAATTATTATAA


GAAAGACAATTCGTATTTCACAGAGCAACCAATTGATCTTGTACCAAACCAACC


ATATCCAAACGCAAGCTTCGATAATTTTAAGTTTGTATGTGATAATATCAAATTT


GCTGATGATTTAAACCAGTTAACTGGTTATAAGAAACCTGCTTCGAGAGAGCTTA


AAGTTACATTTTTCCCTGACTTAAATGGTGATGTGGTGGCTATTGATTATAAACA


CTACACACCCTCTTTTAAGAAAGGAGCTAAATTGTTACATAAACCTATTGTTTGG


CATGTTAACAATGCAACTAATAAAGCCACGTATAAACCAAATACCTGGTGTATA


CGTTGTCTTTGGTCGACAAAACCAGTTGAAACATCAAATTCGTTTGATGTACTGA


AGTCAGAGGACGCGCAGGGAATGGATAATCTTGCCTGCGAAGATCTAAAACCAG


TCTCGGAAGAAGTAGTGGAAAATCCTACCATACAGAAAGACGTTCTTGAGTGTA


ATGTGAAAACTACCGAAGTTGTAGGAGACATTATACTTAAACCAGCAAATAATA


GTTTAAAAATTACAGAAGAGGTTGGCCACACAGATCTAATGGCTGCTTATGTAGA


CAATTCGAGTCTTACTATTAAGAAACCTAATGAATTATCTAGAGTATTAGGTTTG


AAAACCCTTGCTACTCATGGTTTAGCTGCTGTTAATTCGGTCCCTTGGGATACTAT


AGCTAATTATGCTAAGCCTTTTCTTAACAAAGTTGTTAGTACAACTACTAACATA


GTTACACGGTGTTTAAACCGTGTTTGTACTAATTATATGCCTTATTTCTTTACTTT


ATTGCTACAATTGTGTACTTTTACTAGATCGACAAATTCTAGAATTAAAGCATCG


ATGCCGACTACTATAGCAAAGAATACTGTTAAGAGTGTCGGTAAATTTTGTCTAG


AGGCTTCGTTTAATTATTTGAAGTCACCTAATTTTTCGAAACTGATAAATATTATA


ATTTGGTTTTTACTATTAAGTGTTTGCCTAGGTTCTTTAATCTACTCAACCGCTGC


TTTAGGTGTTTTAATGTCTAATTTAGGCATGCCTTCTTACTGTACTGGTTACAGAG


AAGGCTATTTGAACTCTACTAATGTCACTATTGCAACCTACTGTACTGGTTCTATA


CCTTGTAGTGTTTGTCTTAGTGGTTTAGATTCTTTAGACACCTATCCTTCTTTAGA


AACTATACAAATTACCATTTCATCTTTTAAATGGGATTTAACTGCTTTTGGCTTAG


TTGCAGAGTGGTTTTTGGCATATATTCTTTTCACTAGGTTTTTCTATGTACTTGGA


TTGGCTGCAATCATGCAATTGTTTTTCAGCTATTTTGCAGTACATTTTATTAGTAA


TTCTTGGCTTATGTGGTTAATAATTAATCTTGTACAAATGGCCCCGATTTCAGCTA


TGGTTAGAATGTACATCTTCTTTGCATCATTTTATTATGTATGGAAAAGTTATGTG


CATGTTGTAGACGGTTGTAATTCATCAACTTGTATGATGTGTTACAAACGTAATA


GAGCAACAAGAGTCGAATGTACAACTATTGTTAATGGTGTTAGAAGGTCCTTTTA


TGTCTATGCTAATGGAGGTAAAGGCTTTTGCAAACTACACAATTGGAATTGTGTT


AATTGTGATACATTCTGTGCTGGTAGTACATTTATTAGTGATGAAGTTGCGAGAG


ACTTGTCACTACAGTTTAAAAGACCAATAAATCCTACTGACCAGTCTTCTTACAT


CGTTGATAGTGTTACAGTGAAGAATGGTTCCATCCATCTTTACTTTGATAAAGCT


GGTCAAAAGACTTATGAAAGACATTCTCTCTCTCATTTTGTTAACTTAGACAACC


TGAGAGCTAATAACACTAAAGGTTCATTGCCTATTAATGTTATAGTTTTTGATGG


TAAATCAAAATGTGAAGAATCATCTGCAAAATCAGCGTCTGTTTACTACAGTCAG


CTTATGTGTCAACCTATACTGTTACTAGATCAGGCATTAGTGTCTGATGTTGGTGA


TAGTGCGGAAGTTGCAGTTAAAATGTTTGATGCTTACGTTAATACGTTTTCATCA


ACTTTTAACGTACCAATGGAAAAACTCAAAACACTAGTTGCAACTGCAGAAGCT


GAACTTGCAAAGAATGTGTCCTTAGACAATGTCTTATCTACTTTTATTTCAGCAGC


TCGGCAAGGGTTTGTTGATTCAGATGTAGAAACTAAAGATGTTGTTGAATGTCTT


AAATTGTCACATCAATCTGACATAGAAGTTACTGGCGATAGTTGTAATAACTATA


TGCTCACCTATAACAAAGTTGAAAACATGACACCCCGTGACCTTGGTGCTTGTAT


TGACTGTAGTGCGCGTCATATTAATGCGCAGGTAGCAAAAAGTCACAACATTGCT


TTGATATGGAACGTTAAAGATTTCATGTCATTGTCTGAACAACTACGAAAACAAA


TACGTAGTGCTGCTAAAAAGAATAACTTACCTTTTAAGTTGACATGTGCAACTAC


TAGACAAGTTGTTAATGTTGTAACAACAAAGATAGCACTTAAGGGTGGTAAAAT


TGTTAATAATTGGTTGAAGCAGTTAATTAAA





SEQ ID NO: 43 - Clone pCC1-4K-SARS-COV-2-77-5. Only fragments 1 and 3


have been deoptimized:


GGGTCCCACGTGCTAGCGCTAACATAGGTTGTAACCATACAGGTGTTG


TTGGAGAAGGTTCGGAAGGTCTTAATGACAACCTTCTTGAAATACTCCAAAAAG


AGAAAGTCAACATCAATATTGTTGGTGACTTTAAACTTAATGAAGAGATCGCCAT


TATTTTGGCATCTTTTTCGGCTTCCACATCGGCTTTTGTGGAAACTGTGAAAGGTT


TGGATTATAAAGCATTCAAACAAATTGTTGAATCCTGTGGTAATTTTAAAGTTAC


AAAAGGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAACAGAAATCGATACT


GAGTCCTCTTTATGCATTTGCATCGGAGGCTGCTCGTGTTGTACGATCAATTTTCT


CGCGCACTCTTGAAACTGCTCAAAATTCTGTGCGTGTTTTACAGAAGGCCGCTAT


AACAATACTAGATGGAATTTCGCAGTATTCACTGAGACTCATTGATGCTATGATG


TTCACATCGGATTTGGCTACTAACAATCTAGTTGTAATGGCCTACATTACAGGTG


GTGTTGTTCAGTTGACTTCGCAGTGGCTAACTAACATCTTTGGCACTGTTTATGAA


AAACTCAAACCCGTCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGGTGTAGAG


TTTCTTAGAGACGGTTGGGAAATTGTTAAATTTATCTCAACCTGTGCTTGTGAAAT


TGTCGGTGGACAAATTGTCACCTGTGCAAAGGAAATTAAGGAGTCGGTTCAGAC


ATTCTTTAAGCTTGTAAATAAATTTTTGGCTTTGTGTGCTGACTCTATCATTATTG


GTGGAGCTAAACTTAAAGCCTTGAATTTAGGTGAAACATTTGTCACGCACTCGAA


GGGATTGTACAGAAAGTGTGTTAAATCCAGAGAAGAAACTGGCCTACTCATGCC


TCTAAAAGCCCCAAAAGAAATTATCTTCTTAGAGGGAGAAACACTTCCCACAGA


AGTGTTAACAGAGGAAGTTGTCTTGAAAACTGGTGATTTACAACCATTAGAACA


ACCTACTTCGGAAGCTGTTGAAGCTCCATTGGTTGGTACACCAGTTTGTATTAAC


GGGCTTATGTTGCTCGAAATCAAAGACACAGAAAAGTACTGTGCCCTTGCACCTA


ATATGATGGTAACAAACAATACCTTCACACTCAAAGGCGGTGCACCAACAAAGG


TTACTTTTGGTGATGACACTGTGATAGAAGTGCAAGGTTACAAGAGTGTGAATAT


CACTTTTGAACTTGATGAAAGGATTGATAAAGTACTTAATGAGAAGTGCTCGGCC


TATACAGTTGAACTCGGTACAGAAGTAAATGAGTTCGCCTGTGTTGTGGCAGATG


CTGTCATAAAAACTTTGCAACCAGTATCTGAATTACTTACACCACTGGGCATTGA


TTTAGATGAGTGGTCGATGGCTACATACTACTTATTTGATGAGTCTGGTGAGTTT


AAATTGGCTTCGCATATGTATTGTTCTTTCTACCCTCCAGATGAGGATGAAGAAG


AAGGTGATTGTGAAGAAGAAGAGTTTGAGCCATCGACTCAATATGAGTATGGTA


CTGAAGATGATTACCAAGGTAAACCTTTGGAATTTGGTGCCACTTCTGCTGCTCT


TCAACCTGAAGAAGAGCAAGAAGAAGATTGGTTAGATGATGATTCGCAACAAAC


TGTTGGTCAACAAGACGGCAGTGAGGACAATCAGACAACTACTATTCAAACAAT


TGTTGAGGTTCAACCTCAATTAGAGATGGAACTTACACCAGTTGTTCAGACTATT


GAAGTGAATTCGTTTAGTGGTTATTTAAAACTTACTGACAATGTATACATTAAAA


ATGCAGACATTGTGGAAGAAGCTAAAAAGGTAAAACCAACAGTGGTTGTTAATG


CAGCCAATGTTTACCTTAAACATGGAGGAGGTGTTGCAGGAGCCTTAAATAAGG


CTACTAACAATGCCATGCAAGTTGAATCGGATGATTACATAGCTACTAATGGACC


ACTTAAAGTGGGTGGTTCGTGTGTTTTAAGCGGACACAATCTTGCTAAACACTGT


CTTCATGTTGTCGGCCCAAATGTTAACAAAGGTGAAGACATTCAACTTCTTAAGT


CGGCTTATGAAAATTTTAATCAGCACGAAGTTCTACTTGCACCATTATTATCAGC


TGGTATTTTTGGTGCTGACCCTATACATTCGTTAAGAGTTTGTGTAGATACTGTTC


GCACAAATGTCTACTTAGCTGTCTTTGATAAAAATCTCTATGACAAACTTGTTTCA


TCGTTTTTGGAAATGAAGAGTGAAAAGCAAGTTGAACAAAAGATCGCTGAGATT


CCTAAAGAGGAAGTTAAGCCATTTATAACTGAATCGAAACCTTCAGTTGAACAG


AGAAAACAAGATGATAAGAAAATCAAAGCTTGTGTTGAAGAAGTTACAACAACT


CTGGAAGAAACTAAGTTCCTCACAGAAAACTTGTTACTTTATATTGACATTAATG


GCAATCTTCATCCAGATTCGGCCACTCTTGTTAGTGACATTGACATCACTTTCTTA


AAGAAAGATGCTCCATATATAGTGGGTGATGTTGTTCAAGAGGGTGTTTTAACTG


CTGTGGTTATACCTACTAAAAAGGCTGGTGGCACTACTGAAATGCTAGCGAAAG


CTTTGAGAAAAGTGCCAACAGACAATTATATAACCACTTACCCGGGTCAGGGTTT


AAATGGTTACACTGTAGAGGAGGCAAAGACAGTGCTTAAAAAGTGTAAAAGTGC


CTTTTACATTCTACCATCTATTATCTCTAATGAGAAGCAAGAAATTCTTGGAACTG


TTTCTTGGAATTTGCGAGAAATGCTTGCACATGCAGAAGAAACACGCAAATTAAT


GCCTGTCTGTGTGGAAACTAAAGCCATAGTTTCAACTATACAGCGTAAATATAAG


GGTATTAAAATACAAGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTTACA


CCAGTAAAACAACTGTAGCGTCACTTATCAACACACTTAACGATCTAAATGAAA


CTCTTGTTACAATGCCACTTGGCTATGTAACACATGGCTTAAATTTGGAAGAAGC


TGCTCGGTATATGAGATCTCTCAAAGTGCCAGCTACAGTTTCTGTTTCTTCACCTG


ATGCTGTTACAGCGTATAATGGTTATCTTACTTCTTCTTCTAAAACACCTGAAGAA


CATTTTATTGAAACCATCTCACTTGCTGGTTCCTATAAAGATTGGTCCTATTCTGG


ACAATCTACACAACTAGGTATAGAATTTCTTAAGAGAGGTGATAAAAGTGTATAT


TACACTAGTAATCCTACCACATTCCACCTAGATGGTGAAGTTATCACCTTTGACA


ATCTTAAGACACTTCTTTCTTTGAGAGAAGTGAGGACTATTAAGGTGTTTACAAC


AGTAGACAACATTAACCTCCACACGCAAGTTGTGGACATGTCAATGACATATGG


ACAACAGTTTGGTCCAACTTATTTGGATGGAGCTGATGTTACTAAAATAAAACCT


CATAATTCACATGAAGGTAAAACATTTTATGTTTTACCTAATGATGACACTCTAC


GTGTTGAGGCTTTTGAGTACTACCACACAACTGATCCTAGTTTTCTGGGTAGGTA


CATGTCAGCATTAAATCACACTAAAAAGTGGAAATACCCACAAGTTAATGGTTT


AACTTCTATTAAATGGGCAGATAACAACTGTTATCTTGCCACTGCATTGTTAACA


CTCCAACAAATAGAGTTGAAGTTTAATCCACCTGCTCTACAAGATGCTTATTACA


GAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGCACTTATCTTAGCCTACTGTAA


TAAGACAGTAGGTGAGTTAGGTGATGTTAGAGAAACAATGAGTTACTTGTTTCAA


CATGCCAATTTAGATTCTTGCAAAAGAGTCTTGAACGTGGTGTGTAAAACTTGTG


GACAACAGCAGACAACCCTTAAGGGTGTAGAAGCTGTTATGTACATGGGCACAC


TTTCTTATGAACAATTTAAGAAAGGTGTTCAGATACCTTGTACGTGTGGTAAACA


AGCTACAAAATATCTAGTACAACAGGAGTCACCTTTTGTTATGATGTCAGCACCA


CCTGCTCAGTATGAACTTAAGCATGGTACATTTACTTGTGCTAGTGAGTACACTG


GTAATTACCAGTGTGGTCACTATAAACATATAACTTCTAAAGAAACTTTGTATTG


CATAGACGGTGCTTTACTTACAAAGTCCTCAGAATACAAAGGTCCTATTACGGAT


GTTTTCTACAAAGAAAACAGTTACACAACAACCATAAAACCAGTTACTTATAAAT


TGGATGGTGTTGTTTGTACAGAAATTGACCCTAAGTTGGACAATTATTATAAGAA


AGACAATTCTTATTTCACAGAGCAACCAATTGATCTTGTACCAAACCAACCATAT


CCAAACGCAAGCTTCGATAATTTTAAGTTTGTATGTGATAATATCAAATTTGCTG


ATGATTTAAACCAGTTAACTGGTTATAAGAAACCTGCTTCAAGAGAGCTTAAAGT


TACATTTTTCCCTGACTTAAATGGTGATGTGGTGGCTATTGATTATAAACACTACA


CACCCTCTTTTAAGAAAGGAGCTAAATTGTTACATAAACCTATTGTTTGGCATGT


TAACAATGCAACTAATAAAGCCACGTATAAACCAAATACCTGGTGTATACGTTGT


CTTTGGAGCACAAAACCAGTTGAAACATCAAATTCGTTTGATGTACTGAAGTCAG


AGGACGCGCAGGGAATGGATAATCTTGCCTGCGAAGATCTAAAACCAGTCTCTG


AAGAAGTAGTGGAAAATCCTACCATACAGAAAGACGTTCTTGAGTGTAATGTGA


AAACTACCGAAGTTGTAGGAGACATTATACTTAAACCAGCAAATAATAGTTTAA


AAATTACAGAAGAGGTTGGCCACACAGATCTAATGGCTGCTTATGTAGACAATT


CTAGTCTTACTATTAAGAAACCTAATGAATTATCTAGAGTATTAGGTTTGAAAAC


CCTTGCTACTCATGGTTTAGCTGCTGTTAATAGTGTCCCTTGGGATACTATAGCTA


ATTATGCTAAGCCTTTTCTTAACAAAGTTGTTAGTACAACTACTAACATAGTTAC


ACGGTGTTTAAACCGTGTTTGTACTAATTATATGCCTTATTTCTTTACTTTATTGCT


ACAATTGTGTACTTTTACTAGAAGTACAAATTCTAGAATTAAAGCATCTATGCCG


ACTACTATAGCAAAGAATACTGTTAAGAGTGTCGGTAAATTTTGTCTAGAGGCTT


CATTTAATTATTTGAAGTCACCTAATTTTTCTAAACTGATAAATATTATAATTTGG


TTTTTACTATTAAGTGTTTGCCTAGGTTCGTTAATCTACTCAACCGCTGCTTTAGG


TGTTTTAATGTCGAATTTAGGCATGCCTTCTTACTGTACTGGTTACAGAGAAGGCT


ATTTGAACTCGACTAATGTCACTATTGCAACCTACTGTACTGGTTCTATACCTTGT


TCGGTTTGTCTTAGTGGTTTAGATTCTTTAGACACCTATCCTTCGTTAGAAACTAT


ACAAATTACCATTTCATCTTTTAAATGGGATTTAACTGCTTTTGGCTTAGTTGCAG


AGTGGTTTTTGGCATATATTCTTTTCACTAGGTTTTTCTATGTACTTGGATTGGCT


GCAATCATGCAATTGTTTTTCTCGTATTTTGCAGTACATTTTATTAGTAATTCGTG


GCTTATGTGGTTAATAATTAATCTTGTACAAATGGCCCCGATTTCAGCTATGGTTA


GAATGTACATCTTCTTTGCATCGTTTTATTATGTATGGAAAAGTTATGTGCATGTT


GTAGACGGTTGTAATTCGTCAACTTGTATGATGTGTTACAAACGTAATAGAGCAA


CAAGAGTCGAATGTACAACTATTGTTAATGGTGTTAGAAGGTCGTTTTATGTCTA


TGCTAATGGAGGTAAAGGCTTTTGCAAACTACACAATTGGAATTGTGTTAATTGT


GATACATTCTGTGCTGGTAGTACATTTATTTCGGATGAAGTTGCGAGAGACTTGT


CACTACAGTTTAAAAGACCAATAAATCCTACTGACCAGTCGTCTTACATCGTTGA


TAGTGTTACAGTGAAGAATGGTTCGATCCATCTTTACTTTGATAAAGCTGGTCAA


AAGACTTATGAAAGACATTCTCTCTCGCATTTTGTTAACTTAGACAACCTGAGAG


CTAATAACACTAAAGGTTCATTGCCTATTAATGTTATAGTTTTTGATGGTAAATCG


AAATGTGAAGAATCATCGGCAAAATCAGCGTCGGTTTACTACAGTCAGCTTATGT


GTCAACCTATACTGTTACTAGATCAGGCATTAGTGTCGGATGTTGGTGATAGTGC


GGAAGTTGCAGTTAAAATGTTTGATGCTTACGTTAATACGTTTTCGTCAACTTTTA


ACGTACCAATGGAAAAACTCAAAACACTAGTTGCAACTGCAGAAGCTGAACTTG


CAAAGAATGTGTCCTTAGACAATGTCTTATCGACTTTTATTTCAGCAGCTCGGCA


AGGGTTTGTTGATTCGGATGTAGAAACTAAAGATGTTGTTGAATGTCTTAAATTG


TCACATCAATCGGACATAGAAGTTACTGGCGATAGTTGTAATAACTATATGCTCA


CCTATAACAAAGTTGAAAACATGACACCCCGTGACCTTGGTGCTTGTATTGACTG


TTCGGCGCGTCATATTAATGCGCAGGTAGCAAAAAGTCACAACATTGCTTTGATA


TGGAACGTTAAAGATTTCATGTCGTTGTCTGAACAACTACGAAAACAAATACGTT


CGGCTGCTAAAAAGAATAACTTACCTTTTAAGTTGACATGTGCAACTACTAGACA


AGTTGTTAATGTTGTAACAACAAAGATAGCACTTAAGGGTGGTAAAATTGTTAAT


AATTGGTTGAAGCAGTTAATTAAA





SEQ ID NO: 44 - Clone pCC1-4K-SARS-COV-2-77-6. Only fragments 2 and 3


have been deoptimized:


GGGTCCCACGTGCTAGCGCTAACATAGGTTGTAACCATACAGGTGTTG


TTGGAGAAGGTTCCGAAGGTCTTAATGACAACCTTCTTGAAATACTCCAAAAAG


AGAAAGTCAACATCAATATTGTTGGTGACTTTAAACTTAATGAAGAGATCGCCAT


TATTTTGGCATCTTTTTCTGCTTCCACAAGTGCTTTTGTGGAAACTGTGAAAGGTT


TGGATTATAAAGCATTCAAACAAATTGTTGAATCCTGTGGTAATTTTAAAGTTAC


AAAAGGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAACAGAAATCAATACT


GAGTCCTCTTTATGCATTTGCATCAGAGGCTGCTCGTGTTGTACGATCAATTTTCT


CCCGCACTCTTGAAACTGCTCAAAATTCTGTGCGTGTTTTACAGAAGGCCGCTAT


AACAATACTAGATGGAATTTCACAGTATTCACTGAGACTCATTGATGCTATGATG


TTCACATCTGATTTGGCTACTAACAATCTAGTTGTAATGGCCTACATTACAGGTG


GTGTTGTTCAGTTGACTTCGCAGTGGCTAACTAACATCTTTGGCACTGTTTATGAA


AAACTCAAACCCGTCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGGTGTAGAG


TTTCTTAGAGACGGTTGGGAAATTGTTAAATTTATCTCAACCTGTGCTTGTGAAAT


TGTCGGTGGACAAATTGTCACCTGTGCAAAGGAAATTAAGGAGAGTGTTCAGAC


ATTCTTTAAGCTTGTAAATAAATTTTTGGCTTTGTGTGCTGACTCTATCATTATTG


GTGGAGCTAAACTTAAAGCCTTGAATTTAGGTGAAACATTTGTCACGCACTCAAA


GGGATTGTACAGAAAGTGTGTTAAATCCAGAGAAGAAACTGGCCTACTCATGCC


TCTAAAAGCCCCAAAAGAAATTATCTTCTTAGAGGGAGAAACACTTCCCACAGA


AGTGTTAACAGAGGAAGTTGTCTTGAAAACTGGTGATTTACAACCATTAGAACA


ACCTACTAGTGAAGCTGTTGAAGCTCCATTGGTTGGTACACCAGTTTGTATTAAC


GGGCTTATGTTGCTCGAAATCAAAGACACAGAAAAGTACTGTGCCCTTGCACCTA


ATATGATGGTAACAAACAATACCTTCACACTCAAAGGCGGTGCACCAACAAAGG


TTACTTTTGGTGATGACACTGTGATAGAAGTGCAAGGTTACAAGAGTGTGAATAT


CACTTTTGAACTTGATGAAAGGATTGATAAAGTACTTAATGAGAAGTGCTCTGCC


TATACAGTTGAACTCGGTACAGAAGTAAATGAGTTCGCCTGTGTTGTGGCAGATG


CTGTCATAAAAACTTTGCAACCAGTATCTGAATTACTTACACCACTGGGCATTGA


TTTAGATGAGTGGAGTATGGCTACATACTACTTATTTGATGAGTCTGGTGAGTTT


AAATTGGCTTCACATATGTATTGTTCTTTCTACCCTCCAGATGAGGATGAAGAAG


AAGGTGATTGTGAAGAAGAAGAGTTTGAGCCATCAACTCAATATGAGTATGGTA


CTGAAGATGATTACCAAGGTAAACCTTTGGAATTTGGTGCCACTTCTGCTGCTCT


TCAACCTGAAGAAGAGCAAGAAGAAGATTGGTTAGATGATGATAGTCAACAAAC


TGTTGGTCAACAAGACGGCAGTGAGGACAATCAGACAACTACTATTCAAACAAT


TGTTGAGGTTCAACCTCAATTAGAGATGGAACTTACACCAGTTGTTCAGACTATT


GAAGTGAATAGTTTTAGTGGTTATTTAAAACTTACTGACAATGTATACATTAAAA


ATGCAGACATTGTGGAAGAAGCTAAAAAGGTAAAACCAACAGTGGTTGTTAATG


CAGCCAATGTTTACCTTAAACATGGAGGAGGTGTTGCAGGAGCCTTAAATAAGG


CTACTAACAATGCCATGCAAGTTGAATCTGATGATTACATAGCTACTAATGGACC


ACTTAAAGTGGGTGGTAGTTGTGTTTTAAGCGGACACAATCTTGCTAAACACTGT


CTTCATGTTGTCGGCCCAAATGTTAACAAAGGTGAAGACATTCAACTTCTTAAGA


GTGCTTATGAAAATTTTAATCAGCACGAAGTTCTACTTGCACCATTATTATCAGCT


GGTATTTTTGGTGCTGACCCTATACATTCTTTAAGAGTTTGTGTAGATACTGTTCG


CACAAATGTCTACTTAGCTGTCTTTGATAAAAATCTCTATGACAAACTTGTTTCAA


GCTTTTTGGAAATGAAGAGTGAAAAGCAAGTTGAACAAAAGATCGCTGAGATTC


CTAAAGAGGAAGTTAAGCCATTTATAACTGAAAGTAAACCTTCAGTTGAACAGA


GAAAACAAGATGATAAGAAAATCAAAGCTTGTGTTGAAGAAGTTACAACAACTC


TGGAAGAAACTAAGTTCCTCACAGAAAACTTGTTACTTTATATTGACATTAATGG


CAATCTTCATCCAGATTCTGCCACTCTTGTTAGTGACATTGACATCACTTTCTTAA


AGAAAGATGCTCCATATATAGTGGGTGATGTTGTTCAAGAGGGTGTTTTAACTGC


TGTGGTTATACCTACTAAAAAGGCTGGTGGCACTACTGAAATGCTAGCGAAAGC


TTTGAGAAAAGTGCCAACAGACAATTATATAACCACTTACCCGGGTCAGGGTTTA


AATGGTTACACTGTAGAGGAGGCAAAGACAGTGCTTAAAAAGTGTAAATCGGCC


TTTTACATTCTACCATCTATTATCTCGAATGAGAAGCAAGAAATTCTTGGAACTG


TTTCTTGGAATTTGCGAGAAATGCTTGCACATGCAGAAGAAACACGCAAATTAAT


GCCTGTCTGTGTGGAAACTAAAGCCATAGTTTCGACTATACAGCGTAAATATAAG


GGTATTAAAATACAAGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTTACA


CCAGTAAAACAACTGTAGCGTCGCTTATCAACACACTTAACGATCTAAATGAAA


CTCTTGTTACAATGCCACTTGGCTATGTAACACATGGCTTAAATTTGGAAGAAGC


TGCTCGGTATATGAGATCTCTCAAAGTGCCAGCTACAGTTTCGGTTTCTTCGCCTG


ATGCTGTTACAGCGTATAATGGTTATCTTACTTCTTCGTCTAAAACACCTGAAGA


ACATTTTATTGAAACCATCTCACTTGCTGGTTCGTATAAAGATTGGTCCTATTCGG


GACAATCTACACAACTAGGTATAGAATTTCTTAAGAGAGGTGATAAATCGGTAT


ATTACACTAGTAATCCTACCACATTCCACCTAGATGGTGAAGTTATCACCTTTGA


CAATCTTAAGACACTTCTTTCGTTGAGAGAAGTGAGGACTATTAAGGTGTTTACA


ACAGTAGACAACATTAACCTCCACACGCAAGTTGTGGACATGTCAATGACATAT


GGACAACAGTTTGGTCCAACTTATTTGGATGGAGCTGATGTTACTAAAATAAAAC


CTCATAATTCGCATGAAGGTAAAACATTTTATGTTTTACCTAATGATGACACTCT


ACGTGTTGAGGCTTTTGAGTACTACCACACAACTGATCCTAGTTTTCTGGGTAGG


TACATGTCGGCATTAAATCACACTAAAAAGTGGAAATACCCACAAGTTAATGGT


TTAACTTCTATTAAATGGGCAGATAACAACTGTTATCTTGCCACTGCATTGTTAAC


ACTCCAACAAATAGAGTTGAAGTTTAATCCACCTGCTCTACAAGATGCTTATTAC


AGAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGCACTTATCTTAGCCTACTGTA


ATAAGACAGTAGGTGAGTTAGGTGATGTTAGAGAAACAATGTCGTACTTGTTTCA


ACATGCCAATTTAGATTCTTGCAAAAGAGTCTTGAACGTGGTGTGTAAAACTTGT


GGACAACAGCAGACAACCCTTAAGGGTGTAGAAGCTGTTATGTACATGGGCACA


CTTTCGTATGAACAATTTAAGAAAGGTGTTCAGATACCTTGTACGTGTGGTAAAC


AAGCTACAAAATATCTAGTACAACAGGAGTCACCTTTTGTTATGATGTCGGCACC


ACCTGCTCAGTATGAACTTAAGCATGGTACATTTACTTGTGCTAGTGAGTACACT


GGTAATTACCAGTGTGGTCACTATAAACATATAACTTCGAAAGAAACTTTGTATT


GCATAGACGGTGCTTTACTTACAAAGTCCTCGGAATACAAAGGTCCTATTACGGA


TGTTTTCTACAAAGAAAACAGTTACACAACAACCATAAAACCAGTTACTTATAAA


TTGGATGGTGTTGTTTGTACAGAAATTGACCCTAAGTTGGACAATTATTATAAGA


AAGACAATTCGTATTTCACAGAGCAACCAATTGATCTTGTACCAAACCAACCATA


TCCAAACGCAAGCTTCGATAATTTTAAGTTTGTATGTGATAATATCAAATTTGCT


GATGATTTAAACCAGTTAACTGGTTATAAGAAACCTGCTTCGAGAGAGCTTAAAG


TTACATTTTTCCCTGACTTAAATGGTGATGTGGTGGCTATTGATTATAAACACTAC


ACACCCTCTTTTAAGAAAGGAGCTAAATTGTTACATAAACCTATTGTTTGGCATG


TTAACAATGCAACTAATAAAGCCACGTATAAACCAAATACCTGGTGTATACGTTG


TCTTTGGTCGACAAAACCAGTTGAAACATCAAATTCGTTTGATGTACTGAAGTCA


GAGGACGCGCAGGGAATGGATAATCTTGCCTGCGAAGATCTAAAACCAGTCTCG


GAAGAAGTAGTGGAAAATCCTACCATACAGAAAGACGTTCTTGAGTGTAATGTG


AAAACTACCGAAGTTGTAGGAGACATTATACTTAAACCAGCAAATAATAGTTTA


AAAATTACAGAAGAGGTTGGCCACACAGATCTAATGGCTGCTTATGTAGACAAT


TCGAGTCTTACTATTAAGAAACCTAATGAATTATCTAGAGTATTAGGTTTGAAAA


CCCTTGCTACTCATGGTTTAGCTGCTGTTAATTCGGTCCCTTGGGATACTATAGCT


AATTATGCTAAGCCTTTTCTTAACAAAGTTGTTAGTACAACTACTAACATAGTTA


CACGGTGTTTAAACCGTGTTTGTACTAATTATATGCCTTATTTCTTTACTTTATTGC


TACAATTGTGTACTTTTACTAGATCGACAAATTCTAGAATTAAAGCATCGATGCC


GACTACTATAGCAAAGAATACTGTTAAGAGTGTCGGTAAATTTTGTCTAGAGGCT


TCGTTTAATTATTTGAAGTCACCTAATTTTTCGAAACTGATAAATATTATAATTTG


GTTTTTACTATTAAGTGTTTGCCTAGGTTCGTTAATCTACTCAACCGCTGCTTTAG


GTGTTTTAATGTCGAATTTAGGCATGCCTTCTTACTGTACTGGTTACAGAGAAGG


CTATTTGAACTCGACTAATGTCACTATTGCAACCTACTGTACTGGTTCTATACCTT


GTTCGGTTTGTCTTAGTGGTTTAGATTCTTTAGACACCTATCCTTCGTTAGAAACT


ATACAAATTACCATTTCATCTTTTAAATGGGATTTAACTGCTTTTGGCTTAGTTGC


AGAGTGGTTTTTGGCATATATTCTTTTCACTAGGTTTTTCTATGTACTTGGATTGG


CTGCAATCATGCAATTGTTTTTCTCGTATTTTGCAGTACATTTTATTAGTAATTCG


TGGCTTATGTGGTTAATAATTAATCTTGTACAAATGGCCCCGATTTCAGCTATGGT


TAGAATGTACATCTTCTTTGCATCGTTTTATTATGTATGGAAAAGTTATGTGCATG


TTGTAGACGGTTGTAATTCGTCAACTTGTATGATGTGTTACAAACGTAATAGAGC


AACAAGAGTCGAATGTACAACTATTGTTAATGGTGTTAGAAGGTCGTTTTATGTC


TATGCTAATGGAGGTAAAGGCTTTTGCAAACTACACAATTGGAATTGTGTTAATT


GTGATACATTCTGTGCTGGTAGTACATTTATTTCGGATGAAGTTGCGAGAGACTT


GTCACTACAGTTTAAAAGACCAATAAATCCTACTGACCAGTCGTCTTACATCGTT


GATAGTGTTACAGTGAAGAATGGTTCGATCCATCTTTACTTTGATAAAGCTGGTC


AAAAGACTTATGAAAGACATTCTCTCTCGCATTTTGTTAACTTAGACAACCTGAG


AGCTAATAACACTAAAGGTTCATTGCCTATTAATGTTATAGTTTTTGATGGTAAA


TCGAAATGTGAAGAATCATCGGCAAAATCAGCGTCGGTTTACTACAGTCAGCTTA


TGTGTCAACCTATACTGTTACTAGATCAGGCATTAGTGTCGGATGTTGGTGATAG


TGCGGAAGTTGCAGTTAAAATGTTTGATGCTTACGTTAATACGTTTTCGTCAACTT


TTAACGTACCAATGGAAAAACTCAAAACACTAGTTGCAACTGCAGAAGCTGAAC


TTGCAAAGAATGTGTCCTTAGACAATGTCTTATCGACTTTTATTTCAGCAGCTCGG


CAAGGGTTTGTTGATTCGGATGTAGAAACTAAAGATGTTGTTGAATGTCTTAAAT


TGTCACATCAATCGGACATAGAAGTTACTGGCGATAGTTGTAATAACTATATGCT


CACCTATAACAAAGTTGAAAACATGACACCCCGTGACCTTGGTGCTTGTATTGAC


TGTTCGGCGCGTCATATTAATGCGCAGGTAGCAAAAAGTCACAACATTGCTTTGA


TATGGAACGTTAAAGATTTCATGTCGTTGTCTGAACAACTACGAAAACAAATACG


TTCGGCTGCTAAAAAGAATAACTTACCTTTTAAGTTGACATGTGCAACTACTAGA


CAAGTTGTTAATGTTGTAACAACAAAGATAGCACTTAAGGGTGGTAAAATTGTTA


ATAATTGGTTGAAGCAGTTAATTAAA





SEQ ID NO: 45 - Clone pCC1-4K-SARS-COV-2-77-7. All 3 fragments were


deoptimized. Deoptimized sequence between SanDI to PacI in ORF1a:


GGGTCCCACGTGCTAGCGCTAACATAGGTTGTAACCATACAGGTGTTG


TTGGAGAAGGTTCGGAAGGTCTTAATGACAACCTTCTTGAAATACTCCAAAAAG


AGAAAGTCAACATCAATATTGTTGGTGACTTTAAACTTAATGAAGAGATCGCCAT


TATTTTGGCATCTTTTTCGGCTTCCACATCGGCTTTTGTGGAAACTGTGAAAGGTT


TGGATTATAAAGCATTCAAACAAATTGTTGAATCCTGTGGTAATTTTAAAGTTAC


AAAAGGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAACAGAAATCGATACT


GAGTCCTCTTTATGCATTTGCATCGGAGGCTGCTCGTGTTGTACGATCAATTTTCT


CGCGCACTCTTGAAACTGCTCAAAATTCTGTGCGTGTTTTACAGAAGGCCGCTAT


AACAATACTAGATGGAATTTCGCAGTATTCACTGAGACTCATTGATGCTATGATG


TTCACATCGGATTTGGCTACTAACAATCTAGTTGTAATGGCCTACATTACAGGTG


GTGTTGTTCAGTTGACTTCGCAGTGGCTAACTAACATCTTTGGCACTGTTTATGAA


AAACTCAAACCCGTCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGGTGTAGAG


TTTCTTAGAGACGGTTGGGAAATTGTTAAATTTATCTCAACCTGTGCTTGTGAAAT


TGTCGGTGGACAAATTGTCACCTGTGCAAAGGAAATTAAGGAGTCGGTTCAGAC


ATTCTTTAAGCTTGTAAATAAATTTTTGGCTTTGTGTGCTGACTCTATCATTATTG


GTGGAGCTAAACTTAAAGCCTTGAATTTAGGTGAAACATTTGTCACGCACTCGAA


GGGATTGTACAGAAAGTGTGTTAAATCCAGAGAAGAAACTGGCCTACTCATGCC


TCTAAAAGCCCCAAAAGAAATTATCTTCTTAGAGGGAGAAACACTTCCCACAGA


AGTGTTAACAGAGGAAGTTGTCTTGAAAACTGGTGATTTACAACCATTAGAACA


ACCTACTTCGGAAGCTGTTGAAGCTCCATTGGTTGGTACACCAGTTTGTATTAAC


GGGCTTATGTTGCTCGAAATCAAAGACACAGAAAAGTACTGTGCCCTTGCACCTA


ATATGATGGTAACAAACAATACCTTCACACTCAAAGGCGGTGCACCAACAAAGG


TTACTTTTGGTGATGACACTGTGATAGAAGTGCAAGGTTACAAGAGTGTGAATAT


CACTTTTGAACTTGATGAAAGGATTGATAAAGTACTTAATGAGAAGTGCTCGGCC


TATACAGTTGAACTCGGTACAGAAGTAAATGAGTTCGCCTGTGTTGTGGCAGATG


CTGTCATAAAAACTTTGCAACCAGTATCTGAATTACTTACACCACTGGGCATTGA


TTTAGATGAGTGGTCGATGGCTACATACTACTTATTTGATGAGTCTGGTGAGTTT


AAATTGGCTTCGCATATGTATTGTTCTTTCTACCCTCCAGATGAGGATGAAGAAG


AAGGTGATTGTGAAGAAGAAGAGTTTGAGCCATCGACTCAATATGAGTATGGTA


CTGAAGATGATTACCAAGGTAAACCTTTGGAATTTGGTGCCACTTCTGCTGCTCT


TCAACCTGAAGAAGAGCAAGAAGAAGATTGGTTAGATGATGATTCGCAACAAAC


TGTTGGTCAACAAGACGGCAGTGAGGACAATCAGACAACTACTATTCAAACAAT


TGTTGAGGTTCAACCTCAATTAGAGATGGAACTTACACCAGTTGTTCAGACTATT


GAAGTGAATTCGTTTAGTGGTTATTTAAAACTTACTGACAATGTATACATTAAAA


ATGCAGACATTGTGGAAGAAGCTAAAAAGGTAAAACCAACAGTGGTTGTTAATG


CAGCCAATGTTTACCTTAAACATGGAGGAGGTGTTGCAGGAGCCTTAAATAAGG


CTACTAACAATGCCATGCAAGTTGAATCGGATGATTACATAGCTACTAATGGACC


ACTTAAAGTGGGTGGTTCGTGTGTTTTAAGCGGACACAATCTTGCTAAACACTGT


CTTCATGTTGTCGGCCCAAATGTTAACAAAGGTGAAGACATTCAACTTCTTAAGT


CGGCTTATGAAAATTTTAATCAGCACGAAGTTCTACTTGCACCATTATTATCAGC


TGGTATTTTTGGTGCTGACCCTATACATTCGTTAAGAGTTTGTGTAGATACTGTTC


GCACAAATGTCTACTTAGCTGTCTTTGATAAAAATCTCTATGACAAACTTGTTTCA


TCGTTTTTGGAAATGAAGAGTGAAAAGCAAGTTGAACAAAAGATCGCTGAGATT


CCTAAAGAGGAAGTTAAGCCATTTATAACTGAATCGAAACCTTCAGTTGAACAG


AGAAAACAAGATGATAAGAAAATCAAAGCTTGTGTTGAAGAAGTTACAACAACT


CTGGAAGAAACTAAGTTCCTCACAGAAAACTTGTTACTTTATATTGACATTAATG


GCAATCTTCATCCAGATTCGGCCACTCTTGTTAGTGACATTGACATCACTTTCTTA


AAGAAAGATGCTCCATATATAGTGGGTGATGTTGTTCAAGAGGGTGTTTTAACTG


CTGTGGTTATACCTACTAAAAAGGCTGGTGGCACTACTGAAATGCTAGCGAAAG


CTTTGAGAAAAGTGCCAACAGACAATTATATAACCACTTACCCGGGTCAGGGTTT


AAATGGTTACACTGTAGAGGAGGCAAAGACAGTGCTTAAAAAGTGTAAATCGGC


CTTTTACATTCTACCATCTATTATCTCGAATGAGAAGCAAGAAATTCTTGGAACT


GTTTCTTGGAATTTGCGAGAAATGCTTGCACATGCAGAAGAAACACGCAAATTA


ATGCCTGTCTGTGTGGAAACTAAAGCCATAGTTTCGACTATACAGCGTAAATATA


AGGGTATTAAAATACAAGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTTA


CACCAGTAAAACAACTGTAGCGTCGCTTATCAACACACTTAACGATCTAAATGA


AACTCTTGTTACAATGCCACTTGGCTATGTAACACATGGCTTAAATTTGGAAGAA


GCTGCTCGGTATATGAGATCTCTCAAAGTGCCAGCTACAGTTTCGGTTTCTTCGC


CTGATGCTGTTACAGCGTATAATGGTTATCTTACTTCTTCGTCTAAAACACCTGAA


GAACATTTTATTGAAACCATCTCACTTGCTGGTTCGTATAAAGATTGGTCCTATTC


GGGACAATCTACACAACTAGGTATAGAATTTCTTAAGAGAGGTGATAAATCGGT


ATATTACACTAGTAATCCTACCACATTCCACCTAGATGGTGAAGTTATCACCTTT


GACAATCTTAAGACACTTCTTTCGTTGAGAGAAGTGAGGACTATTAAGGTGTTTA


CAACAGTAGACAACATTAACCTCCACACGCAAGTTGTGGACATGTCAATGACAT


ATGGACAACAGTTTGGTCCAACTTATTTGGATGGAGCTGATGTTACTAAAATAAA


ACCTCATAATTCGCATGAAGGTAAAACATTTTATGTTTTACCTAATGATGACACT


CTACGTGTTGAGGCTTTTGAGTACTACCACACAACTGATCCTAGTTTTCTGGGTA


GGTACATGTCGGCATTAAATCACACTAAAAAGTGGAAATACCCACAAGTTAATG


GTTTAACTTCTATTAAATGGGCAGATAACAACTGTTATCTTGCCACTGCATTGTTA


ACACTCCAACAAATAGAGTTGAAGTTTAATCCACCTGCTCTACAAGATGCTTATT


ACAGAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGCACTTATCTTAGCCTACTG


TAATAAGACAGTAGGTGAGTTAGGTGATGTTAGAGAAACAATGTCGTACTTGTTT


CAACATGCCAATTTAGATTCTTGCAAAAGAGTCTTGAACGTGGTGTGTAAAACTT


GTGGACAACAGCAGACAACCCTTAAGGGTGTAGAAGCTGTTATGTACATGGGCA


CACTTTCGTATGAACAATTTAAGAAAGGTGTTCAGATACCTTGTACGTGTGGTAA


ACAAGCTACAAAATATCTAGTACAACAGGAGTCACCTTTTGTTATGATGTCGGCA


CCACCTGCTCAGTATGAACTTAAGCATGGTACATTTACTTGTGCTAGTGAGTACA


CTGGTAATTACCAGTGTGGTCACTATAAACATATAACTTCGAAAGAAACTTTGTA


TTGCATAGACGGTGCTTTACTTACAAAGTCCTCGGAATACAAAGGTCCTATTACG


GATGTTTTCTACAAAGAAAACAGTTACACAACAACCATAAAACCAGTTACTTATA


AATTGGATGGTGTTGTTTGTACAGAAATTGACCCTAAGTTGGACAATTATTATAA


GAAAGACAATTCGTATTTCACAGAGCAACCAATTGATCTTGTACCAAACCAACC


ATATCCAAACGCAAGCTTCGATAATTTTAAGTTTGTATGTGATAATATCAAATTT


GCTGATGATTTAAACCAGTTAACTGGTTATAAGAAACCTGCTTCGAGAGAGCTTA


AAGTTACATTTTTCCCTGACTTAAATGGTGATGTGGTGGCTATTGATTATAAACA


CTACACACCCTCTTTTAAGAAAGGAGCTAAATTGTTACATAAACCTATTGTTTGG


CATGTTAACAATGCAACTAATAAAGCCACGTATAAACCAAATACCTGGTGTATA


CGTTGTCTTTGGTCGACAAAACCAGTTGAAACATCAAATTCGTTTGATGTACTGA


AGTCAGAGGACGCGCAGGGAATGGATAATCTTGCCTGCGAAGATCTAAAACCAG


TCTCGGAAGAAGTAGTGGAAAATCCTACCATACAGAAAGACGTTCTTGAGTGTA


ATGTGAAAACTACCGAAGTTGTAGGAGACATTATACTTAAACCAGCAAATAATA


GTTTAAAAATTACAGAAGAGGTTGGCCACACAGATCTAATGGCTGCTTATGTAGA


CAATTCGAGTCTTACTATTAAGAAACCTAATGAATTATCTAGAGTATTAGGTTTG


AAAACCCTTGCTACTCATGGTTTAGCTGCTGTTAATTCGGTCCCTTGGGATACTAT


AGCTAATTATGCTAAGCCTTTTCTTAACAAAGTTGTTAGTACAACTACTAACATA


GTTACACGGTGTTTAAACCGTGTTTGTACTAATTATATGCCTTATTTCTTTACTTT


ATTGCTACAATTGTGTACTTTTACTAGATCGACAAATTCTAGAATTAAAGCATCG


ATGCCGACTACTATAGCAAAGAATACTGTTAAGAGTGTCGGTAAATTTTGTCTAG


AGGCTTCGTTTAATTATTTGAAGTCACCTAATTTTTCGAAACTGATAAATATTATA


ATTTGGTTTTTACTATTAAGTGTTTGCCTAGGTTCGTTAATCTACTCAACCGCTGC


TTTAGGTGTTTTAATGTCGAATTTAGGCATGCCTTCTTACTGTACTGGTTACAGAG


AAGGCTATTTGAACTCGACTAATGTCACTATTGCAACCTACTGTACTGGTTCTAT


ACCTTGTTCGGTTTGTCTTAGTGGTTTAGATTCTTTAGACACCTATCCTTCGTTAG


AAACTATACAAATTACCATTTCATCTTTTAAATGGGATTTAACTGCTTTTGGCTTA


GTTGCAGAGTGGTTTTTGGCATATATTCTTTTCACTAGGTTTTTCTATGTACTTGG


ATTGGCTGCAATCATGCAATTGTTTTTCTCGTATTTTGCAGTACATTTTATTAGTA


ATTCGTGGCTTATGTGGTTAATAATTAATCTTGTACAAATGGCCCCGATTTCAGCT


ATGGTTAGAATGTACATCTTCTTTGCATCGTTTTATTATGTATGGAAAAGTTATGT


GCATGTTGTAGACGGTTGTAATTCGTCAACTTGTATGATGTGTTACAAACGTAAT


AGAGCAACAAGAGTCGAATGTACAACTATTGTTAATGGTGTTAGAAGGTCGTTTT


ATGTCTATGCTAATGGAGGTAAAGGCTTTTGCAAACTACACAATTGGAATTGTGT


TAATTGTGATACATTCTGTGCTGGTAGTACATTTATTTCGGATGAAGTTGCGAGA


GACTTGTCACTACAGTTTAAAAGACCAATAAATCCTACTGACCAGTCGTCTTACA


TCGTTGATAGTGTTACAGTGAAGAATGGTTCGATCCATCTTTACTTTGATAAAGC


TGGTCAAAAGACTTATGAAAGACATTCTCTCTCGCATTTTGTTAACTTAGACAAC


CTGAGAGCTAATAACACTAAAGGTTCATTGCCTATTAATGTTATAGTTTTTGATG


GTAAATCGAAATGTGAAGAATCATCGGCAAAATCAGCGTCGGTTTACTACAGTC


AGCTTATGTGTCAACCTATACTGTTACTAGATCAGGCATTAGTGTCGGATGTTGG


TGATAGTGCGGAAGTTGCAGTTAAAATGTTTGATGCTTACGTTAATACGTTTTCG


TCAACTTTTAACGTACCAATGGAAAAACTCAAAACACTAGTTGCAACTGCAGAA


GCTGAACTTGCAAAGAATGTGTCCTTAGACAATGTCTTATCGACTTTTATTTCAGC


AGCTCGGCAAGGGTTTGTTGATTCGGATGTAGAAACTAAAGATGTTGTTGAATGT


CTTAAATTGTCACATCAATCGGACATAGAAGTTACTGGCGATAGTTGTAATAACT


ATATGCTCACCTATAACAAAGTTGAAAACATGACACCCCGTGACCTTGGTGCTTG


TATTGACTGTTCGGCGCGTCATATTAATGCGCAGGTAGCAAAAAGTCACAACATT


GCTTTGATATGGAACGTTAAAGATTTCATGTCGTTGTCTGAACAACTACGAAAAC


AAATACGTTCGGCTGCTAAAAAGAATAACTTACCTTTTAAGTTGACATGTGCAAC


TACTAGACAAGTTGTTAATGTTGTAACAACAAAGATAGCACTTAAGGGTGGTAA


AATTGTTAATAATTGGTTGAAGCAGTTAATTAAA





SEQ ID NO: 46 - Clone pCC1-4K-SARS-COV-2-160-1. Only fragment 3 has been


deoptimized:


GGGTCCCACGTGCTAGCGCTAACATAGGTTGTAACCATACAGGTGTTG


TTGGAGAAGGTTCCGAAGGTCTTAATGACAACCTTCTTGAAATACTCCAAAAAG


AGAAAGTCAACATCAATATTGTTGGTGACTTTAAACTTAATGAAGAGATCGCCAT


TATTTTGGCATCTTTTTCTGCTTCCACAAGTGCTTTTGTGGAAACTGTGAAAGGTT


TGGATTATAAAGCATTCAAACAAATTGTTGAATCCTGTGGTAATTTTAAAGTTAC


AAAAGGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAACAGAAATCAATACT


GAGTCCTCTTTATGCATTTGCATCAGAGGCTGCTCGTGTTGTACGATCAATTTTCT


CCCGCACTCTTGAAACTGCTCAAAATTCTGTGCGTGTTTTACAGAAGGCCGCTAT


AACAATACTAGATGGAATTTCACAGTATTCACTGAGACTCATTGATGCTATGATG


TTCACATCTGATTTGGCTACTAACAATCTAGTTGTAATGGCCTACATTACAGGTG


GTGTTGTTCAGTTGACTTCGCAGTGGCTAACTAACATCTTTGGCACTGTTTATGAA


AAACTCAAACCCGTCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGGTGTAGAG


TTTCTTAGAGACGGTTGGGAAATTGTTAAATTTATCTCAACCTGTGCTTGTGAAAT


TGTCGGTGGACAAATTGTCACCTGTGCAAAGGAAATTAAGGAGAGTGTTCAGAC


ATTCTTTAAGCTTGTAAATAAATTTTTGGCTTTGTGTGCTGACTCTATCATTATTG


GTGGAGCTAAACTTAAAGCCTTGAATTTAGGTGAAACATTTGTCACGCACTCAAA


GGGATTGTACAGAAAGTGTGTTAAATCCAGAGAAGAAACTGGCCTACTCATGCC


TCTAAAAGCCCCAAAAGAAATTATCTTCTTAGAGGGAGAAACACTTCCCACAGA


AGTGTTAACAGAGGAAGTTGTCTTGAAAACTGGTGATTTACAACCATTAGAACA


ACCTACTAGTGAAGCTGTTGAAGCTCCATTGGTTGGTACACCAGTTTGTATTAAC


GGGCTTATGTTGCTCGAAATCAAAGACACAGAAAAGTACTGTGCCCTTGCACCTA


ATATGATGGTAACAAACAATACCTTCACACTCAAAGGCGGTGCACCAACAAAGG


TTACTTTTGGTGATGACACTGTGATAGAAGTGCAAGGTTACAAGAGTGTGAATAT


CACTTTTGAACTTGATGAAAGGATTGATAAAGTACTTAATGAGAAGTGCTCTGCC


TATACAGTTGAACTCGGTACAGAAGTAAATGAGTTCGCCTGTGTTGTGGCAGATG


CTGTCATAAAAACTTTGCAACCAGTATCTGAATTACTTACACCACTGGGCATTGA


TTTAGATGAGTGGAGTATGGCTACATACTACTTATTTGATGAGTCTGGTGAGTTT


AAATTGGCTTCACATATGTATTGTTCTTTCTACCCTCCAGATGAGGATGAAGAAG


AAGGTGATTGTGAAGAAGAAGAGTTTGAGCCATCAACTCAATATGAGTATGGTA


CTGAAGATGATTACCAAGGTAAACCTTTGGAATTTGGTGCCACTTCTGCTGCTCT


TCAACCTGAAGAAGAGCAAGAAGAAGATTGGTTAGATGATGATAGTCAACAAAC


TGTTGGTCAACAAGACGGCAGTGAGGACAATCAGACAACTACTATTCAAACAAT


TGTTGAGGTTCAACCTCAATTAGAGATGGAACTTACACCAGTTGTTCAGACTATT


GAAGTGAATAGTTTTAGTGGTTATTTAAAACTTACTGACAATGTATACATTAAAA


ATGCAGACATTGTGGAAGAAGCTAAAAAGGTAAAACCAACAGTGGTTGTTAATG


CAGCCAATGTTTACCTTAAACATGGAGGAGGTGTTGCAGGAGCCTTAAATAAGG


CTACTAACAATGCCATGCAAGTTGAATCTGATGATTACATAGCTACTAATGGACC


ACTTAAAGTGGGTGGTAGTTGTGTTTTAAGCGGACACAATCTTGCTAAACACTGT


CTTCATGTTGTCGGCCCAAATGTTAACAAAGGTGAAGACATTCAACTTCTTAAGA


GTGCTTATGAAAATTTTAATCAGCACGAAGTTCTACTTGCACCATTATTATCAGCT


GGTATTTTTGGTGCTGACCCTATACATTCTTTAAGAGTTTGTGTAGATACTGTTCG


CACAAATGTCTACTTAGCTGTCTTTGATAAAAATCTCTATGACAAACTTGTTTCAA


GCTTTTTGGAAATGAAGAGTGAAAAGCAAGTTGAACAAAAGATCGCTGAGATTC


CTAAAGAGGAAGTTAAGCCATTTATAACTGAAAGTAAACCTTCAGTTGAACAGA


GAAAACAAGATGATAAGAAAATCAAAGCTTGTGTTGAAGAAGTTACAACAACTC


TGGAAGAAACTAAGTTCCTCACAGAAAACTTGTTACTTTATATTGACATTAATGG


CAATCTTCATCCAGATTCTGCCACTCTTGTTAGTGACATTGACATCACTTTCTTAA


AGAAAGATGCTCCATATATAGTGGGTGATGTTGTTCAAGAGGGTGTTTTAACTGC


TGTGGTTATACCTACTAAAAAGGCTGGTGGCACTACTGAAATGCTAGCGAAAGC


TTTGAGAAAAGTGCCAACAGACAATTATATAACCACTTACCCGGGTCAGGGTTTA


AATGGTTACACTGTAGAGGAGGCAAAGACAGTGCTTAAAAAGTGTAAAAGTGCC


TTTTACATTCTACCATCTATTATCTCTAATGAGAAGCAAGAAATTCTTGGAACTGT


TTCTTGGAATTTGCGAGAAATGCTTGCACATGCAGAAGAAACACGCAAATTAAT


GCCTGTCTGTGTGGAAACTAAAGCCATAGTTTCAACTATACAGCGTAAATATAAG


GGTATTAAAATACAAGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTTACA


CCAGTAAAACAACTGTAGCGTCACTTATCAACACACTTAACGATCTAAATGAAA


CTCTTGTTACAATGCCACTTGGCTATGTAACACATGGCTTAAATTTGGAAGAAGC


TGCTCGGTATATGAGATCTCTCAAAGTGCCAGCTACAGTTTCTGTTTCTTCACCTG


ATGCTGTTACAGCGTATAATGGTTATCTTACTTCTTCTTCTAAAACACCTGAAGAA


CATTTTATTGAAACCATCTCACTTGCTGGTTCCTATAAAGATTGGTCCTATTCTGG


ACAATCTACACAACTAGGTATAGAATTTCTTAAGAGAGGTGATAAAAGTGTATAT


TACACTAGTAATCCTACCACATTCCACCTAGATGGTGAAGTTATCACCTTTGACA


ATCTTAAGACACTTCTTTCTTTGAGAGAAGTGAGGACTATTAAGGTGTTTACAAC


AGTAGACAACATTAACCTCCACACGCAAGTTGTGGACATGTCAATGACATATGG


ACAACAGTTTGGTCCAACTTATTTGGATGGAGCTGATGTTACTAAAATAAAACCT


CATAATTCACATGAAGGTAAAACATTTTATGTTTTACCTAATGATGACACTCTAC


GTGTTGAGGCTTTTGAGTACTACCACACAACTGATCCTAGTTTTCTGGGTAGGTA


CATGTCAGCATTAAATCACACTAAAAAGTGGAAATACCCACAAGTTAATGGTTT


AACTTCTATTAAATGGGCAGATAACAACTGTTATCTTGCCACTGCATTGTTAACA


CTCCAACAAATAGAGTTGAAGTTTAATCCACCTGCTCTACAAGATGCTTATTACA


GAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGCACTTATCTTAGCCTACTGTAA


TAAGACAGTAGGTGAGTTAGGTGATGTTAGAGAAACAATGAGTTACTTGTTTCAA


CATGCCAATTTAGATTCTTGCAAAAGAGTCTTGAACGTGGTGTGTAAAACTTGTG


GACAACAGCAGACAACCCTTAAGGGTGTAGAAGCTGTTATGTACATGGGCACAC


TTTCTTATGAACAATTTAAGAAAGGTGTTCAGATACCTTGTACGTGTGGTAAACA


AGCTACAAAATATCTAGTACAACAGGAGTCACCTTTTGTTATGATGTCAGCACCA


CCTGCTCAGTATGAACTTAAGCATGGTACATTTACTTGTGCTAGTGAGTACACTG


GTAATTACCAGTGTGGTCACTATAAACATATAACTTCTAAAGAAACTTTGTATTG


CATAGACGGTGCTTTACTTACAAAGTCCTCAGAATACAAAGGTCCTATTACGGAT


GTTTTCTACAAAGAAAACAGTTACACAACAACCATAAAACCAGTTACTTATAAAT


TGGATGGTGTTGTTTGTACAGAAATTGACCCTAAGTTGGACAATTATTATAAGAA


AGACAATTCTTATTTCACAGAGCAACCAATTGATCTTGTACCAAACCAACCATAT


CCAAACGCAAGCTTCGATAATTTTAAGTTTGTATGTGATAATATCAAATTTGCTG


ATGATTTAAACCAGTTAACTGGTTATAAGAAACCTGCTTCAAGAGAGCTTAAAGT


TACATTTTTCCCTGACTTAAATGGTGATGTGGTGGCTATTGATTATAAACACTACA


CACCCTCTTTTAAGAAAGGAGCTAAATTGTTACATAAACCTATTGTTTGGCATGT


TAACAATGCAACTAATAAAGCCACGTATAAACCAAATACCTGGTGTATACGTTGT


CTTTGGAGCACAAAACCAGTTGAAACATCAAATTCGTTTGATGTACTGAAGTCAG


AGGACGCGCAGGGAATGGATAATCTTGCCTGCGAAGATCTAAAACCAGTCTCTG


AAGAAGTAGTGGAAAATCCTACCATACAGAAAGACGTTCTTGAGTGTAATGTGA


AAACTACCGAAGTTGTAGGAGACATTATACTTAAACCAGCAAATAATAGTTTAA


AAATTACAGAAGAGGTTGGCCACACAGATCTAATGGCTGCTTATGTAGACAATT


CTAGTCTTACTATTAAGAAACCTAATGAATTATCTAGAGTATTAGGTTTGAAAAC


CCTTGCTACTCATGGTTTAGCTGCTGTTAATAGTGTCCCTTGGGATACTATAGCTA


ATTATGCTAAGCCTTTTCTTAACAAAGTTGTTAGTACAACTACTAACATAGTTAC


ACGGTGTTTAAACCGTGTTTGTACTAATTATATGCCTTATTTCTTTACTTTATTGCT


ACAATTGTGTACTTTTACTAGAAGTACAAATTCTAGAATTAAAGCATCTATGCCG


ACTACTATAGCAAAGAATACTGTTAAGAGTGTCGGTAAATTTTGTCTAGAGGCTT


CATTTAATTATTTGAAGTCACCTAATTTTTCTAAACTGATAAATATTATAATTTGG


TTTTTACTATTAAGTGTTTGCCTAGGTTCGTTAATCTACTCGACCGCTGCTTTAGG


TGTTTTAATGTCGAATTTAGGCATGCCTTCGTACTGTACTGGTTACAGAGAAGGC


TATTTGAACTCGACTAATGTCACTATTGCAACCTACTGTACTGGTTCGATACCTTG


TTCGGTTTGTCTTTCGGGTTTAGATTCGTTAGACACCTATCCTTCGTTAGAAACTA


TACAAATTACCATTTCGTCGTTTAAATGGGATTTAACTGCTTTTGGCTTAGTTGCA


GAGTGGTTTTTGGCATATATTCTTTTCACTAGGTTTTTCTATGTACTTGGATTGGC


TGCAATCATGCAATTGTTTTTCTCGTATTTTGCAGTACATTTTATTTCGAATTCGT


GGCTTATGTGGTTAATAATTAATCTTGTACAAATGGCCCCGATTTCGGCTATGGTT


AGAATGTACATCTTCTTTGCATCGTTTTATTATGTATGGAAATCGTATGTGCATGT


TGTAGACGGTTGTAATTCGTCGACTTGTATGATGTGTTACAAACGTAATAGAGCA


ACAAGAGTCGAATGTACAACTATTGTTAATGGTGTTAGAAGGTCGTTTTATGTCT


ATGCTAATGGAGGTAAAGGCTTTTGCAAACTACACAATTGGAATTGTGTTAATTG


TGATACATTCTGTGCTGGTTCGACATTTATTTCGGATGAAGTTGCGAGAGACTTG


TCGCTACAGTTTAAAAGACCAATAAATCCTACTGACCAGTCGTCGTACATCGTTG


ATTCGGTTACAGTGAAGAATGGTTCGATCCATCTTTACTTTGATAAAGCTGGTCA


AAAGACTTATGAAAGACATTCGCTCTCGCATTTTGTTAACTTAGACAACCTGAGA


GCTAATAACACTAAAGGTTCGTTGCCTATTAATGTTATAGTTTTTGATGGTAAATC


GAAATGTGAAGAATCGTCGGCAAAATCGGCGTCGGTTTACTACTCGCAGCTTATG


TGTCAACCTATACTGTTACTAGATCAGGCATTAGTGTCGGATGTTGGTGATTCGG


CGGAAGTTGCAGTTAAAATGTTTGATGCTTACGTTAATACGTTTTCGTCGACTTTT


AACGTACCAATGGAAAAACTCAAAACACTAGTTGCAACTGCAGAAGCTGAACTT


GCAAAGAATGTGTCGTTAGACAATGTCTTATCGACTTTTATTTCGGCAGCTCGGC


AAGGGTTTGTTGATTCGGATGTAGAAACTAAAGATGTTGTTGAATGTCTTAAATT


GTCGCATCAATCGGACATAGAAGTTACTGGCGATTCGTGTAATAACTATATGCTC


ACCTATAACAAAGTTGAAAACATGACACCCCGTGACCTTGGTGCTTGTATTGACT


GTTCGGCGCGTCATATTAATGCGCAGGTAGCAAAATCGCACAACATTGCTTTGAT


ATGGAACGTTAAAGATTTCATGTCGTTGTCGGAACAACTACGAAAACAAATACG


TTCGGCTGCTAAAAAGAATAACTTACCTTTTAAGTTGACATGTGCAACTACTAGA


CAAGTTGTTAATGTTGTAACAACAAAGATAGCACTTAAGGGTGGTAAAATTGTTA


ATAATTGGTTGAAGCAGTTAATTAAA





SEQ ID NO: 47 - Clone pCC1-4K-SARS-COV-2-160-2. Only fragment 2 has been


deoptimized:


GGGTCCCACGTGCTAGCGCTAACATAGGTTGTAACCATACAGGTGTTG


TTGGAGAAGGTTCCGAAGGTCTTAATGACAACCTTCTTGAAATACTCCAAAAAG


AGAAAGTCAACATCAATATTGTTGGTGACTTTAAACTTAATGAAGAGATCGCCAT


TATTTTGGCATCTTTTTCTGCTTCCACAAGTGCTTTTGTGGAAACTGTGAAAGGTT


TGGATTATAAAGCATTCAAACAAATTGTTGAATCCTGTGGTAATTTTAAAGTTAC


AAAAGGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAACAGAAATCAATACT


GAGTCCTCTTTATGCATTTGCATCAGAGGCTGCTCGTGTTGTACGATCAATTTTCT


CCCGCACTCTTGAAACTGCTCAAAATTCTGTGCGTGTTTTACAGAAGGCCGCTAT


AACAATACTAGATGGAATTTCACAGTATTCACTGAGACTCATTGATGCTATGATG


TTCACATCTGATTTGGCTACTAACAATCTAGTTGTAATGGCCTACATTACAGGTG


GTGTTGTTCAGTTGACTTCGCAGTGGCTAACTAACATCTTTGGCACTGTTTATGAA


AAACTCAAACCCGTCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGGTGTAGAG


TTTCTTAGAGACGGTTGGGAAATTGTTAAATTTATCTCAACCTGTGCTTGTGAAAT


TGTCGGTGGACAAATTGTCACCTGTGCAAAGGAAATTAAGGAGAGTGTTCAGAC


ATTCTTTAAGCTTGTAAATAAATTTTTGGCTTTGTGTGCTGACTCTATCATTATTG


GTGGAGCTAAACTTAAAGCCTTGAATTTAGGTGAAACATTTGTCACGCACTCAAA


GGGATTGTACAGAAAGTGTGTTAAATCCAGAGAAGAAACTGGCCTACTCATGCC


TCTAAAAGCCCCAAAAGAAATTATCTTCTTAGAGGGAGAAACACTTCCCACAGA


AGTGTTAACAGAGGAAGTTGTCTTGAAAACTGGTGATTTACAACCATTAGAACA


ACCTACTAGTGAAGCTGTTGAAGCTCCATTGGTTGGTACACCAGTTTGTATTAAC


GGGCTTATGTTGCTCGAAATCAAAGACACAGAAAAGTACTGTGCCCTTGCACCTA


ATATGATGGTAACAAACAATACCTTCACACTCAAAGGCGGTGCACCAACAAAGG


TTACTTTTGGTGATGACACTGTGATAGAAGTGCAAGGTTACAAGAGTGTGAATAT


CACTTTTGAACTTGATGAAAGGATTGATAAAGTACTTAATGAGAAGTGCTCTGCC


TATACAGTTGAACTCGGTACAGAAGTAAATGAGTTCGCCTGTGTTGTGGCAGATG


CTGTCATAAAAACTTTGCAACCAGTATCTGAATTACTTACACCACTGGGCATTGA


TTTAGATGAGTGGAGTATGGCTACATACTACTTATTTGATGAGTCTGGTGAGTTT


AAATTGGCTTCACATATGTATTGTTCTTTCTACCCTCCAGATGAGGATGAAGAAG


AAGGTGATTGTGAAGAAGAAGAGTTTGAGCCATCAACTCAATATGAGTATGGTA


CTGAAGATGATTACCAAGGTAAACCTTTGGAATTTGGTGCCACTTCTGCTGCTCT


TCAACCTGAAGAAGAGCAAGAAGAAGATTGGTTAGATGATGATAGTCAACAAAC


TGTTGGTCAACAAGACGGCAGTGAGGACAATCAGACAACTACTATTCAAACAAT


TGTTGAGGTTCAACCTCAATTAGAGATGGAACTTACACCAGTTGTTCAGACTATT


GAAGTGAATAGTTTTAGTGGTTATTTAAAACTTACTGACAATGTATACATTAAAA


ATGCAGACATTGTGGAAGAAGCTAAAAAGGTAAAACCAACAGTGGTTGTTAATG


CAGCCAATGTTTACCTTAAACATGGAGGAGGTGTTGCAGGAGCCTTAAATAAGG


CTACTAACAATGCCATGCAAGTTGAATCTGATGATTACATAGCTACTAATGGACC


ACTTAAAGTGGGTGGTAGTTGTGTTTTAAGCGGACACAATCTTGCTAAACACTGT


CTTCATGTTGTCGGCCCAAATGTTAACAAAGGTGAAGACATTCAACTTCTTAAGA


GTGCTTATGAAAATTTTAATCAGCACGAAGTTCTACTTGCACCATTATTATCAGCT


GGTATTTTTGGTGCTGACCCTATACATTCTTTAAGAGTTTGTGTAGATACTGTTCG


CACAAATGTCTACTTAGCTGTCTTTGATAAAAATCTCTATGACAAACTTGTTTCAA


GCTTTTTGGAAATGAAGAGTGAAAAGCAAGTTGAACAAAAGATCGCTGAGATTC


CTAAAGAGGAAGTTAAGCCATTTATAACTGAAAGTAAACCTTCAGTTGAACAGA


GAAAACAAGATGATAAGAAAATCAAAGCTTGTGTTGAAGAAGTTACAACAACTC


TGGAAGAAACTAAGTTCCTCACAGAAAACTTGTTACTTTATATTGACATTAATGG


CAATCTTCATCCAGATTCTGCCACTCTTGTTAGTGACATTGACATCACTTTCTTAA


AGAAAGATGCTCCATATATAGTGGGTGATGTTGTTCAAGAGGGTGTTTTAACTGC


TGTGGTTATACCTACTAAAAAGGCTGGTGGCACTACTGAAATGCTAGCGAAAGC


TTTGAGAAAAGTGCCAACAGACAATTATATAACCACTTACCCGGGTCAGGGTTTA


AATGGTTACACTGTAGAGGAGGCAAAGACAGTGCTTAAAAAGTGTAAATCGGCC


TTTTACATTCTACCATCGATTATCTCGAATGAGAAGCAAGAAATTCTTGGAACTG


TTTCGTGGAATTTGCGAGAAATGCTTGCACATGCAGAAGAAACACGCAAATTAA


TGCCTGTCTGTGTGGAAACTAAAGCCATAGTTTCGACTATACAGCGTAAATATAA


GGGTATTAAAATACAAGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTTAC


ACCTCGAAAACAACTGTAGCGTCGCTTATCAACACACTTAACGATCTAAATGAA


ACTCTTGTTACAATGCCACTTGGCTATGTAACACATGGCTTAAATTTGGAAGAAG


CTGCTCGGTATATGAGATCGCTCAAAGTGCCAGCTACAGTTTCGGTTTCGTCGCC


TGATGCTGTTACAGCGTATAATGGTTATCTTACTTCGTCGTCGAAAACACCTGAA


GAACATTTTATTGAAACCATCTCGCTTGCTGGTTCGTATAAAGATTGGTCGTATTC


GGGACAATCGACACAACTAGGTATAGAATTTCTTAAGAGAGGTGATAAATCGGT


ATATTACACTTCGAATCCTACCACATTCCACCTAGATGGTGAAGTTATCACCTTT


GACAATCTTAAGACACTTCTTTCGTTGAGAGAAGTGAGGACTATTAAGGTGTTTA


CAACAGTAGACAACATTAACCTCCACACGCAAGTTGTGGACATGTCGATGACAT


ATGGACAACAGTTTGGTCCAACTTATTTGGATGGAGCTGATGTTACTAAAATAAA


ACCTCATAATTCGCATGAAGGTAAAACATTTTATGTTTTACCTAATGATGACACT


CTACGTGTTGAGGCTTTTGAGTACTACCACACAACTGATCCTTCGTTTCTGGGTA


GGTACATGTCGGCATTAAATCACACTAAAAAGTGGAAATACCCACAAGTTAATG


GTTTAACTTCGATTAAATGGGCAGATAACAACTGTTATCTTGCCACTGCATTGTT


AACACTCCAACAAATAGAGTTGAAGTTTAATCCACCTGCTCTACAAGATGCTTAT


TACAGAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGCACTTATCTTAGCCTACT


GTAATAAGACAGTAGGTGAGTTAGGTGATGTTAGAGAAACAATGTCGTACTTGTT


TCAACATGCCAATTTAGATTCGTGCAAAAGAGTCTTGAACGTGGTGTGTAAAACT


TGTGGACAACAGCAGACAACCCTTAAGGGTGTAGAAGCTGTTATGTACATGGGC


ACACTTTCGTATGAACAATTTAAGAAAGGTGTTCAGATACCTTGTACGTGTGGTA


AACAAGCTACAAAATATCTAGTACAACAGGAGTCGCCTTTTGTTATGATGTCGGC


ACCACCTGCTCAGTATGAACTTAAGCATGGTACATTTACTTGTGCTTCGGAGTAC


ACTGGTAATTACCAGTGTGGTCACTATAAACATATAACTTCGAAAGAAACTTTGT


ATTGCATAGACGGTGCTTTACTTACAAAGTCGTCGGAATACAAAGGTCCTATTAC


GGATGTTTTCTACAAAGAAAACTCGTACACAACAACCATAAAACCAGTTACTTAT


AAATTGGATGGTGTTGTTTGTACAGAAATTGACCCTAAGTTGGACAATTATTATA


AGAAAGACAATTCGTATTTCACAGAGCAACCAATTGATCTTGTACCAAACCAAC


CATATCCAAACGCATCGTTCGATAATTTTAAGTTTGTATGTGATAATATCAAATTT


GCTGATGATTTAAACCAGTTAACTGGTTATAAGAAACCTGCTTCGAGAGAGCTTA


AAGTTACATTTTTCCCTGACTTAAATGGTGATGTGGTGGCTATTGATTATAAACA


CTACACACCCTCGTTTAAGAAAGGAGCTAAATTGTTACATAAACCTATTGTTTGG


CATGTTAACAATGCAACTAATAAAGCCACGTATAAACCAAATACCTGGTGTATA


CGTTGTCTTTGGTCGACAAAACCAGTTGAAACATCGAATTCGTTTGATGTACTGA


AGTCGGAGGACGCGCAGGGAATGGATAATCTTGCCTGCGAAGATCTAAAACCAG


TCTCGGAAGAAGTAGTGGAAAATCCTACCATACAGAAAGACGTTCTTGAGTGTA


ATGTGAAAACTACCGAAGTTGTAGGAGACATTATACTTAAACCAGCAAATAATT


CGTTAAAAATTACAGAAGAGGTTGGCCACACAGATCTAATGGCTGCTTATGTAG


ACAATTCGTCGCTTACTATTAAGAAACCTAATGAATTATCGAGAGTATTAGGTTT


GAAAACCCTTGCTACTCATGGTTTAGCTGCTGTTAATTCGGTCCCTTGGGATACT


ATAGCTAATTATGCTAAGCCTTTTCTTAACAAAGTTGTTTCGACAACTACTAACAT


AGTTACACGGTGTTTAAACCGTGTTTGTACTAATTATATGCCTTATTTCTTTACTT


TATTGCTACAATTGTGTACTTTTACTAGATCGACAAATTCGAGAATTAAAGCATC


GATGCCGACTACTATAGCAAAGAATACTGTTAAGTCGGTCGGTAAATTTTGTCTA


GAGGCTTCGTTTAATTATTTGAAGTCGCCTAATTTTTCGAAACTGATAAATATTAT


AATTTGGTTTTTACTATTATCGGTTTGCCTAGGTTCTTTAATCTACTCAACCGCTG


CTTTAGGTGTTTTAATGTCTAATTTAGGCATGCCTTCTTACTGTACTGGTTACAGA


GAAGGCTATTTGAACTCTACTAATGTCACTATTGCAACCTACTGTACTGGTTCTAT


ACCTTGTAGTGTTTGTCTTAGTGGTTTAGATTCTTTAGACACCTATCCTTCTTTAG


AAACTATACAAATTACCATTTCATCTTTTAAATGGGATTTAACTGCTTTTGGCTTA


GTTGCAGAGTGGTTTTTGGCATATATTCTTTTCACTAGGTTTTTCTATGTACTTGG


ATTGGCTGCAATCATGCAATTGTTTTTCAGCTATTTTGCAGTACATTTTATTAGTA


ATTCTTGGCTTATGTGGTTAATAATTAATCTTGTACAAATGGCCCCGATTTCAGCT


ATGGTTAGAATGTACATCTTCTTTGCATCATTTTATTATGTATGGAAAAGTTATGT


GCATGTTGTAGACGGTTGTAATTCATCAACTTGTATGATGTGTTACAAACGTAAT


AGAGCAACAAGAGTCGAATGTACAACTATTGTTAATGGTGTTAGAAGGTCCTTTT


ATGTCTATGCTAATGGAGGTAAAGGCTTTTGCAAACTACACAATTGGAATTGTGT


TAATTGTGATACATTCTGTGCTGGTAGTACATTTATTAGTGATGAAGTTGCGAGA


GACTTGTCACTACAGTTTAAAAGACCAATAAATCCTACTGACCAGTCTTCTTACA


TCGTTGATAGTGTTACAGTGAAGAATGGTTCCATCCATCTTTACTTTGATAAAGCT


GGTCAAAAGACTTATGAAAGACATTCTCTCTCTCATTTTGTTAACTTAGACAACC


TGAGAGCTAATAACACTAAAGGTTCATTGCCTATTAATGTTATAGTTTTTGATGG


TAAATCAAAATGTGAAGAATCATCTGCAAAATCAGCGTCTGTTTACTACAGTCAG


CTTATGTGTCAACCTATACTGTTACTAGATCAGGCATTAGTGTCTGATGTTGGTGA


TAGTGCGGAAGTTGCAGTTAAAATGTTTGATGCTTACGTTAATACGTTTTCATCA


ACTTTTAACGTACCAATGGAAAAACTCAAAACACTAGTTGCAACTGCAGAAGCT


GAACTTGCAAAGAATGTGTCCTTAGACAATGTCTTATCTACTTTTATTTCAGCAGC


TCGGCAAGGGTTTGTTGATTCAGATGTAGAAACTAAAGATGTTGTTGAATGTCTT


AAATTGTCACATCAATCTGACATAGAAGTTACTGGCGATAGTTGTAATAACTATA


TGCTCACCTATAACAAAGTTGAAAACATGACACCCCGTGACCTTGGTGCTTGTAT


TGACTGTAGTGCGCGTCATATTAATGCGCAGGTAGCAAAAAGTCACAACATTGCT


TTGATATGGAACGTTAAAGATTTCATGTCATTGTCTGAACAACTACGAAAACAAA


TACGTAGTGCTGCTAAAAAGAATAACTTACCTTTTAAGTTGACATGTGCAACTAC


TAGACAAGTTGTTAATGTTGTAACAACAAAGATAGCACTTAAGGGTGGTAAAAT


TGTTAATAATTGGTTGAAGCAGTTAATTAAA





SEQ ID NO: 48 - Clone pCC1-4K-SARS-COV-2-160-3. Only fragment 1 has been


deoptimized:


GGGTCCCACGTGCTTCGGCTAACATAGGTTGTAACCATACAGGTGTTG


TTGGAGAAGGTTCGGAAGGTCTTAATGACAACCTTCTTGAAATACTCCAAAAAG


AGAAAGTCAACATCAATATTGTTGGTGACTTTAAACTTAATGAAGAGATCGCCAT


TATTTTGGCATCGTTTTCGGCTTCGACATCGGCTTTTGTGGAAACTGTGAAAGGTT


TGGATTATAAAGCATTCAAACAAATTGTTGAATCGTGTGGTAATTTTAAAGTTAC


AAAAGGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAACAGAAATCGATACT


GTCGCCTCTTTATGCATTTGCATCGGAGGCTGCTCGTGTTGTACGATCGATTTTCT


CGCGCACTCTTGAAACTGCTCAAAATTCGGTGCGTGTTTTACAGAAGGCCGCTAT


AACAATACTAGATGGAATTTCGCAGTATTCGCTGAGACTCATTGATGCTATGATG


TTCACATCGGATTTGGCTACTAACAATCTAGTTGTAATGGCCTACATTACAGGTG


GTGTTGTTCAGTTGACTTCGCAGTGGCTAACTAACATCTTTGGCACTGTTTATGAA


AAACTCAAACCCGTCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGGTGTAGAG


TTTCTTAGAGACGGTTGGGAAATTGTTAAATTTATCTCGACCTGTGCTTGTGAAAT


TGTCGGTGGACAAATTGTCACCTGTGCAAAGGAAATTAAGGAGTCGGTTCAGAC


ATTCTTTAAGCTTGTAAATAAATTTTTGGCTTTGTGTGCTGACTCGATCATTATTG


GTGGAGCTAAACTTAAAGCCTTGAATTTAGGTGAAACATTTGTCACGCACTCGAA


GGGATTGTACAGAAAGTGTGTTAAATCGAGAGAAGAAACTGGCCTACTCATGCC


TCTAAAAGCCCCAAAAGAAATTATCTTCTTAGAGGGAGAAACACTTCCCACAGA


AGTGTTAACAGAGGAAGTTGTCTTGAAAACTGGTGATTTACAACCATTAGAACA


ACCTACTTCGGAAGCTGTTGAAGCTCCATTGGTTGGTACACCAGTTTGTATTAAC


GGGCTTATGTTGCTCGAAATCAAAGACACAGAAAAGTACTGTGCCCTTGCACCTA


ATATGATGGTAACAAACAATACCTTCACACTCAAAGGCGGTGCACCAACAAAGG


TTACTTTTGGTGATGACACTGTGATAGAAGTGCAAGGTTACAAGTCGGTGAATAT


CACTTTTGAACTTGATGAAAGGATTGATAAAGTACTTAATGAGAAGTGCTCGGCC


TATACAGTTGAACTCGGTACAGAAGTAAATGAGTTCGCCTGTGTTGTGGCAGATG


CTGTCATAAAAACTTTGCAACCAGTATCGGAATTACTTACACCACTGGGCATTGA


TTTAGATGAGTGGTCGATGGCTACATACTACTTATTTGATGAGTCGGGTGAGTTT


AAATTGGCTTCGCATATGTATTGTTCGTTCTACCCTCCAGATGAGGATGAAGAAG


AAGGTGATTGTGAAGAAGAAGAGTTTGAGCCATCGACTCAATATGAGTATGGTA


CTGAAGATGATTACCAAGGTAAACCTTTGGAATTTGGTGCCACTTCGGCTGCTCT


TCAACCTGAAGAAGAGCAAGAAGAAGATTGGTTAGATGATGATTCGCAACAAAC


TGTTGGTCAACAAGACGGCTCGGAGGACAATCAGACAACTACTATTCAAACAAT


TGTTGAGGTTCAACCTCAATTAGAGATGGAACTTACACCAGTTGTTCAGACTATT


GAAGTGAATTCGTTTTCGGGTTATTTAAAACTTACTGACAATGTATACATTAAAA


ATGCAGACATTGTGGAAGAAGCTAAAAAGGTAAAACCAACAGTGGTTGTTAATG


CAGCCAATGTTTACCTTAAACATGGAGGAGGTGTTGCAGGAGCCTTAAATAAGG


CTACTAACAATGCCATGCAAGTTGAATCGGATGATTACATAGCTACTAATGGACC


ACTTAAAGTGGGTGGTTCGTGTGTTTTATCGGGACACAATCTTGCTAAACACTGT


CTTCATGTTGTCGGCCCAAATGTTAACAAAGGTGAAGACATTCAACTTCTTAAGT


CGGCTTATGAAAATTTTAATCAGCACGAAGTTCTACTTGCACCATTATTATCGGC


TGGTATTTTTGGTGCTGACCCTATACATTCGTTAAGAGTTTGTGTAGATACTGTTC


GCACAAATGTCTACTTAGCTGTCTTTGATAAAAATCTCTATGACAAACTTGTTTCG


TCGTTTTTGGAAATGAAGTCGGAAAAGCAAGTTGAACAAAAGATCGCTGAGATT


CCTAAAGAGGAAGTTAAGCCATTTATAACTGAATCGAAACCTTCGGTTGAACAG


AGAAAACAAGATGATAAGAAAATCAAAGCTTGTGTTGAAGAAGTTACAACAACT


CTGGAAGAAACTAAGTTCCTCACAGAAAACTTGTTACTTTATATTGACATTAATG


GCAATCTTCATCCAGATTCGGCCACTCTTGTTTCGGACATTGACATCACTTTCTTA


AAGAAAGATGCTCCATATATAGTGGGTGATGTTGTTCAAGAGGGTGTTTTAACTG


CTGTGGTTATACCTACTAAAAAGGCTGGTGGCACTACTGAAATGCTAGCGAAAG


CTTTGAGAAAAGTGCCAACAGACAATTATATAACCACTTACCCGGGTCAGGGTTT


AAATGGTTACACTGTAGAGGAGGCAAAGACAGTGCTTAAAAAGTGTAAAAGTGC


CTTTTACATTCTACCATCTATTATCTCTAATGAGAAGCAAGAAATTCTTGGAACTG


TTTCTTGGAATTTGCGAGAAATGCTTGCACATGCAGAAGAAACACGCAAATTAAT


GCCTGTCTGTGTGGAAACTAAAGCCATAGTTTCAACTATACAGCGTAAATATAAG


GGTATTAAAATACAAGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTTACA


CCAGTAAAACAACTGTAGCGTCACTTATCAACACACTTAACGATCTAAATGAAA


CTCTTGTTACAATGCCACTTGGCTATGTAACACATGGCTTAAATTTGGAAGAAGC


TGCTCGGTATATGAGATCTCTCAAAGTGCCAGCTACAGTTTCTGTTTCTTCACCTG


ATGCTGTTACAGCGTATAATGGTTATCTTACTTCTTCTTCTAAAACACCTGAAGAA


CATTTTATTGAAACCATCTCACTTGCTGGTTCCTATAAAGATTGGTCCTATTCTGG


ACAATCTACACAACTAGGTATAGAATTTCTTAAGAGAGGTGATAAAAGTGTATAT


TACACTAGTAATCCTACCACATTCCACCTAGATGGTGAAGTTATCACCTTTGACA


ATCTTAAGACACTTCTTTCTTTGAGAGAAGTGAGGACTATTAAGGTGTTTACAAC


AGTAGACAACATTAACCTCCACACGCAAGTTGTGGACATGTCAATGACATATGG


ACAACAGTTTGGTCCAACTTATTTGGATGGAGCTGATGTTACTAAAATAAAACCT


CATAATTCACATGAAGGTAAAACATTTTATGTTTTACCTAATGATGACACTCTAC


GTGTTGAGGCTTTTGAGTACTACCACACAACTGATCCTAGTTTTCTGGGTAGGTA


CATGTCAGCATTAAATCACACTAAAAAGTGGAAATACCCACAAGTTAATGGTTT


AACTTCTATTAAATGGGCAGATAACAACTGTTATCTTGCCACTGCATTGTTAACA


CTCCAACAAATAGAGTTGAAGTTTAATCCACCTGCTCTACAAGATGCTTATTACA


GAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGCACTTATCTTAGCCTACTGTAA


TAAGACAGTAGGTGAGTTAGGTGATGTTAGAGAAACAATGAGTTACTTGTTTCAA


CATGCCAATTTAGATTCTTGCAAAAGAGTCTTGAACGTGGTGTGTAAAACTTGTG


GACAACAGCAGACAACCCTTAAGGGTGTAGAAGCTGTTATGTACATGGGCACAC


TTTCTTATGAACAATTTAAGAAAGGTGTTCAGATACCTTGTACGTGTGGTAAACA


AGCTACAAAATATCTAGTACAACAGGAGTCACCTTTTGTTATGATGTCAGCACCA


CCTGCTCAGTATGAACTTAAGCATGGTACATTTACTTGTGCTAGTGAGTACACTG


GTAATTACCAGTGTGGTCACTATAAACATATAACTTCTAAAGAAACTTTGTATTG


CATAGACGGTGCTTTACTTACAAAGTCCTCAGAATACAAAGGTCCTATTACGGAT


GTTTTCTACAAAGAAAACAGTTACACAACAACCATAAAACCAGTTACTTATAAAT


TGGATGGTGTTGTTTGTACAGAAATTGACCCTAAGTTGGACAATTATTATAAGAA


AGACAATTCTTATTTCACAGAGCAACCAATTGATCTTGTACCAAACCAACCATAT


CCAAACGCAAGCTTCGATAATTTTAAGTTTGTATGTGATAATATCAAATTTGCTG


ATGATTTAAACCAGTTAACTGGTTATAAGAAACCTGCTTCAAGAGAGCTTAAAGT


TACATTTTTCCCTGACTTAAATGGTGATGTGGTGGCTATTGATTATAAACACTACA


CACCCTCTTTTAAGAAAGGAGCTAAATTGTTACATAAACCTATTGTTTGGCATGT


TAACAATGCAACTAATAAAGCCACGTATAAACCAAATACCTGGTGTATACGTTGT


CTTTGGAGCACAAAACCAGTTGAAACATCAAATTCGTTTGATGTACTGAAGTCAG


AGGACGCGCAGGGAATGGATAATCTTGCCTGCGAAGATCTAAAACCAGTCTCTG


AAGAAGTAGTGGAAAATCCTACCATACAGAAAGACGTTCTTGAGTGTAATGTGA


AAACTACCGAAGTTGTAGGAGACATTATACTTAAACCAGCAAATAATAGTTTAA


AAATTACAGAAGAGGTTGGCCACACAGATCTAATGGCTGCTTATGTAGACAATT


CTAGTCTTACTATTAAGAAACCTAATGAATTATCTAGAGTATTAGGTTTGAAAAC


CCTTGCTACTCATGGTTTAGCTGCTGTTAATAGTGTCCCTTGGGATACTATAGCTA


ATTATGCTAAGCCTTTTCTTAACAAAGTTGTTAGTACAACTACTAACATAGTTAC


ACGGTGTTTAAACCGTGTTTGTACTAATTATATGCCTTATTTCTTTACTTTATTGCT


ACAATTGTGTACTTTTACTAGAAGTACAAATTCTAGAATTAAAGCATCTATGCCG


ACTACTATAGCAAAGAATACTGTTAAGAGTGTCGGTAAATTTTGTCTAGAGGCTT


CATTTAATTATTTGAAGTCACCTAATTTTTCTAAACTGATAAATATTATAATTTGG


TTTTTACTATTAAGTGTTTGCCTAGGTTCTTTAATCTACTCAACCGCTGCTTTAGG


TGTTTTAATGTCTAATTTAGGCATGCCTTCTTACTGTACTGGTTACAGAGAAGGCT


ATTTGAACTCTACTAATGTCACTATTGCAACCTACTGTACTGGTTCTATACCTTGT


AGTGTTTGTCTTAGTGGTTTAGATTCTTTAGACACCTATCCTTCTTTAGAAACTAT


ACAAATTACCATTTCATCTTTTAAATGGGATTTAACTGCTTTTGGCTTAGTTGCAG


AGTGGTTTTTGGCATATATTCTTTTCACTAGGTTTTTCTATGTACTTGGATTGGCT


GCAATCATGCAATTGTTTTTCAGCTATTTTGCAGTACATTTTATTAGTAATTCTTG


GCTTATGTGGTTAATAATTAATCTTGTACAAATGGCCCCGATTTCAGCTATGGTTA


GAATGTACATCTTCTTTGCATCATTTTATTATGTATGGAAAAGTTATGTGCATGTT


GTAGACGGTTGTAATTCATCAACTTGTATGATGTGTTACAAACGTAATAGAGCAA


CAAGAGTCGAATGTACAACTATTGTTAATGGTGTTAGAAGGTCCTTTTATGTCTA


TGCTAATGGAGGTAAAGGCTTTTGCAAACTACACAATTGGAATTGTGTTAATTGT


GATACATTCTGTGCTGGTAGTACATTTATTAGTGATGAAGTTGCGAGAGACTTGT


CACTACAGTTTAAAAGACCAATAAATCCTACTGACCAGTCTTCTTACATCGTTGA


TAGTGTTACAGTGAAGAATGGTTCCATCCATCTTTACTTTGATAAAGCTGGTCAA


AAGACTTATGAAAGACATTCTCTCTCTCATTTTGTTAACTTAGACAACCTGAGAG


CTAATAACACTAAAGGTTCATTGCCTATTAATGTTATAGTTTTTGATGGTAAATCA


AAATGTGAAGAATCATCTGCAAAATCAGCGTCTGTTTACTACAGTCAGCTTATGT


GTCAACCTATACTGTTACTAGATCAGGCATTAGTGTCTGATGTTGGTGATAGTGC


GGAAGTTGCAGTTAAAATGTTTGATGCTTACGTTAATACGTTTTCATCAACTTTTA


ACGTACCAATGGAAAAACTCAAAACACTAGTTGCAACTGCAGAAGCTGAACTTG


CAAAGAATGTGTCCTTAGACAATGTCTTATCTACTTTTATTTCAGCAGCTCGGCA


AGGGTTTGTTGATTCAGATGTAGAAACTAAAGATGTTGTTGAATGTCTTAAATTG


TCACATCAATCTGACATAGAAGTTACTGGCGATAGTTGTAATAACTATATGCTCA


CCTATAACAAAGTTGAAAACATGACACCCCGTGACCTTGGTGCTTGTATTGACTG


TAGTGCGCGTCATATTAATGCGCAGGTAGCAAAAAGTCACAACATTGCTTTGATA


TGGAACGTTAAAGATTTCATGTCATTGTCTGAACAACTACGAAAACAAATACGTA


GTGCTGCTAAAAAGAATAACTTACCTTTTAAGTTGACATGTGCAACTACTAGACA


AGTTGTTAATGTTGTAACAACAAAGATAGCACTTAAGGGTGGTAAAATTGTTAAT


AATTGGTTGAAGCAGTTAATTAAA





SEQ ID NO: 49 - Clone pCC1-4K-SARS-COV-2-160-4. Only fragments 1 and 2


have been deoptimized:


GGGTCCCACGTGCTTCGGCTAACATAGGTTGTAACCATACAGGTGTTG


TTGGAGAAGGTTCGGAAGGTCTTAATGACAACCTTCTTGAAATACTCCAAAAAG


AGAAAGTCAACATCAATATTGTTGGTGACTTTAAACTTAATGAAGAGATCGCCAT


TATTTTGGCATCGTTTTCGGCTTCGACATCGGCTTTTGTGGAAACTGTGAAAGGTT


TGGATTATAAAGCATTCAAACAAATTGTTGAATCGTGTGGTAATTTTAAAGTTAC


AAAAGGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAACAGAAATCGATACT


GTCGCCTCTTTATGCATTTGCATCGGAGGCTGCTCGTGTTGTACGATCGATTTTCT


CGCGCACTCTTGAAACTGCTCAAAATTCGGTGCGTGTTTTACAGAAGGCCGCTAT


AACAATACTAGATGGAATTTCGCAGTATTCGCTGAGACTCATTGATGCTATGATG


TTCACATCGGATTTGGCTACTAACAATCTAGTTGTAATGGCCTACATTACAGGTG


GTGTTGTTCAGTTGACTTCGCAGTGGCTAACTAACATCTTTGGCACTGTTTATGAA


AAACTCAAACCCGTCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGGTGTAGAG


TTTCTTAGAGACGGTTGGGAAATTGTTAAATTTATCTCGACCTGTGCTTGTGAAAT


TGTCGGTGGACAAATTGTCACCTGTGCAAAGGAAATTAAGGAGTCGGTTCAGAC


ATTCTTTAAGCTTGTAAATAAATTTTTGGCTTTGTGTGCTGACTCGATCATTATTG


GTGGAGCTAAACTTAAAGCCTTGAATTTAGGTGAAACATTTGTCACGCACTCGAA


GGGATTGTACAGAAAGTGTGTTAAATCGAGAGAAGAAACTGGCCTACTCATGCC


TCTAAAAGCCCCAAAAGAAATTATCTTCTTAGAGGGAGAAACACTTCCCACAGA


AGTGTTAACAGAGGAAGTTGTCTTGAAAACTGGTGATTTACAACCATTAGAACA


ACCTACTTCGGAAGCTGTTGAAGCTCCATTGGTTGGTACACCAGTTTGTATTAAC


GGGCTTATGTTGCTCGAAATCAAAGACACAGAAAAGTACTGTGCCCTTGCACCTA


ATATGATGGTAACAAACAATACCTTCACACTCAAAGGCGGTGCACCAACAAAGG


TTACTTTTGGTGATGACACTGTGATAGAAGTGCAAGGTTACAAGTCGGTGAATAT


CACTTTTGAACTTGATGAAAGGATTGATAAAGTACTTAATGAGAAGTGCTCGGCC


TATACAGTTGAACTCGGTACAGAAGTAAATGAGTTCGCCTGTGTTGTGGCAGATG


CTGTCATAAAAACTTTGCAACCAGTATCGGAATTACTTACACCACTGGGCATTGA


TTTAGATGAGTGGTCGATGGCTACATACTACTTATTTGATGAGTCGGGTGAGTTT


AAATTGGCTTCGCATATGTATTGTTCGTTCTACCCTCCAGATGAGGATGAAGAAG


AAGGTGATTGTGAAGAAGAAGAGTTTGAGCCATCGACTCAATATGAGTATGGTA


CTGAAGATGATTACCAAGGTAAACCTTTGGAATTTGGTGCCACTTCGGCTGCTCT


TCAACCTGAAGAAGAGCAAGAAGAAGATTGGTTAGATGATGATTCGCAACAAAC


TGTTGGTCAACAAGACGGCTCGGAGGACAATCAGACAACTACTATTCAAACAAT


TGTTGAGGTTCAACCTCAATTAGAGATGGAACTTACACCAGTTGTTCAGACTATT


GAAGTGAATTCGTTTTCGGGTTATTTAAAACTTACTGACAATGTATACATTAAAA


ATGCAGACATTGTGGAAGAAGCTAAAAAGGTAAAACCAACAGTGGTTGTTAATG


CAGCCAATGTTTACCTTAAACATGGAGGAGGTGTTGCAGGAGCCTTAAATAAGG


CTACTAACAATGCCATGCAAGTTGAATCGGATGATTACATAGCTACTAATGGACC


ACTTAAAGTGGGTGGTTCGTGTGTTTTATCGGGACACAATCTTGCTAAACACTGT


CTTCATGTTGTCGGCCCAAATGTTAACAAAGGTGAAGACATTCAACTTCTTAAGT


CGGCTTATGAAAATTTTAATCAGCACGAAGTTCTACTTGCACCATTATTATCGGC


TGGTATTTTTGGTGCTGACCCTATACATTCGTTAAGAGTTTGTGTAGATACTGTTC


GCACAAATGTCTACTTAGCTGTCTTTGATAAAAATCTCTATGACAAACTTGTTTCG


TCGTTTTTGGAAATGAAGTCGGAAAAGCAAGTTGAACAAAAGATCGCTGAGATT


CCTAAAGAGGAAGTTAAGCCATTTATAACTGAATCGAAACCTTCGGTTGAACAG


AGAAAACAAGATGATAAGAAAATCAAAGCTTGTGTTGAAGAAGTTACAACAACT


CTGGAAGAAACTAAGTTCCTCACAGAAAACTTGTTACTTTATATTGACATTAATG


GCAATCTTCATCCAGATTCGGCCACTCTTGTTTCGGACATTGACATCACTTTCTTA


AAGAAAGATGCTCCATATATAGTGGGTGATGTTGTTCAAGAGGGTGTTTTAACTG


CTGTGGTTATACCTACTAAAAAGGCTGGTGGCACTACTGAAATGCTAGCGAAAG


CTTTGAGAAAAGTGCCAACAGACAATTATATAACCACTTACCCGGGTCAGGGTTT


AAATGGTTACACTGTAGAGGAGGCAAAGACAGTGCTTAAAAAGTGTAAATCGGC


CTTTTACATTCTACCATCGATTATCTCGAATGAGAAGCAAGAAATTCTTGGAACT


GTTTCGTGGAATTTGCGAGAAATGCTTGCACATGCAGAAGAAACACGCAAATTA


ATGCCTGTCTGTGTGGAAACTAAAGCCATAGTTTCGACTATACAGCGTAAATATA


AGGGTATTAAAATACAAGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTTA


CACCTCGAAAACAACTGTAGCGTCGCTTATCAACACACTTAACGATCTAAATGAA


ACTCTTGTTACAATGCCACTTGGCTATGTAACACATGGCTTAAATTTGGAAGAAG


CTGCTCGGTATATGAGATCGCTCAAAGTGCCAGCTACAGTTTCGGTTTCGTCGCC


TGATGCTGTTACAGCGTATAATGGTTATCTTACTTCGTCGTCGAAAACACCTGAA


GAACATTTTATTGAAACCATCTCGCTTGCTGGTTCGTATAAAGATTGGTCGTATTC


GGGACAATCGACACAACTAGGTATAGAATTTCTTAAGAGAGGTGATAAATCGGT


ATATTACACTTCGAATCCTACCACATTCCACCTAGATGGTGAAGTTATCACCTTT


GACAATCTTAAGACACTTCTTTCGTTGAGAGAAGTGAGGACTATTAAGGTGTTTA


CAACAGTAGACAACATTAACCTCCACACGCAAGTTGTGGACATGTCGATGACAT


ATGGACAACAGTTTGGTCCAACTTATTTGGATGGAGCTGATGTTACTAAAATAAA


ACCTCATAATTCGCATGAAGGTAAAACATTTTATGTTTTACCTAATGATGACACT


CTACGTGTTGAGGCTTTTGAGTACTACCACACAACTGATCCTTCGTTTCTGGGTA


GGTACATGTCGGCATTAAATCACACTAAAAAGTGGAAATACCCACAAGTTAATG


GTTTAACTTCGATTAAATGGGCAGATAACAACTGTTATCTTGCCACTGCATTGTT


AACACTCCAACAAATAGAGTTGAAGTTTAATCCACCTGCTCTACAAGATGCTTAT


TACAGAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGCACTTATCTTAGCCTACT


GTAATAAGACAGTAGGTGAGTTAGGTGATGTTAGAGAAACAATGTCGTACTTGTT


TCAACATGCCAATTTAGATTCGTGCAAAAGAGTCTTGAACGTGGTGTGTAAAACT


TGTGGACAACAGCAGACAACCCTTAAGGGTGTAGAAGCTGTTATGTACATGGGC


ACACTTTCGTATGAACAATTTAAGAAAGGTGTTCAGATACCTTGTACGTGTGGTA


AACAAGCTACAAAATATCTAGTACAACAGGAGTCGCCTTTTGTTATGATGTCGGC


ACCACCTGCTCAGTATGAACTTAAGCATGGTACATTTACTTGTGCTTCGGAGTAC


ACTGGTAATTACCAGTGTGGTCACTATAAACATATAACTTCGAAAGAAACTTTGT


ATTGCATAGACGGTGCTTTACTTACAAAGTCGTCGGAATACAAAGGTCCTATTAC


GGATGTTTTCTACAAAGAAAACTCGTACACAACAACCATAAAACCAGTTACTTAT


AAATTGGATGGTGTTGTTTGTACAGAAATTGACCCTAAGTTGGACAATTATTATA


AGAAAGACAATTCGTATTTCACAGAGCAACCAATTGATCTTGTACCAAACCAAC


CATATCCAAACGCATCGTTCGATAATTTTAAGTTTGTATGTGATAATATCAAATTT


GCTGATGATTTAAACCAGTTAACTGGTTATAAGAAACCTGCTTCGAGAGAGCTTA


AAGTTACATTTTTCCCTGACTTAAATGGTGATGTGGTGGCTATTGATTATAAACA


CTACACACCCTCGTTTAAGAAAGGAGCTAAATTGTTACATAAACCTATTGTTTGG


CATGTTAACAATGCAACTAATAAAGCCACGTATAAACCAAATACCTGGTGTATA


CGTTGTCTTTGGTCGACAAAACCAGTTGAAACATCGAATTCGTTTGATGTACTGA


AGTCGGAGGACGCGCAGGGAATGGATAATCTTGCCTGCGAAGATCTAAAACCAG


TCTCGGAAGAAGTAGTGGAAAATCCTACCATACAGAAAGACGTTCTTGAGTGTA


ATGTGAAAACTACCGAAGTTGTAGGAGACATTATACTTAAACCAGCAAATAATT


CGTTAAAAATTACAGAAGAGGTTGGCCACACAGATCTAATGGCTGCTTATGTAG


ACAATTCGTCGCTTACTATTAAGAAACCTAATGAATTATCGAGAGTATTAGGTTT


GAAAACCCTTGCTACTCATGGTTTAGCTGCTGTTAATTCGGTCCCTTGGGATACT


ATAGCTAATTATGCTAAGCCTTTTCTTAACAAAGTTGTTTCGACAACTACTAACAT


AGTTACACGGTGTTTAAACCGTGTTTGTACTAATTATATGCCTTATTTCTTTACTT


TATTGCTACAATTGTGTACTTTTACTAGATCGACAAATTCGAGAATTAAAGCATC


GATGCCGACTACTATAGCAAAGAATACTGTTAAGTCGGTCGGTAAATTTTGTCTA


GAGGCTTCGTTTAATTATTTGAAGTCGCCTAATTTTTCGAAACTGATAAATATTAT


AATTTGGTTTTTACTATTATCGGTTTGCCTAGGTTCTTTAATCTACTCAACCGCTG


CTTTAGGTGTTTTAATGTCTAATTTAGGCATGCCTTCTTACTGTACTGGTTACAGA


GAAGGCTATTTGAACTCTACTAATGTCACTATTGCAACCTACTGTACTGGTTCTAT


ACCTTGTAGTGTTTGTCTTAGTGGTTTAGATTCTTTAGACACCTATCCTTCTTTAG


AAACTATACAAATTACCATTTCATCTTTTAAATGGGATTTAACTGCTTTTGGCTTA


GTTGCAGAGTGGTTTTTGGCATATATTCTTTTCACTAGGTTTTTCTATGTACTTGG


ATTGGCTGCAATCATGCAATTGTTTTTCAGCTATTTTGCAGTACATTTTATTAGTA


ATTCTTGGCTTATGTGGTTAATAATTAATCTTGTACAAATGGCCCCGATTTCAGCT


ATGGTTAGAATGTACATCTTCTTTGCATCATTTTATTATGTATGGAAAAGTTATGT


GCATGTTGTAGACGGTTGTAATTCATCAACTTGTATGATGTGTTACAAACGTAAT


AGAGCAACAAGAGTCGAATGTACAACTATTGTTAATGGTGTTAGAAGGTCCTTTT


ATGTCTATGCTAATGGAGGTAAAGGCTTTTGCAAACTACACAATTGGAATTGTGT


TAATTGTGATACATTCTGTGCTGGTAGTACATTTATTAGTGATGAAGTTGCGAGA


GACTTGTCACTACAGTTTAAAAGACCAATAAATCCTACTGACCAGTCTTCTTACA


TCGTTGATAGTGTTACAGTGAAGAATGGTTCCATCCATCTTTACTTTGATAAAGCT


GGTCAAAAGACTTATGAAAGACATTCTCTCTCTCATTTTGTTAACTTAGACAACC


TGAGAGCTAATAACACTAAAGGTTCATTGCCTATTAATGTTATAGTTTTTGATGG


TAAATCAAAATGTGAAGAATCATCTGCAAAATCAGCGTCTGTTTACTACAGTCAG


CTTATGTGTCAACCTATACTGTTACTAGATCAGGCATTAGTGTCTGATGTTGGTGA


TAGTGCGGAAGTTGCAGTTAAAATGTTTGATGCTTACGTTAATACGTTTTCATCA


ACTTTTAACGTACCAATGGAAAAACTCAAAACACTAGTTGCAACTGCAGAAGCT


GAACTTGCAAAGAATGTGTCCTTAGACAATGTCTTATCTACTTTTATTTCAGCAGC


TCGGCAAGGGTTTGTTGATTCAGATGTAGAAACTAAAGATGTTGTTGAATGTCTT


AAATTGTCACATCAATCTGACATAGAAGTTACTGGCGATAGTTGTAATAACTATA


TGCTCACCTATAACAAAGTTGAAAACATGACACCCCGTGACCTTGGTGCTTGTAT


TGACTGTAGTGCGCGTCATATTAATGCGCAGGTAGCAAAAAGTCACAACATTGCT


TTGATATGGAACGTTAAAGATTTCATGTCATTGTCTGAACAACTACGAAAACAAA


TACGTAGTGCTGCTAAAAAGAATAACTTACCTTTTAAGTTGACATGTGCAACTAC


TAGACAAGTTGTTAATGTTGTAACAACAAAGATAGCACTTAAGGGTGGTAAAAT


TGTTAATAATTGGTTGAAGCAGTTAATTAAA





SEQ ID NO: 50 - Clone pCC1-4K-SARS-COV-2-160-5. Only fragments 1 and 3


have been deoptimized:


GGGTCCCACGTGCTTCGGCTAACATAGGTTGTAACCATACAGGTGTTG


TTGGAGAAGGTTCGGAAGGTCTTAATGACAACCTTCTTGAAATACTCCAAAAAG


AGAAAGTCAACATCAATATTGTTGGTGACTTTAAACTTAATGAAGAGATCGCCAT


TATTTTGGCATCGTTTTCGGCTTCGACATCGGCTTTTGTGGAAACTGTGAAAGGTT


TGGATTATAAAGCATTCAAACAAATTGTTGAATCGTGTGGTAATTTTAAAGTTAC


AAAAGGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAACAGAAATCGATACT


GTCGCCTCTTTATGCATTTGCATCGGAGGCTGCTCGTGTTGTACGATCGATTTTCT


CGCGCACTCTTGAAACTGCTCAAAATTCGGTGCGTGTTTTACAGAAGGCCGCTAT


AACAATACTAGATGGAATTTCGCAGTATTCGCTGAGACTCATTGATGCTATGATG


TTCACATCGGATTTGGCTACTAACAATCTAGTTGTAATGGCCTACATTACAGGTG


GTGTTGTTCAGTTGACTTCGCAGTGGCTAACTAACATCTTTGGCACTGTTTATGAA


AAACTCAAACCCGTCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGGTGTAGAG


TTTCTTAGAGACGGTTGGGAAATTGTTAAATTTATCTCGACCTGTGCTTGTGAAAT


TGTCGGTGGACAAATTGTCACCTGTGCAAAGGAAATTAAGGAGTCGGTTCAGAC


ATTCTTTAAGCTTGTAAATAAATTTTTGGCTTTGTGTGCTGACTCGATCATTATTG


GTGGAGCTAAACTTAAAGCCTTGAATTTAGGTGAAACATTTGTCACGCACTCGAA


GGGATTGTACAGAAAGTGTGTTAAATCGAGAGAAGAAACTGGCCTACTCATGCC


TCTAAAAGCCCCAAAAGAAATTATCTTCTTAGAGGGAGAAACACTTCCCACAGA


AGTGTTAACAGAGGAAGTTGTCTTGAAAACTGGTGATTTACAACCATTAGAACA


ACCTACTTCGGAAGCTGTTGAAGCTCCATTGGTTGGTACACCAGTTTGTATTAAC


GGGCTTATGTTGCTCGAAATCAAAGACACAGAAAAGTACTGTGCCCTTGCACCTA


ATATGATGGTAACAAACAATACCTTCACACTCAAAGGCGGTGCACCAACAAAGG


TTACTTTTGGTGATGACACTGTGATAGAAGTGCAAGGTTACAAGTCGGTGAATAT


CACTTTTGAACTTGATGAAAGGATTGATAAAGTACTTAATGAGAAGTGCTCGGCC


TATACAGTTGAACTCGGTACAGAAGTAAATGAGTTCGCCTGTGTTGTGGCAGATG


CTGTCATAAAAACTTTGCAACCAGTATCGGAATTACTTACACCACTGGGCATTGA


TTTAGATGAGTGGTCGATGGCTACATACTACTTATTTGATGAGTCGGGTGAGTTT


AAATTGGCTTCGCATATGTATTGTTCGTTCTACCCTCCAGATGAGGATGAAGAAG


AAGGTGATTGTGAAGAAGAAGAGTTTGAGCCATCGACTCAATATGAGTATGGTA


CTGAAGATGATTACCAAGGTAAACCTTTGGAATTTGGTGCCACTTCGGCTGCTCT


TCAACCTGAAGAAGAGCAAGAAGAAGATTGGTTAGATGATGATTCGCAACAAAC


TGTTGGTCAACAAGACGGCTCGGAGGACAATCAGACAACTACTATTCAAACAAT


TGTTGAGGTTCAACCTCAATTAGAGATGGAACTTACACCAGTTGTTCAGACTATT


GAAGTGAATTCGTTTTCGGGTTATTTAAAACTTACTGACAATGTATACATTAAAA


ATGCAGACATTGTGGAAGAAGCTAAAAAGGTAAAACCAACAGTGGTTGTTAATG


CAGCCAATGTTTACCTTAAACATGGAGGAGGTGTTGCAGGAGCCTTAAATAAGG


CTACTAACAATGCCATGCAAGTTGAATCGGATGATTACATAGCTACTAATGGACC


ACTTAAAGTGGGTGGTTCGTGTGTTTTATCGGGACACAATCTTGCTAAACACTGT


CTTCATGTTGTCGGCCCAAATGTTAACAAAGGTGAAGACATTCAACTTCTTAAGT


CGGCTTATGAAAATTTTAATCAGCACGAAGTTCTACTTGCACCATTATTATCGGC


TGGTATTTTTGGTGCTGACCCTATACATTCGTTAAGAGTTTGTGTAGATACTGTTC


GCACAAATGTCTACTTAGCTGTCTTTGATAAAAATCTCTATGACAAACTTGTTTCG


TCGTTTTTGGAAATGAAGTCGGAAAAGCAAGTTGAACAAAAGATCGCTGAGATT


CCTAAAGAGGAAGTTAAGCCATTTATAACTGAATCGAAACCTTCGGTTGAACAG


AGAAAACAAGATGATAAGAAAATCAAAGCTTGTGTTGAAGAAGTTACAACAACT


CTGGAAGAAACTAAGTTCCTCACAGAAAACTTGTTACTTTATATTGACATTAATG


GCAATCTTCATCCAGATTCGGCCACTCTTGTTTCGGACATTGACATCACTTTCTTA


AAGAAAGATGCTCCATATATAGTGGGTGATGTTGTTCAAGAGGGTGTTTTAACTG


CTGTGGTTATACCTACTAAAAAGGCTGGTGGCACTACTGAAATGCTAGCGAAAG


CTTTGAGAAAAGTGCCAACAGACAATTATATAACCACTTACCCGGGTCAGGGTTT


AAATGGTTACACTGTAGAGGAGGCAAAGACAGTGCTTAAAAAGTGTAAAAGTGC


CTTTTACATTCTACCATCTATTATCTCTAATGAGAAGCAAGAAATTCTTGGAACTG


TTTCTTGGAATTTGCGAGAAATGCTTGCACATGCAGAAGAAACACGCAAATTAAT


GCCTGTCTGTGTGGAAACTAAAGCCATAGTTTCAACTATACAGCGTAAATATAAG


GGTATTAAAATACAAGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTTACA


CCAGTAAAACAACTGTAGCGTCACTTATCAACACACTTAACGATCTAAATGAAA


CTCTTGTTACAATGCCACTTGGCTATGTAACACATGGCTTAAATTTGGAAGAAGC


TGCTCGGTATATGAGATCTCTCAAAGTGCCAGCTACAGTTTCTGTTTCTTCACCTG


ATGCTGTTACAGCGTATAATGGTTATCTTACTTCTTCTTCTAAAACACCTGAAGAA


CATTTTATTGAAACCATCTCACTTGCTGGTTCCTATAAAGATTGGTCCTATTCTGG


ACAATCTACACAACTAGGTATAGAATTTCTTAAGAGAGGTGATAAAAGTGTATAT


TACACTAGTAATCCTACCACATTCCACCTAGATGGTGAAGTTATCACCTTTGACA


ATCTTAAGACACTTCTTTCTTTGAGAGAAGTGAGGACTATTAAGGTGTTTACAAC


AGTAGACAACATTAACCTCCACACGCAAGTTGTGGACATGTCAATGACATATGG


ACAACAGTTTGGTCCAACTTATTTGGATGGAGCTGATGTTACTAAAATAAAACCT


CATAATTCACATGAAGGTAAAACATTTTATGTTTTACCTAATGATGACACTCTAC


GTGTTGAGGCTTTTGAGTACTACCACACAACTGATCCTAGTTTTCTGGGTAGGTA


CATGTCAGCATTAAATCACACTAAAAAGTGGAAATACCCACAAGTTAATGGTTT


AACTTCTATTAAATGGGCAGATAACAACTGTTATCTTGCCACTGCATTGTTAACA


CTCCAACAAATAGAGTTGAAGTTTAATCCACCTGCTCTACAAGATGCTTATTACA


GAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGCACTTATCTTAGCCTACTGTAA


TAAGACAGTAGGTGAGTTAGGTGATGTTAGAGAAACAATGAGTTACTTGTTTCAA


CATGCCAATTTAGATTCTTGCAAAAGAGTCTTGAACGTGGTGTGTAAAACTTGTG


GACAACAGCAGACAACCCTTAAGGGTGTAGAAGCTGTTATGTACATGGGCACAC


TTTCTTATGAACAATTTAAGAAAGGTGTTCAGATACCTTGTACGTGTGGTAAACA


AGCTACAAAATATCTAGTACAACAGGAGTCACCTTTTGTTATGATGTCAGCACCA


CCTGCTCAGTATGAACTTAAGCATGGTACATTTACTTGTGCTAGTGAGTACACTG


GTAATTACCAGTGTGGTCACTATAAACATATAACTTCTAAAGAAACTTTGTATTG


CATAGACGGTGCTTTACTTACAAAGTCCTCAGAATACAAAGGTCCTATTACGGAT


GTTTTCTACAAAGAAAACAGTTACACAACAACCATAAAACCAGTTACTTATAAAT


TGGATGGTGTTGTTTGTACAGAAATTGACCCTAAGTTGGACAATTATTATAAGAA


AGACAATTCTTATTTCACAGAGCAACCAATTGATCTTGTACCAAACCAACCATAT


CCAAACGCAAGCTTCGATAATTTTAAGTTTGTATGTGATAATATCAAATTTGCTG


ATGATTTAAACCAGTTAACTGGTTATAAGAAACCTGCTTCAAGAGAGCTTAAAGT


TACATTTTTCCCTGACTTAAATGGTGATGTGGTGGCTATTGATTATAAACACTACA


CACCCTCTTTTAAGAAAGGAGCTAAATTGTTACATAAACCTATTGTTTGGCATGT


TAACAATGCAACTAATAAAGCCACGTATAAACCAAATACCTGGTGTATACGTTGT


CTTTGGAGCACAAAACCAGTTGAAACATCAAATTCGTTTGATGTACTGAAGTCAG


AGGACGCGCAGGGAATGGATAATCTTGCCTGCGAAGATCTAAAACCAGTCTCTG


AAGAAGTAGTGGAAAATCCTACCATACAGAAAGACGTTCTTGAGTGTAATGTGA


AAACTACCGAAGTTGTAGGAGACATTATACTTAAACCAGCAAATAATAGTTTAA


AAATTACAGAAGAGGTTGGCCACACAGATCTAATGGCTGCTTATGTAGACAATT


CTAGTCTTACTATTAAGAAACCTAATGAATTATCTAGAGTATTAGGTTTGAAAAC


CCTTGCTACTCATGGTTTAGCTGCTGTTAATAGTGTCCCTTGGGATACTATAGCTA


ATTATGCTAAGCCTTTTCTTAACAAAGTTGTTAGTACAACTACTAACATAGTTAC


ACGGTGTTTAAACCGTGTTTGTACTAATTATATGCCTTATTTCTTTACTTTATTGCT


ACAATTGTGTACTTTTACTAGAAGTACAAATTCTAGAATTAAAGCATCTATGCCG


ACTACTATAGCAAAGAATACTGTTAAGAGTGTCGGTAAATTTTGTCTAGAGGCTT


CATTTAATTATTTGAAGTCACCTAATTTTTCTAAACTGATAAATATTATAATTTGG


TTTTTACTATTAAGTGTTTGCCTAGGTTCGTTAATCTACTCGACCGCTGCTTTAGG


TGTTTTAATGTCGAATTTAGGCATGCCTTCGTACTGTACTGGTTACAGAGAAGGC


TATTTGAACTCGACTAATGTCACTATTGCAACCTACTGTACTGGTTCGATACCTTG


TTCGGTTTGTCTTTCGGGTTTAGATTCGTTAGACACCTATCCTTCGTTAGAAACTA


TACAAATTACCATTTCGTCGTTTAAATGGGATTTAACTGCTTTTGGCTTAGTTGCA


GAGTGGTTTTTGGCATATATTCTTTTCACTAGGTTTTTCTATGTACTTGGATTGGC


TGCAATCATGCAATTGTTTTTCTCGTATTTTGCAGTACATTTTATTTCGAATTCGT


GGCTTATGTGGTTAATAATTAATCTTGTACAAATGGCCCCGATTTCGGCTATGGTT


AGAATGTACATCTTCTTTGCATCGTTTTATTATGTATGGAAATCGTATGTGCATGT


TGTAGACGGTTGTAATTCGTCGACTTGTATGATGTGTTACAAACGTAATAGAGCA


ACAAGAGTCGAATGTACAACTATTGTTAATGGTGTTAGAAGGTCGTTTTATGTCT


ATGCTAATGGAGGTAAAGGCTTTTGCAAACTACACAATTGGAATTGTGTTAATTG


TGATACATTCTGTGCTGGTTCGACATTTATTTCGGATGAAGTTGCGAGAGACTTG


TCGCTACAGTTTAAAAGACCAATAAATCCTACTGACCAGTCGTCGTACATCGTTG


ATTCGGTTACAGTGAAGAATGGTTCGATCCATCTTTACTTTGATAAAGCTGGTCA


AAAGACTTATGAAAGACATTCGCTCTCGCATTTTGTTAACTTAGACAACCTGAGA


GCTAATAACACTAAAGGTTCGTTGCCTATTAATGTTATAGTTTTTGATGGTAAATC


GAAATGTGAAGAATCGTCGGCAAAATCGGCGTCGGTTTACTACTCGCAGCTTATG


TGTCAACCTATACTGTTACTAGATCAGGCATTAGTGTCGGATGTTGGTGATTCGG


CGGAAGTTGCAGTTAAAATGTTTGATGCTTACGTTAATACGTTTTCGTCGACTTTT


AACGTACCAATGGAAAAACTCAAAACACTAGTTGCAACTGCAGAAGCTGAACTT


GCAAAGAATGTGTCGTTAGACAATGTCTTATCGACTTTTATTTCGGCAGCTCGGC


AAGGGTTTGTTGATTCGGATGTAGAAACTAAAGATGTTGTTGAATGTCTTAAATT


GTCGCATCAATCGGACATAGAAGTTACTGGCGATTCGTGTAATAACTATATGCTC


ACCTATAACAAAGTTGAAAACATGACACCCCGTGACCTTGGTGCTTGTATTGACT


GTTCGGCGCGTCATATTAATGCGCAGGTAGCAAAATCGCACAACATTGCTTTGAT


ATGGAACGTTAAAGATTTCATGTCGTTGTCGGAACAACTACGAAAACAAATACG


TTCGGCTGCTAAAAAGAATAACTTACCTTTTAAGTTGACATGTGCAACTACTAGA


CAAGTTGTTAATGTTGTAACAACAAAGATAGCACTTAAGGGTGGTAAAATTGTTA


ATAATTGGTTGAAGCAGTTAATTAAA





SEQ ID NO: 51 - Clone pCC1-4K-SARS-COV-2-160-6. Only fragments 2 and 3


have been deoptimized:


GGGTCCCACGTGCTAGCGCTAACATAGGTTGTAACCATACAGGTGTTG


TTGGAGAAGGTTCCGAAGGTCTTAATGACAACCTTCTTGAAATACTCCAAAAAG


AGAAAGTCAACATCAATATTGTTGGTGACTTTAAACTTAATGAAGAGATCGCCAT


TATTTTGGCATCTTTTTCTGCTTCCACAAGTGCTTTTGTGGAAACTGTGAAAGGTT


TGGATTATAAAGCATTCAAACAAATTGTTGAATCCTGTGGTAATTTTAAAGTTAC


AAAAGGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAACAGAAATCAATACT


GAGTCCTCTTTATGCATTTGCATCAGAGGCTGCTCGTGTTGTACGATCAATTTTCT


CCCGCACTCTTGAAACTGCTCAAAATTCTGTGCGTGTTTTACAGAAGGCCGCTAT


AACAATACTAGATGGAATTTCACAGTATTCACTGAGACTCATTGATGCTATGATG


TTCACATCTGATTTGGCTACTAACAATCTAGTTGTAATGGCCTACATTACAGGTG


GTGTTGTTCAGTTGACTTCGCAGTGGCTAACTAACATCTTTGGCACTGTTTATGAA


AAACTCAAACCCGTCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGGTGTAGAG


TTTCTTAGAGACGGTTGGGAAATTGTTAAATTTATCTCAACCTGTGCTTGTGAAAT


TGTCGGTGGACAAATTGTCACCTGTGCAAAGGAAATTAAGGAGAGTGTTCAGAC


ATTCTTTAAGCTTGTAAATAAATTTTTGGCTTTGTGTGCTGACTCTATCATTATTG


GTGGAGCTAAACTTAAAGCCTTGAATTTAGGTGAAACATTTGTCACGCACTCAAA


GGGATTGTACAGAAAGTGTGTTAAATCCAGAGAAGAAACTGGCCTACTCATGCC


TCTAAAAGCCCCAAAAGAAATTATCTTCTTAGAGGGAGAAACACTTCCCACAGA


AGTGTTAACAGAGGAAGTTGTCTTGAAAACTGGTGATTTACAACCATTAGAACA


ACCTACTAGTGAAGCTGTTGAAGCTCCATTGGTTGGTACACCAGTTTGTATTAAC


GGGCTTATGTTGCTCGAAATCAAAGACACAGAAAAGTACTGTGCCCTTGCACCTA


ATATGATGGTAACAAACAATACCTTCACACTCAAAGGCGGTGCACCAACAAAGG


TTACTTTTGGTGATGACACTGTGATAGAAGTGCAAGGTTACAAGAGTGTGAATAT


CACTTTTGAACTTGATGAAAGGATTGATAAAGTACTTAATGAGAAGTGCTCTGCC


TATACAGTTGAACTCGGTACAGAAGTAAATGAGTTCGCCTGTGTTGTGGCAGATG


CTGTCATAAAAACTTTGCAACCAGTATCTGAATTACTTACACCACTGGGCATTGA


TTTAGATGAGTGGAGTATGGCTACATACTACTTATTTGATGAGTCTGGTGAGTTT


AAATTGGCTTCACATATGTATTGTTCTTTCTACCCTCCAGATGAGGATGAAGAAG


AAGGTGATTGTGAAGAAGAAGAGTTTGAGCCATCAACTCAATATGAGTATGGTA


CTGAAGATGATTACCAAGGTAAACCTTTGGAATTTGGTGCCACTTCTGCTGCTCT


TCAACCTGAAGAAGAGCAAGAAGAAGATTGGTTAGATGATGATAGTCAACAAAC


TGTTGGTCAACAAGACGGCAGTGAGGACAATCAGACAACTACTATTCAAACAAT


TGTTGAGGTTCAACCTCAATTAGAGATGGAACTTACACCAGTTGTTCAGACTATT


GAAGTGAATAGTTTTAGTGGTTATTTAAAACTTACTGACAATGTATACATTAAAA


ATGCAGACATTGTGGAAGAAGCTAAAAAGGTAAAACCAACAGTGGTTGTTAATG


CAGCCAATGTTTACCTTAAACATGGAGGAGGTGTTGCAGGAGCCTTAAATAAGG


CTACTAACAATGCCATGCAAGTTGAATCTGATGATTACATAGCTACTAATGGACC


ACTTAAAGTGGGTGGTAGTTGTGTTTTAAGCGGACACAATCTTGCTAAACACTGT


CTTCATGTTGTCGGCCCAAATGTTAACAAAGGTGAAGACATTCAACTTCTTAAGA


GTGCTTATGAAAATTTTAATCAGCACGAAGTTCTACTTGCACCATTATTATCAGCT


GGTATTTTTGGTGCTGACCCTATACATTCTTTAAGAGTTTGTGTAGATACTGTTCG


CACAAATGTCTACTTAGCTGTCTTTGATAAAAATCTCTATGACAAACTTGTTTCAA


GCTTTTTGGAAATGAAGAGTGAAAAGCAAGTTGAACAAAAGATCGCTGAGATTC


CTAAAGAGGAAGTTAAGCCATTTATAACTGAAAGTAAACCTTCAGTTGAACAGA


GAAAACAAGATGATAAGAAAATCAAAGCTTGTGTTGAAGAAGTTACAACAACTC


TGGAAGAAACTAAGTTCCTCACAGAAAACTTGTTACTTTATATTGACATTAATGG


CAATCTTCATCCAGATTCTGCCACTCTTGTTAGTGACATTGACATCACTTTCTTAA


AGAAAGATGCTCCATATATAGTGGGTGATGTTGTTCAAGAGGGTGTTTTAACTGC


TGTGGTTATACCTACTAAAAAGGCTGGTGGCACTACTGAAATGCTAGCGAAAGC


TTTGAGAAAAGTGCCAACAGACAATTATATAACCACTTACCCGGGTCAGGGTTTA


AATGGTTACACTGTAGAGGAGGCAAAGACAGTGCTTAAAAAGTGTAAATCGGCC


TTTTACATTCTACCATCGATTATCTCGAATGAGAAGCAAGAAATTCTTGGAACTG


TTTCGTGGAATTTGCGAGAAATGCTTGCACATGCAGAAGAAACACGCAAATTAA


TGCCTGTCTGTGTGGAAACTAAAGCCATAGTTTCGACTATACAGCGTAAATATAA


GGGTATTAAAATACAAGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTTAC


ACCTCGAAAACAACTGTAGCGTCGCTTATCAACACACTTAACGATCTAAATGAA


ACTCTTGTTACAATGCCACTTGGCTATGTAACACATGGCTTAAATTTGGAAGAAG


CTGCTCGGTATATGAGATCGCTCAAAGTGCCAGCTACAGTTTCGGTTTCGTCGCC


TGATGCTGTTACAGCGTATAATGGTTATCTTACTTCGTCGTCGAAAACACCTGAA


GAACATTTTATTGAAACCATCTCGCTTGCTGGTTCGTATAAAGATTGGTCGTATTC


GGGACAATCGACACAACTAGGTATAGAATTTCTTAAGAGAGGTGATAAATCGGT


ATATTACACTTCGAATCCTACCACATTCCACCTAGATGGTGAAGTTATCACCTTT


GACAATCTTAAGACACTTCTTTCGTTGAGAGAAGTGAGGACTATTAAGGTGTTTA


CAACAGTAGACAACATTAACCTCCACACGCAAGTTGTGGACATGTCGATGACAT


ATGGACAACAGTTTGGTCCAACTTATTTGGATGGAGCTGATGTTACTAAAATAAA


ACCTCATAATTCGCATGAAGGTAAAACATTTTATGTTTTACCTAATGATGACACT


CTACGTGTTGAGGCTTTTGAGTACTACCACACAACTGATCCTTCGTTTCTGGGTA


GGTACATGTCGGCATTAAATCACACTAAAAAGTGGAAATACCCACAAGTTAATG


GTTTAACTTCGATTAAATGGGCAGATAACAACTGTTATCTTGCCACTGCATTGTT


AACACTCCAACAAATAGAGTTGAAGTTTAATCCACCTGCTCTACAAGATGCTTAT


TACAGAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGCACTTATCTTAGCCTACT


GTAATAAGACAGTAGGTGAGTTAGGTGATGTTAGAGAAACAATGTCGTACTTGTT


TCAACATGCCAATTTAGATTCGTGCAAAAGAGTCTTGAACGTGGTGTGTAAAACT


TGTGGACAACAGCAGACAACCCTTAAGGGTGTAGAAGCTGTTATGTACATGGGC


ACACTTTCGTATGAACAATTTAAGAAAGGTGTTCAGATACCTTGTACGTGTGGTA


AACAAGCTACAAAATATCTAGTACAACAGGAGTCGCCTTTTGTTATGATGTCGGC


ACCACCTGCTCAGTATGAACTTAAGCATGGTACATTTACTTGTGCTTCGGAGTAC


ACTGGTAATTACCAGTGTGGTCACTATAAACATATAACTTCGAAAGAAACTTTGT


ATTGCATAGACGGTGCTTTACTTACAAAGTCGTCGGAATACAAAGGTCCTATTAC


GGATGTTTTCTACAAAGAAAACTCGTACACAACAACCATAAAACCAGTTACTTAT


AAATTGGATGGTGTTGTTTGTACAGAAATTGACCCTAAGTTGGACAATTATTATA


AGAAAGACAATTCGTATTTCACAGAGCAACCAATTGATCTTGTACCAAACCAAC


CATATCCAAACGCATCGTTCGATAATTTTAAGTTTGTATGTGATAATATCAAATTT


GCTGATGATTTAAACCAGTTAACTGGTTATAAGAAACCTGCTTCGAGAGAGCTTA


AAGTTACATTTTTCCCTGACTTAAATGGTGATGTGGTGGCTATTGATTATAAACA


CTACACACCCTCGTTTAAGAAAGGAGCTAAATTGTTACATAAACCTATTGTTTGG


CATGTTAACAATGCAACTAATAAAGCCACGTATAAACCAAATACCTGGTGTATA


CGTTGTCTTTGGTCGACAAAACCAGTTGAAACATCGAATTCGTTTGATGTACTGA


AGTCGGAGGACGCGCAGGGAATGGATAATCTTGCCTGCGAAGATCTAAAACCAG


TCTCGGAAGAAGTAGTGGAAAATCCTACCATACAGAAAGACGTTCTTGAGTGTA


ATGTGAAAACTACCGAAGTTGTAGGAGACATTATACTTAAACCAGCAAATAATT


CGTTAAAAATTACAGAAGAGGTTGGCCACACAGATCTAATGGCTGCTTATGTAG


ACAATTCGTCGCTTACTATTAAGAAACCTAATGAATTATCGAGAGTATTAGGTTT


GAAAACCCTTGCTACTCATGGTTTAGCTGCTGTTAATTCGGTCCCTTGGGATACT


ATAGCTAATTATGCTAAGCCTTTTCTTAACAAAGTTGTTTCGACAACTACTAACAT


AGTTACACGGTGTTTAAACCGTGTTTGTACTAATTATATGCCTTATTTCTTTACTT


TATTGCTACAATTGTGTACTTTTACTAGATCGACAAATTCGAGAATTAAAGCATC


GATGCCGACTACTATAGCAAAGAATACTGTTAAGTCGGTCGGTAAATTTTGTCTA


GAGGCTTCGTTTAATTATTTGAAGTCGCCTAATTTTTCGAAACTGATAAATATTAT


AATTTGGTTTTTACTATTATCGGTTTGCCTAGGTTCGTTAATCTACTCGACCGCTG


CTTTAGGTGTTTTAATGTCGAATTTAGGCATGCCTTCGTACTGTACTGGTTACAGA


GAAGGCTATTTGAACTCGACTAATGTCACTATTGCAACCTACTGTACTGGTTCGA


TACCTTGTTCGGTTTGTCTTTCGGGTTTAGATTCGTTAGACACCTATCCTTCGTTA


GAAACTATACAAATTACCATTTCGTCGTTTAAATGGGATTTAACTGCTTTTGGCTT


AGTTGCAGAGTGGTTTTTGGCATATATTCTTTTCACTAGGTTTTTCTATGTACTTG


GATTGGCTGCAATCATGCAATTGTTTTTCTCGTATTTTGCAGTACATTTTATTTCG


AATTCGTGGCTTATGTGGTTAATAATTAATCTTGTACAAATGGCCCCGATTTCGG


CTATGGTTAGAATGTACATCTTCTTTGCATCGTTTTATTATGTATGGAAATCGTAT


GTGCATGTTGTAGACGGTTGTAATTCGTCGACTTGTATGATGTGTTACAAACGTA


ATAGAGCAACAAGAGTCGAATGTACAACTATTGTTAATGGTGTTAGAAGGTCGTT


TTATGTCTATGCTAATGGAGGTAAAGGCTTTTGCAAACTACACAATTGGAATTGT


GTTAATTGTGATACATTCTGTGCTGGTTCGACATTTATTTCGGATGAAGTTGCGAG


AGACTTGTCGCTACAGTTTAAAAGACCAATAAATCCTACTGACCAGTCGTCGTAC


ATCGTTGATTCGGTTACAGTGAAGAATGGTTCGATCCATCTTTACTTTGATAAAG


CTGGTCAAAAGACTTATGAAAGACATTCGCTCTCGCATTTTGTTAACTTAGACAA


CCTGAGAGCTAATAACACTAAAGGTTCGTTGCCTATTAATGTTATAGTTTTTGAT


GGTAAATCGAAATGTGAAGAATCGTCGGCAAAATCGGCGTCGGTTTACTACTCG


CAGCTTATGTGTCAACCTATACTGTTACTAGATCAGGCATTAGTGTCGGATGTTG


GTGATTCGGCGGAAGTTGCAGTTAAAATGTTTGATGCTTACGTTAATACGTTTTC


GTCGACTTTTAACGTACCAATGGAAAAACTCAAAACACTAGTTGCAACTGCAGA


AGCTGAACTTGCAAAGAATGTGTCGTTAGACAATGTCTTATCGACTTTTATTTCG


GCAGCTCGGCAAGGGTTTGTTGATTCGGATGTAGAAACTAAAGATGTTGTTGAAT


GTCTTAAATTGTCGCATCAATCGGACATAGAAGTTACTGGCGATTCGTGTAATAA


CTATATGCTCACCTATAACAAAGTTGAAAACATGACACCCCGTGACCTTGGTGCT


TGTATTGACTGTTCGGCGCGTCATATTAATGCGCAGGTAGCAAAATCGCACAACA


TTGCTTTGATATGGAACGTTAAAGATTTCATGTCGTTGTCGGAACAACTACGAAA


ACAAATACGTTCGGCTGCTAAAAAGAATAACTTACCTTTTAAGTTGACATGTGCA


ACTACTAGACAAGTTGTTAATGTTGTAACAACAAAGATAGCACTTAAGGGTGGT


AAAATTGTTAATAATTGGTTGAAGCAGTTAATTAAA





SEQ ID NO: 52 - Clone pCC1-4K-SARS-COV-2-160-7. All 3 fragments were


deoptimized. Deoptimized sequence between SanDI to PacI in ORF1a:


GGGTCCCACGTGCTTCGGCTAACATAGGTTGTAACCATACAGGTGTTG


TTGGAGAAGGTTCGGAAGGTCTTAATGACAACCTTCTTGAAATACTCCAAAAAG


AGAAAGTCAACATCAATATTGTTGGTGACTTTAAACTTAATGAAGAGATCGCCAT


TATTTTGGCATCGTTTTCGGCTTCGACATCGGCTTTTGTGGAAACTGTGAAAGGTT


TGGATTATAAAGCATTCAAACAAATTGTTGAATCGTGTGGTAATTTTAAAGTTAC


AAAAGGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAACAGAAATCGATACT


GTCGCCTCTTTATGCATTTGCATCGGAGGCTGCTCGTGTTGTACGATCGATTTTCT


CGCGCACTCTTGAAACTGCTCAAAATTCGGTGCGTGTTTTACAGAAGGCCGCTAT


AACAATACTAGATGGAATTTCGCAGTATTCGCTGAGACTCATTGATGCTATGATG


TTCACATCGGATTTGGCTACTAACAATCTAGTTGTAATGGCCTACATTACAGGTG


GTGTTGTTCAGTTGACTTCGCAGTGGCTAACTAACATCTTTGGCACTGTTTATGAA


AAACTCAAACCCGTCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGGTGTAGAG


TTTCTTAGAGACGGTTGGGAAATTGTTAAATTTATCTCGACCTGTGCTTGTGAAAT


TGTCGGTGGACAAATTGTCACCTGTGCAAAGGAAATTAAGGAGTCGGTTCAGAC


ATTCTTTAAGCTTGTAAATAAATTTTTGGCTTTGTGTGCTGACTCGATCATTATTG


GTGGAGCTAAACTTAAAGCCTTGAATTTAGGTGAAACATTTGTCACGCACTCGAA


GGGATTGTACAGAAAGTGTGTTAAATCGAGAGAAGAAACTGGCCTACTCATGCC


TCTAAAAGCCCCAAAAGAAATTATCTTCTTAGAGGGAGAAACACTTCCCACAGA


AGTGTTAACAGAGGAAGTTGTCTTGAAAACTGGTGATTTACAACCATTAGAACA


ACCTACTTCGGAAGCTGTTGAAGCTCCATTGGTTGGTACACCAGTTTGTATTAAC


GGGCTTATGTTGCTCGAAATCAAAGACACAGAAAAGTACTGTGCCCTTGCACCTA


ATATGATGGTAACAAACAATACCTTCACACTCAAAGGCGGTGCACCAACAAAGG


TTACTTTTGGTGATGACACTGTGATAGAAGTGCAAGGTTACAAGTCGGTGAATAT


CACTTTTGAACTTGATGAAAGGATTGATAAAGTACTTAATGAGAAGTGCTCGGCC


TATACAGTTGAACTCGGTACAGAAGTAAATGAGTTCGCCTGTGTTGTGGCAGATG


CTGTCATAAAAACTTTGCAACCAGTATCGGAATTACTTACACCACTGGGCATTGA


TTTAGATGAGTGGTCGATGGCTACATACTACTTATTTGATGAGTCGGGTGAGTTT


AAATTGGCTTCGCATATGTATTGTTCGTTCTACCCTCCAGATGAGGATGAAGAAG


AAGGTGATTGTGAAGAAGAAGAGTTTGAGCCATCGACTCAATATGAGTATGGTA


CTGAAGATGATTACCAAGGTAAACCTTTGGAATTTGGTGCCACTTCGGCTGCTCT


TCAACCTGAAGAAGAGCAAGAAGAAGATTGGTTAGATGATGATTCGCAACAAAC


TGTTGGTCAACAAGACGGCTCGGAGGACAATCAGACAACTACTATTCAAACAAT


TGTTGAGGTTCAACCTCAATTAGAGATGGAACTTACACCAGTTGTTCAGACTATT


GAAGTGAATTCGTTTTCGGGTTATTTAAAACTTACTGACAATGTATACATTAAAA


ATGCAGACATTGTGGAAGAAGCTAAAAAGGTAAAACCAACAGTGGTTGTTAATG


CAGCCAATGTTTACCTTAAACATGGAGGAGGTGTTGCAGGAGCCTTAAATAAGG


CTACTAACAATGCCATGCAAGTTGAATCGGATGATTACATAGCTACTAATGGACC


ACTTAAAGTGGGTGGTTCGTGTGTTTTATCGGGACACAATCTTGCTAAACACTGT


CTTCATGTTGTCGGCCCAAATGTTAACAAAGGTGAAGACATTCAACTTCTTAAGT


CGGCTTATGAAAATTTTAATCAGCACGAAGTTCTACTTGCACCATTATTATCGGC


TGGTATTTTTGGTGCTGACCCTATACATTCGTTAAGAGTTTGTGTAGATACTGTTC


GCACAAATGTCTACTTAGCTGTCTTTGATAAAAATCTCTATGACAAACTTGTTTCG


TCGTTTTTGGAAATGAAGTCGGAAAAGCAAGTTGAACAAAAGATCGCTGAGATT


CCTAAAGAGGAAGTTAAGCCATTTATAACTGAATCGAAACCTTCGGTTGAACAG


AGAAAACAAGATGATAAGAAAATCAAAGCTTGTGTTGAAGAAGTTACAACAACT


CTGGAAGAAACTAAGTTCCTCACAGAAAACTTGTTACTTTATATTGACATTAATG


GCAATCTTCATCCAGATTCGGCCACTCTTGTTTCGGACATTGACATCACTTTCTTA


AAGAAAGATGCTCCATATATAGTGGGTGATGTTGTTCAAGAGGGTGTTTTAACTG


CTGTGGTTATACCTACTAAAAAGGCTGGTGGCACTACTGAAATGCTAGCGAAAG


CTTTGAGAAAAGTGCCAACAGACAATTATATAACCACTTACCCGGGTCAGGGTTT


AAATGGTTACACTGTAGAGGAGGCAAAGACAGTGCTTAAAAAGTGTAAATCGGC


CTTTTACATTCTACCATCGATTATCTCGAATGAGAAGCAAGAAATTCTTGGAACT


GTTTCGTGGAATTTGCGAGAAATGCTTGCACATGCAGAAGAAACACGCAAATTA


ATGCCTGTCTGTGTGGAAACTAAAGCCATAGTTTCGACTATACAGCGTAAATATA


AGGGTATTAAAATACAAGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTTA


CACCTCGAAAACAACTGTAGCGTCGCTTATCAACACACTTAACGATCTAAATGAA


ACTCTTGTTACAATGCCACTTGGCTATGTAACACATGGCTTAAATTTGGAAGAAG


CTGCTCGGTATATGAGATCGCTCAAAGTGCCAGCTACAGTTTCGGTTTCGTCGCC


TGATGCTGTTACAGCGTATAATGGTTATCTTACTTCGTCGTCGAAAACACCTGAA


GAACATTTTATTGAAACCATCTCGCTTGCTGGTTCGTATAAAGATTGGTCGTATTC


GGGACAATCGACACAACTAGGTATAGAATTTCTTAAGAGAGGTGATAAATCGGT


ATATTACACTTCGAATCCTACCACATTCCACCTAGATGGTGAAGTTATCACCTTT


GACAATCTTAAGACACTTCTTTCGTTGAGAGAAGTGAGGACTATTAAGGTGTTTA


CAACAGTAGACAACATTAACCTCCACACGCAAGTTGTGGACATGTCGATGACAT


ATGGACAACAGTTTGGTCCAACTTATTTGGATGGAGCTGATGTTACTAAAATAAA


ACCTCATAATTCGCATGAAGGTAAAACATTTTATGTTTTACCTAATGATGACACT


CTACGTGTTGAGGCTTTTGAGTACTACCACACAACTGATCCTTCGTTTCTGGGTA


GGTACATGTCGGCATTAAATCACACTAAAAAGTGGAAATACCCACAAGTTAATG


GTTTAACTTCGATTAAATGGGCAGATAACAACTGTTATCTTGCCACTGCATTGTT


AACACTCCAACAAATAGAGTTGAAGTTTAATCCACCTGCTCTACAAGATGCTTAT


TACAGAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGCACTTATCTTAGCCTACT


GTAATAAGACAGTAGGTGAGTTAGGTGATGTTAGAGAAACAATGTCGTACTTGTT


TCAACATGCCAATTTAGATTCGTGCAAAAGAGTCTTGAACGTGGTGTGTAAAACT


TGTGGACAACAGCAGACAACCCTTAAGGGTGTAGAAGCTGTTATGTACATGGGC


ACACTTTCGTATGAACAATTTAAGAAAGGTGTTCAGATACCTTGTACGTGTGGTA


AACAAGCTACAAAATATCTAGTACAACAGGAGTCGCCTTTTGTTATGATGTCGGC


ACCACCTGCTCAGTATGAACTTAAGCATGGTACATTTACTTGTGCTTCGGAGTAC


ACTGGTAATTACCAGTGTGGTCACTATAAACATATAACTTCGAAAGAAACTTTGT


ATTGCATAGACGGTGCTTTACTTACAAAGTCGTCGGAATACAAAGGTCCTATTAC


GGATGTTTTCTACAAAGAAAACTCGTACACAACAACCATAAAACCAGTTACTTAT


AAATTGGATGGTGTTGTTTGTACAGAAATTGACCCTAAGTTGGACAATTATTATA


AGAAAGACAATTCGTATTTCACAGAGCAACCAATTGATCTTGTACCAAACCAAC


CATATCCAAACGCATCGTTCGATAATTTTAAGTTTGTATGTGATAATATCAAATTT


GCTGATGATTTAAACCAGTTAACTGGTTATAAGAAACCTGCTTCGAGAGAGCTTA


AAGTTACATTTTTCCCTGACTTAAATGGTGATGTGGTGGCTATTGATTATAAACA


CTACACACCCTCGTTTAAGAAAGGAGCTAAATTGTTACATAAACCTATTGTTTGG


CATGTTAACAATGCAACTAATAAAGCCACGTATAAACCAAATACCTGGTGTATA


CGTTGTCTTTGGTCGACAAAACCAGTTGAAACATCGAATTCGTTTGATGTACTGA


AGTCGGAGGACGCGCAGGGAATGGATAATCTTGCCTGCGAAGATCTAAAACCAG


TCTCGGAAGAAGTAGTGGAAAATCCTACCATACAGAAAGACGTTCTTGAGTGTA


ATGTGAAAACTACCGAAGTTGTAGGAGACATTATACTTAAACCAGCAAATAATT


CGTTAAAAATTACAGAAGAGGTTGGCCACACAGATCTAATGGCTGCTTATGTAG


ACAATTCGTCGCTTACTATTAAGAAACCTAATGAATTATCGAGAGTATTAGGTTT


GAAAACCCTTGCTACTCATGGTTTAGCTGCTGTTAATTCGGTCCCTTGGGATACT


ATAGCTAATTATGCTAAGCCTTTTCTTAACAAAGTTGTTTCGACAACTACTAACAT


AGTTACACGGTGTTTAAACCGTGTTTGTACTAATTATATGCCTTATTTCTTTACTT


TATTGCTACAATTGTGTACTTTTACTAGATCGACAAATTCGAGAATTAAAGCATC


GATGCCGACTACTATAGCAAAGAATACTGTTAAGTCGGTCGGTAAATTTTGTCTA


GAGGCTTCGTTTAATTATTTGAAGTCGCCTAATTTTTCGAAACTGATAAATATTAT


AATTTGGTTTTTACTATTATCGGTTTGCCTAGGTTCGTTAATCTACTCGACCGCTG


CTTTAGGTGTTTTAATGTCGAATTTAGGCATGCCTTCGTACTGTACTGGTTACAGA


GAAGGCTATTTGAACTCGACTAATGTCACTATTGCAACCTACTGTACTGGTTCGA


TACCTTGTTCGGTTTGTCTTTCGGGTTTAGATTCGTTAGACACCTATCCTTCGTTA


GAAACTATACAAATTACCATTTCGTCGTTTAAATGGGATTTAACTGCTTTTGGCTT


AGTTGCAGAGTGGTTTTTGGCATATATTCTTTTCACTAGGTTTTTCTATGTACTTG


GATTGGCTGCAATCATGCAATTGTTTTTCTCGTATTTTGCAGTACATTTTATTTCG


AATTCGTGGCTTATGTGGTTAATAATTAATCTTGTACAAATGGCCCCGATTTCGG


CTATGGTTAGAATGTACATCTTCTTTGCATCGTTTTATTATGTATGGAAATCGTAT


GTGCATGTTGTAGACGGTTGTAATTCGTCGACTTGTATGATGTGTTACAAACGTA


ATAGAGCAACAAGAGTCGAATGTACAACTATTGTTAATGGTGTTAGAAGGTCGTT


TTATGTCTATGCTAATGGAGGTAAAGGCTTTTGCAAACTACACAATTGGAATTGT


GTTAATTGTGATACATTCTGTGCTGGTTCGACATTTATTTCGGATGAAGTTGCGAG


AGACTTGTCGCTACAGTTTAAAAGACCAATAAATCCTACTGACCAGTCGTCGTAC


ATCGTTGATTCGGTTACAGTGAAGAATGGTTCGATCCATCTTTACTTTGATAAAG


CTGGTCAAAAGACTTATGAAAGACATTCGCTCTCGCATTTTGTTAACTTAGACAA


CCTGAGAGCTAATAACACTAAAGGTTCGTTGCCTATTAATGTTATAGTTTTTGAT


GGTAAATCGAAATGTGAAGAATCGTCGGCAAAATCGGCGTCGGTTTACTACTCG


CAGCTTATGTGTCAACCTATACTGTTACTAGATCAGGCATTAGTGTCGGATGTTG


GTGATTCGGCGGAAGTTGCAGTTAAAATGTTTGATGCTTACGTTAATACGTTTTC


GTCGACTTTTAACGTACCAATGGAAAAACTCAAAACACTAGTTGCAACTGCAGA


AGCTGAACTTGCAAAGAATGTGTCGTTAGACAATGTCTTATCGACTTTTATTTCG


GCAGCTCGGCAAGGGTTTGTTGATTCGGATGTAGAAACTAAAGATGTTGTTGAAT


GTCTTAAATTGTCGCATCAATCGGACATAGAAGTTACTGGCGATTCGTGTAATAA


CTATATGCTCACCTATAACAAAGTTGAAAACATGACACCCCGTGACCTTGGTGCT


TGTATTGACTGTTCGGCGCGTCATATTAATGCGCAGGTAGCAAAATCGCACAACA


TTGCTTTGATATGGAACGTTAAAGATTTCATGTCGTTGTCGGAACAACTACGAAA


ACAAATACGTTCGGCTGCTAAAAAGAATAACTTACCTTTTAAGTTGACATGTGCA


ACTACTAGACAAGTTGTTAATGTTGTAACAACAAAGATAGCACTTAAGGGTGGT


AAAATTGTTAATAATTGGTTGAAGCAGTTAATTAAA





SEQ ID NO: 53 - Clone pCC1-4K-SARS-COV-2-4N-1. Only fragment 3 has been


deoptimized:


GGGTCCCACGTGCTAGCGCTAACATAGGTTGTAACCATACAGGTGTTG


TTGGAGAAGGTTCCGAAGGTCTTAATGACAACCTTCTTGAAATACTCCAAAAAG


AGAAAGTCAACATCAATATTGTTGGTGACTTTAAACTTAATGAAGAGATCGCCAT


TATTTTGGCATCTTTTTCTGCTTCCACAAGTGCTTTTGTGGAAACTGTGAAAGGTT


TGGATTATAAAGCATTCAAACAAATTGTTGAATCCTGTGGTAATTTTAAAGTTAC


AAAAGGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAACAGAAATCAATACT


GAGTCCTCTTTATGCATTTGCATCAGAGGCTGCTCGTGTTGTACGATCAATTTTCT


CCCGCACTCTTGAAACTGCTCAAAATTCTGTGCGTGTTTTACAGAAGGCCGCTAT


AACAATACTAGATGGAATTTCACAGTATTCACTGAGACTCATTGATGCTATGATG


TTCACATCTGATTTGGCTACTAACAATCTAGTTGTAATGGCCTACATTACAGGTG


GTGTTGTTCAGTTGACTTCGCAGTGGCTAACTAACATCTTTGGCACTGTTTATGAA


AAACTCAAACCCGTCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGGTGTAGAG


TTTCTTAGAGACGGTTGGGAAATTGTTAAATTTATCTCAACCTGTGCTTGTGAAAT


TGTCGGTGGACAAATTGTCACCTGTGCAAAGGAAATTAAGGAGAGTGTTCAGAC


ATTCTTTAAGCTTGTAAATAAATTTTTGGCTTTGTGTGCTGACTCTATCATTATTG


GTGGAGCTAAACTTAAAGCCTTGAATTTAGGTGAAACATTTGTCACGCACTCAAA


GGGATTGTACAGAAAGTGTGTTAAATCCAGAGAAGAAACTGGCCTACTCATGCC


TCTAAAAGCCCCAAAAGAAATTATCTTCTTAGAGGGAGAAACACTTCCCACAGA


AGTGTTAACAGAGGAAGTTGTCTTGAAAACTGGTGATTTACAACCATTAGAACA


ACCTACTAGTGAAGCTGTTGAAGCTCCATTGGTTGGTACACCAGTTTGTATTAAC


GGGCTTATGTTGCTCGAAATCAAAGACACAGAAAAGTACTGTGCCCTTGCACCTA


ATATGATGGTAACAAACAATACCTTCACACTCAAAGGCGGTGCACCAACAAAGG


TTACTTTTGGTGATGACACTGTGATAGAAGTGCAAGGTTACAAGAGTGTGAATAT


CACTTTTGAACTTGATGAAAGGATTGATAAAGTACTTAATGAGAAGTGCTCTGCC


TATACAGTTGAACTCGGTACAGAAGTAAATGAGTTCGCCTGTGTTGTGGCAGATG


CTGTCATAAAAACTTTGCAACCAGTATCTGAATTACTTACACCACTGGGCATTGA


TTTAGATGAGTGGAGTATGGCTACATACTACTTATTTGATGAGTCTGGTGAGTTT


AAATTGGCTTCACATATGTATTGTTCTTTCTACCCTCCAGATGAGGATGAAGAAG


AAGGTGATTGTGAAGAAGAAGAGTTTGAGCCATCAACTCAATATGAGTATGGTA


CTGAAGATGATTACCAAGGTAAACCTTTGGAATTTGGTGCCACTTCTGCTGCTCT


TCAACCTGAAGAAGAGCAAGAAGAAGATTGGTTAGATGATGATAGTCAACAAAC


TGTTGGTCAACAAGACGGCAGTGAGGACAATCAGACAACTACTATTCAAACAAT


TGTTGAGGTTCAACCTCAATTAGAGATGGAACTTACACCAGTTGTTCAGACTATT


GAAGTGAATAGTTTTAGTGGTTATTTAAAACTTACTGACAATGTATACATTAAAA


ATGCAGACATTGTGGAAGAAGCTAAAAAGGTAAAACCAACAGTGGTTGTTAATG


CAGCCAATGTTTACCTTAAACATGGAGGAGGTGTTGCAGGAGCCTTAAATAAGG


CTACTAACAATGCCATGCAAGTTGAATCTGATGATTACATAGCTACTAATGGACC


ACTTAAAGTGGGTGGTAGTTGTGTTTTAAGCGGACACAATCTTGCTAAACACTGT


CTTCATGTTGTCGGCCCAAATGTTAACAAAGGTGAAGACATTCAACTTCTTAAGA


GTGCTTATGAAAATTTTAATCAGCACGAAGTTCTACTTGCACCATTATTATCAGCT


GGTATTTTTGGTGCTGACCCTATACATTCTTTAAGAGTTTGTGTAGATACTGTTCG


CACAAATGTCTACTTAGCTGTCTTTGATAAAAATCTCTATGACAAACTTGTTTCAA


GCTTTTTGGAAATGAAGAGTGAAAAGCAAGTTGAACAAAAGATCGCTGAGATTC


CTAAAGAGGAAGTTAAGCCATTTATAACTGAAAGTAAACCTTCAGTTGAACAGA


GAAAACAAGATGATAAGAAAATCAAAGCTTGTGTTGAAGAAGTTACAACAACTC


TGGAAGAAACTAAGTTCCTCACAGAAAACTTGTTACTTTATATTGACATTAATGG


CAATCTTCATCCAGATTCTGCCACTCTTGTTAGTGACATTGACATCACTTTCTTAA


AGAAAGATGCTCCATATATAGTGGGTGATGTTGTTCAAGAGGGTGTTTTAACTGC


TGTGGTTATACCTACTAAAAAGGCTGGTGGCACTACTGAAATGCTAGCGAAAGC


TTTGAGAAAAGTGCCAACAGACAATTATATAACCACTTACCCGGGTCAGGGTTTA


AATGGTTACACTGTAGAGGAGGCAAAGACAGTGCTTAAAAAGTGTAAAAGTGCC


TTTTACATTCTACCATCTATTATCTCTAATGAGAAGCAAGAAATTCTTGGAACTGT


TTCTTGGAATTTGCGAGAAATGCTTGCACATGCAGAAGAAACACGCAAATTAAT


GCCTGTCTGTGTGGAAACTAAAGCCATAGTTTCAACTATACAGCGTAAATATAAG


GGTATTAAAATACAAGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTTACA


CCAGTAAAACAACTGTAGCGTCACTTATCAACACACTTAACGATCTAAATGAAA


CTCTTGTTACAATGCCACTTGGCTATGTAACACATGGCTTAAATTTGGAAGAAGC


TGCTCGGTATATGAGATCTCTCAAAGTGCCAGCTACAGTTTCTGTTTCTTCACCTG


ATGCTGTTACAGCGTATAATGGTTATCTTACTTCTTCTTCTAAAACACCTGAAGAA


CATTTTATTGAAACCATCTCACTTGCTGGTTCCTATAAAGATTGGTCCTATTCTGG


ACAATCTACACAACTAGGTATAGAATTTCTTAAGAGAGGTGATAAAAGTGTATAT


TACACTAGTAATCCTACCACATTCCACCTAGATGGTGAAGTTATCACCTTTGACA


ATCTTAAGACACTTCTTTCTTTGAGAGAAGTGAGGACTATTAAGGTGTTTACAAC


AGTAGACAACATTAACCTCCACACGCAAGTTGTGGACATGTCAATGACATATGG


ACAACAGTTTGGTCCAACTTATTTGGATGGAGCTGATGTTACTAAAATAAAACCT


CATAATTCACATGAAGGTAAAACATTTTATGTTTTACCTAATGATGACACTCTAC


GTGTTGAGGCTTTTGAGTACTACCACACAACTGATCCTAGTTTTCTGGGTAGGTA


CATGTCAGCATTAAATCACACTAAAAAGTGGAAATACCCACAAGTTAATGGTTT


AACTTCTATTAAATGGGCAGATAACAACTGTTATCTTGCCACTGCATTGTTAACA


CTCCAACAAATAGAGTTGAAGTTTAATCCACCTGCTCTACAAGATGCTTATTACA


GAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGCACTTATCTTAGCCTACTGTAA


TAAGACAGTAGGTGAGTTAGGTGATGTTAGAGAAACAATGAGTTACTTGTTTCAA


CATGCCAATTTAGATTCTTGCAAAAGAGTCTTGAACGTGGTGTGTAAAACTTGTG


GACAACAGCAGACAACCCTTAAGGGTGTAGAAGCTGTTATGTACATGGGCACAC


TTTCTTATGAACAATTTAAGAAAGGTGTTCAGATACCTTGTACGTGTGGTAAACA


AGCTACAAAATATCTAGTACAACAGGAGTCACCTTTTGTTATGATGTCAGCACCA


CCTGCTCAGTATGAACTTAAGCATGGTACATTTACTTGTGCTAGTGAGTACACTG


GTAATTACCAGTGTGGTCACTATAAACATATAACTTCTAAAGAAACTTTGTATTG


CATAGACGGTGCTTTACTTACAAAGTCCTCAGAATACAAAGGTCCTATTACGGAT


GTTTTCTACAAAGAAAACAGTTACACAACAACCATAAAACCAGTTACTTATAAAT


TGGATGGTGTTGTTTGTACAGAAATTGACCCTAAGTTGGACAATTATTATAAGAA


AGACAATTCTTATTTCACAGAGCAACCAATTGATCTTGTACCAAACCAACCATAT


CCAAACGCAAGCTTCGATAATTTTAAGTTTGTATGTGATAATATCAAATTTGCTG


ATGATTTAAACCAGTTAACTGGTTATAAGAAACCTGCTTCAAGAGAGCTTAAAGT


TACATTTTTCCCTGACTTAAATGGTGATGTGGTGGCTATTGATTATAAACACTACA


CACCCTCTTTTAAGAAAGGAGCTAAATTGTTACATAAACCTATTGTTTGGCATGT


TAACAATGCAACTAATAAAGCCACGTATAAACCAAATACCTGGTGTATACGTTGT


CTTTGGAGCACAAAACCAGTTGAAACATCAAATTCGTTTGATGTACTGAAGTCAG


AGGACGCGCAGGGAATGGATAATCTTGCCTGCGAAGATCTAAAACCAGTCTCTG


AAGAAGTAGTGGAAAATCCTACCATACAGAAAGACGTTCTTGAGTGTAATGTGA


AAACTACCGAAGTTGTAGGAGACATTATACTTAAACCAGCAAATAATAGTTTAA


AAATTACAGAAGAGGTTGGCCACACAGATCTAATGGCTGCTTATGTAGACAATT


CTAGTCTTACTATTAAGAAACCTAATGAATTATCTAGAGTATTAGGTTTGAAAAC


CCTTGCTACTCATGGTTTAGCTGCTGTTAATAGTGTCCCTTGGGATACTATAGCTA


ATTATGCTAAGCCTTTTCTTAACAAAGTTGTTAGTACAACTACTAACATAGTTAC


ACGGTGTTTAAACCGTGTTTGTACTAATTATATGCCTTATTTCTTTACTTTATTGCT


ACAATTGTGTACTTTTACTAGAAGTACAAATTCTAGAATTAAAGCATCTATGCCG


ACTACTATAGCAAAGAATACTGTTAAGAGTGTCGGTAAATTTTGTCTAGAGGCTT


CATTTAATTATTTGAAGTCACCTAATTTTTCTAAACTGATAAATATTATAATTTGG


TTTTTACTATTAAGTGTTTGCCTAGGTTCTTTAATATACTCAACGGCGGCGTTAGG


TGTTTTAATGTCTAATTTAGGCATGCCGTCTTACTGTACGGGTTACAGAGAAGGC


TATTTGAACTCTACGAATGTCACGATAGCGACGTACTGTACGGGTTCTATACCGT


GTAGTGTTTGTCTTAGTGGTTTAGATTCTTTAGACACGTATCCGTCTTTAGAAACG


ATACAAATAACGATATCATCTTTTAAATGGGATTTAACGGCGTTTGGCTTAGTTG


CGGAGTGGTTTTTGGCGTATATTCTTTTCACGAGGTTTTTCTATGTACTTGGATTG


GCGGCGATAATGCAATTGTTTTTCAGCTATTTTGCGGTACATTTTATAAGTAATTC


TTGGCTTATGTGGTTAATAATAAATCTTGTACAAATGGCGCCGATATCAGCGATG


GTTAGAATGTACATATTCTTTGCGTCATTTTATTATGTATGGAAAAGTTATGTGCA


TGTTGTAGACGGTTGTAATTCATCAACGTGTATGATGTGTTACAAACGTAATAGA


GCGACGAGAGTCGAATGTACGACGATAGTTAATGGTGTTAGAAGGTCCTTTTATG


TCTATGCGAATGGAGGTAAAGGCTTTTGCAAACTACACAATTGGAATTGTGTTAA


TTGTGATACGTTCTGTGCGGGTAGTACGTTTATAAGTGATGAAGTTGCGAGAGAC


TTGTCACTACAGTTTAAAAGACCGATAAATCCGACGGACCAGTCTTCTTACATAG


TTGATAGTGTTACGGTGAAGAATGGTTCCATACATCTTTACTTTGATAAAGCGGG


TCAAAAGACGTATGAAAGACATTCTCTCTCTCATTTTGTTAACTTAGACAACCTG


AGAGCGAATAACACGAAAGGTTCATTGCCGATAAATGTTATAGTTTTTGATGGTA


AATCAAAATGTGAAGAATCATCTGCGAAATCAGCGTCTGTTTACTACAGTCAGCT


TATGTGTCAACCGATACTGTTACTAGATCAGGCGTTAGTGTCTGATGTTGGTGAT


AGTGCGGAAGTTGCGGTTAAAATGTTTGATGCGTACGTTAATACGTTTTCATCAA


CGTTTAACGTACCGATGGAAAAACTCAAAACGCTAGTTGCGACGGCGGAAGCGG


AACTTGCGAAGAATGTGTCCTTAGACAATGTCTTATCTACGTTTATATCAGCGGC


GCGGCAAGGGTTTGTTGATTCAGATGTAGAAACGAAAGATGTTGTTGAATGTCTT


AAATTGTCACATCAATCTGACATAGAAGTTACGGGCGATAGTTGTAATAACTATA


TGCTCACGTATAACAAAGTTGAAAACATGACGCCGCGTGACCTTGGTGCGTGTAT


AGACTGTAGTGCGCGTCATATAAATGCGCAGGTAGCGAAAAGTCACAACATAGC


GTTGATATGGAACGTTAAAGATTTCATGTCATTGTCTGAACAACTACGAAAACAA


ATACGTAGTGCGGCGAAAAAGAATAACTTACCGTTTAAGTTGACGTGTGCGACG


ACGAGACAAGTTGTTAATGTTGTAACGACGAAGATAGCGCTTAAGGGTGGTAAA


ATAGTTAATAATTGGTTGAAGCAGTTAATTAAA





SEQ ID NO: 54 - Clone pCC1-4K-SARS-COV-2-4N-2. Only fragment 2 has been


deoptimized.





SEQ ID NO: 55 - Clone pCC1-4K-SARS-COV-2-4N-3. Only fragment 1 has been


deoptimized.





SEQ ID NO: 56 - Clone pCC1-4K-SARS-COV-2-4N-4. Only fragments 1 and 2


have been deoptimized.





SEQ ID NO: 57 - Clone pCC1-4K-SARS-COV-2-4N-5. Only fragments 1 and 3


have been deoptimized.





SEQ ID NO: 58 - Clone pCC1-4K-SARS-COV-2-4N-6. Only fragments 2 and 3


have been deoptimized.





SEQ ID NO: 59 - Clone pCC1-4K-SARS-COV-2-4N-7. All 3 fragments were


deoptimized. Deoptimized sequence between SanDI to PacI in ORF1a:


GGGTCCCACGTGCGAGCGCGAACATAGGTTGTAACCATACGGGTGTT


GTTGGAGAAGGTTCCGAAGGTCTTAATGACAACCTTCTTGAAATACTCCAAAAA


GAGAAAGTCAACATAAATATAGTTGGTGACTTTAAACTTAATGAAGAGATAGCG


ATAATATTGGCGTCTTTTTCTGCGTCCACGAGTGCGTTTGTGGAAACGGTGAAAG


GTTTGGATTATAAAGCGTTCAAACAAATTGTTGAATCCTGTGGTAATTTTAAAGT


TACGAAAGGAAAAGCGAAAAAAGGTGCGTGGAATATAGGTGAACAGAAATCAA


TACTGAGTCCGCTTTATGCGTTTGCGTCAGAGGCGGCGCGTGTTGTACGATCAAT


ATTCTCCCGCACGCTTGAAACGGCGCAAAATTCTGTGCGTGTTTTACAGAAGGCG


GCGATAACGATACTAGATGGAATATCACAGTATTCACTGAGACTCATAGATGCG


ATGATGTTCACGTCTGATTTGGCGACGAACAATCTAGTTGTAATGGCGTACATAA


CGGGTGGTGTTGTTCAGTTGACGTCGCAGTGGCTAACGAACATATTTGGCACGGT


TTATGAAAAACTCAAACCGGTCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGG


TGTAGAGTTTCTTAGAGACGGTTGGGAAATAGTTAAATTTATATCAACGTGTGCG


TGTGAAATAGTCGGTGGACAAATAGTCACGTGTGCGAAGGAAATAAAGGAGAGT


GTTCAGACGTTCTTTAAGCTTGTAAATAAATTTTTGGCGTTGTGTGCGGACTCTAT


AATAATAGGTGGAGCGAAACTTAAAGCGTTGAATTTAGGTGAAACGTTTGTCAC


GCACTCAAAGGGATTGTACAGAAAGTGTGTTAAATCCAGAGAAGAAACGGGCCT


ACTCATGCCGCTAAAAGCGCCGAAAGAAATAATATTCTTAGAGGGAGAAACGCT


TCCGACGGAAGTGTTAACGGAGGAAGTTGTCTTGAAAACGGGTGATTTACAACC


GTTAGAACAACCGACGAGTGAAGCGGTTGAAGCGCCGTTGGTTGGTACGCCGGT


TTGTATAAACGGGCTTATGTTGCTCGAAATAAAAGACACGGAAAAGTACTGTGC


GCTTGCGCCGAATATGATGGTAACGAACAATACGTTCACGCTCAAAGGCGGTGC


GCCGACAAAGGTTACGTTTGGTGATGACACGGTGATAGAAGTGCAAGGTTACAA


GAGTGTGAATATAACGTTTGAACTTGATGAAAGGATAGATAAAGTACTTAATGA


GAAGTGCTCTGCGTATACGGTTGAACTCGGTACGGAAGTAAATGAGTTCGCGTGT


GTTGTGGCGGATGCGGTCATAAAAACGTTGCAACCGGTATCTGAATTACTTACGC


CGCTGGGCATAGATTTAGATGAGTGGAGTATGGCGACGTACTACTTATTTGATGA


GTCTGGTGAGTTTAAATTGGCGTCACATATGTATTGTTCTTTCTACCCGCCGGATG


AGGATGAAGAAGAAGGTGATTGTGAAGAAGAAGAGTTTGAGCCGTCAACGCAAT


ATGAGTATGGTACGGAAGATGATTACCAAGGTAAACCGTTGGAATTTGGTGCGA


CGTCTGCGGCGCTTCAACCGGAAGAAGAGCAAGAAGAAGATTGGTTAGATGATG


ATAGTCAACAAACGGTTGGTCAACAAGACGGCAGTGAGGACAATCAGACGACG


ACGATTCAAACGATAGTTGAGGTTCAACCGCAATTAGAGATGGAACTTACGCCG


GTTGTTCAGACGATAGAAGTGAATAGTTTTAGTGGTTATTTAAAACTTACGGACA


ATGTATACATAAAAAATGCGGACATAGTGGAAGAAGCGAAAAAGGTAAAACCG


ACGGTGGTTGTTAATGCGGCGAATGTTTACCTTAAACATGGAGGAGGTGTTGCGG


GAGCGTTAAATAAGGCGACGAACAATGCGATGCAAGTTGAATCTGATGATTACA


TAGCGACGAATGGACCGCTTAAAGTGGGTGGTAGTTGTGTTTTAAGCGGACACA


ATCTTGCGAAACACTGTCTTCATGTTGTCGGCCCGAATGTTAACAAAGGTGAAGA


CATACAACTTCTTAAGAGTGCGTATGAAAATTTTAATCAGCACGAAGTTCTACTT


GCGCCGTTATTATCAGCGGGTATATTTGGTGCGGACCCGATACATTCTTTAAGAG


TTTGTGTAGATACGGTTCGCACGAATGTCTACTTAGCGGTCTTTGATAAAAATCT


CTATGACAAACTTGTTTCAAGCTTTTTGGAAATGAAGAGTGAAAAGCAAGTTGAA


CAAAAGATAGCGGAGATACCGAAAGAGGAAGTTAAGCCGTTTATAACGGAAAG


TAAACCGTCAGTTGAACAGAGAAAACAAGATGATAAGAAAATAAAAGCGTGTGT


TGAAGAAGTTACGACGACGCTGGAAGAAACGAAGTTCCTCACGGAAAACTTGTT


ACTTTATATAGACATAAATGGCAATCTTCATCCGGATTCTGCGACGCTTGTTAGT


GACATAGACATAACGTTCTTAAAGAAAGATGCGCCGTATATAGTGGGTGATGTT


GTTCAAGAGGGTGTTTTAACGGCGGTGGTTATACCGACGAAAAAGGCGGGTGGC


ACGACGGAAATGCTAGCGAAAGCGTTGAGAAAAGTGCCGACGGACAATTATATA


ACGACGTACCCGGGTCAGGGTTTAAATGGTTACACGGTAGAGGAGGCGAAGACG


GTGCTTAAAAAGTGTAAAAGTGCGTTTTACATACTACCGTCTATAATATCTAATG


AGAAGCAAGAAATACTTGGAACGGTTTCTTGGAATTTGCGAGAAATGCTTGCGC


ATGCGGAAGAAACGCGCAAATTAATGCCGGTCTGTGTGGAAACGAAAGCGATAG


TTTCAACGATACAGCGTAAATATAAGGGTATAAAAATACAAGAGGGTGTGGTTG


ATTATGGTGCGAGATTTTACTTTTACACGAGTAAAACGACGGTAGCGTCACTTAT


AAACACGCTTAACGATCTAAATGAAACGCTTGTTACGATGCCGCTTGGCTATGTA


ACGCATGGCTTAAATTTGGAAGAAGCGGCGCGGTATATGAGATCTCTCAAAGTG


CCGGCGACGGTTTCTGTTTCTTCACCGGATGCGGTTACGGCGTATAATGGTTATC


TTACGTCTTCTTCTAAAACGCCGGAAGAACATTTTATTGAAACGATATCACTTGC


GGGTTCCTATAAAGATTGGTCCTATTCTGGACAATCTACGCAACTAGGTATAGAA


TTTCTTAAGAGAGGTGATAAAAGTGTATATTACACGAGTAATCCGACGACGTTCC


ACCTAGATGGTGAAGTTATAACGTTTGACAATCTTAAGACGCTTCTTTCTTTGAG


AGAAGTGAGGACGATAAAGGTGTTTACGACGGTAGACAACATAAACCTCCACAC


GCAAGTTGTGGACATGTCAATGACGTATGGACAACAGTTTGGTCCGACGTATTTG


GATGGAGCGGATGTTACGAAAATAAAACCGCATAATTCACATGAAGGTAAAACG


TTTTATGTTTTACCGAATGATGACACGCTACGTGTTGAGGCGTTTGAGTACTACC


ACACGACGGATCCGAGTTTTCTGGGTAGGTACATGTCAGCGTTAAATCACACGA


AAAAGTGGAAATACCCGCAAGTTAATGGTTTAACGTCTATAAAATGGGCGGATA


ACAACTGTTATCTTGCGACGGCGTTGTTAACGCTCCAACAAATAGAGTTGAAGTT


TAATCCGCCGGCGCTACAAGATGCGTATTACAGAGCGAGGGCGGGTGAAGCGGC


GAACTTTTGTGCGCTTATATTAGCGTACTGTAATAAGACGGTAGGTGAGTTAGGT


GATGTTAGAGAAACGATGAGTTACTTGTTTCAACATGCGAATTTAGATTCTTGCA


AAAGAGTCTTGAACGTGGTGTGTAAAACGTGTGGACAACAGCAGACGACGCTTA


AGGGTGTAGAAGCGGTTATGTACATGGGCACGCTTTCTTATGAACAATTTAAGAA


AGGTGTTCAGATACCGTGTACGTGTGGTAAACAAGCGACGAAATATCTAGTACA


ACAGGAGTCACCGTTTGTTATGATGTCAGCGCCGCCGGCGCAGTATGAACTTAAG


CATGGTACGTTTACGTGTGCGAGTGAGTACACGGGTAATTACCAGTGTGGTCACT


ATAAACATATAACGTCTAAAGAAACGTTGTATTGCATAGACGGTGCGTTACTTAC


GAAGTCCTCAGAATACAAAGGTCCGATAACGGATGTTTTCTACAAAGAAAACAG


TTACACGACGACGATAAAACCGGTTACGTATAAATTGGATGGTGTTGTTTGTACG


GAAATAGACCCGAAGTTGGACAATTATTATAAGAAAGACAATTCTTATTTCACGG


AGCAACCGATAGATCTTGTACCGAACCAACCGTATCCGAACGCGAGCTTCGATA


ATTTTAAGTTTGTATGTGATAATATAAAATTTGCGGATGATTTAAACCAGTTAAC


GGGTTATAAGAAACCGGCGTCAAGAGAGCTTAAAGTTACGTTTTTCCCGGACTTA


AATGGTGATGTGGTGGCGATAGATTATAAACACTACACGCCGTCTTTTAAGAAAG


GAGCGAAATTGTTACATAAACCGATAGTTTGGCATGTTAACAATGCGACGAATA


AAGCGACGTATAAACCGAATACGTGGTGTATACGTTGTCTTTGGAGCACGAAAC


CGGTTGAAACGTCAAATTCGTTTGATGTACTGAAGTCAGAGGACGCGCAGGGAA


TGGATAATCTTGCGTGCGAAGATCTAAAACCGGTCTCTGAAGAAGTAGTGGAAA


ATCCGACGATACAGAAAGACGTTCTTGAGTGTAATGTGAAAACGACGGAAGTTG


TAGGAGACATAATACTTAAACCGGCGAATAATAGTTTAAAAATAACGGAAGAGG


TTGGCCACACGGATCTAATGGCGGCGTATGTAGACAATTCTAGTCTTACGATAAA


GAAACCGAATGAATTATCTAGAGTATTAGGTTTGAAAACGCTTGCGACGCATGGT


TTAGCGGCGGTTAATAGTGTCCCGTGGGATACGATAGCGAATTATGCGAAGCCG


TTTCTTAACAAAGTTGTTAGTACGACGACGAACATAGTTACGCGGTGTTTAAACC


GTGTTTGTACGAATTATATGCCGTATTTCTTTACGTTATTGCTACAATTGTGTACG


TTTACGAGAAGTACGAATTCTAGAATAAAAGCGTCTATGCCGACGACGATAGCG


AAGAATACGGTTAAGAGTGTCGGTAAATTTTGTCTAGAGGCGTCATTTAATTATT


TGAAGTCACCGAATTTTTCTAAACTGATAAATATAATAATATGGTTTTTACTATTA


AGTGTTTGCCTAGGTTCTTTAATATACTCAACGGCGGCGTTAGGTGTTTTAATGTC


TAATTTAGGCATGCCGTCTTACTGTACGGGTTACAGAGAAGGCTATTTGAACTCT


ACGAATGTCACGATAGCGACGTACTGTACGGGTTCTATACCGTGTAGTGTTTGTC


TTAGTGGTTTAGATTCTTTAGACACGTATCCGTCTTTAGAAACGATACAAATAAC


GATATCATCTTTTAAATGGGATTTAACGGCGTTTGGCTTAGTTGCGGAGTGGTTTT


TGGCGTATATTCTTTTCACGAGGTTTTTCTATGTACTTGGATTGGCGGCGATAATG


CAATTGTTTTTCAGCTATTTTGCGGTACATTTTATAAGTAATTCTTGGCTTATGTG


GTTAATAATAAATCTTGTACAAATGGCGCCGATATCAGCGATGGTTAGAATGTAC


ATATTCTTTGCGTCATTTTATTATGTATGGAAAAGTTATGTGCATGTTGTAGACGG


TTGTAATTCATCAACGTGTATGATGTGTTACAAACGTAATAGAGCGACGAGAGTC


GAATGTACGACGATAGTTAATGGTGTTAGAAGGTCCTTTTATGTCTATGCGAATG


GAGGTAAAGGCTTTTGCAAACTACACAATTGGAATTGTGTTAATTGTGATACGTT


CTGTGCGGGTAGTACGTTTATAAGTGATGAAGTTGCGAGAGACTTGTCACTACAG


TTTAAAAGACCGATAAATCCGACGGACCAGTCTTCTTACATAGTTGATAGTGTTA


CGGTGAAGAATGGTTCCATACATCTTTACTTTGATAAAGCGGGTCAAAAGACGTA


TGAAAGACATTCTCTCTCTCATTTTGTTAACTTAGACAACCTGAGAGCGAATAAC


ACGAAAGGTTCATTGCCGATAAATGTTATAGTTTTTGATGGTAAATCAAAATGTG


AAGAATCATCTGCGAAATCAGCGTCTGTTTACTACAGTCAGCTTATGTGTCAACC


GATACTGTTACTAGATCAGGCGTTAGTGTCTGATGTTGGTGATAGTGCGGAAGTT


GCGGTTAAAATGTTTGATGCGTACGTTAATACGTTTTCATCAACGTTTAACGTAC


CGATGGAAAAACTCAAAACGCTAGTTGCGACGGCGGAAGCGGAACTTGCGAAG


AATGTGTCCTTAGACAATGTCTTATCTACGTTTATATCAGCGGCGCGGCAAGGGT


TTGTTGATTCAGATGTAGAAACGAAAGATGTTGTTGAATGTCTTAAATTGTCACA


TCAATCTGACATAGAAGTTACGGGCGATAGTTGTAATAACTATATGCTCACGTAT


AACAAAGTTGAAAACATGACGCCGCGTGACCTTGGTGCGTGTATAGACTGTAGT


GCGCGTCATATAAATGCGCAGGTAGCGAAAAGTCACAACATAGCGTTGATATGG


AACGTTAAAGATTTCATGTCATTGTCTGAACAACTACGAAAACAAATACGTAGTG


CGGCGAAAAAGAATAACTTACCGTTTAAGTTGACGTGTGCGACGACGAGACAAG


TTGTTAATGTTGTAACGACGAAGATAGCGCTTAAGGGTGGTAAAATAGTTAATAA


TTGGTTGAAGCAGTTAATTAAA





SEQ ID NO: 60 - Clone pCC1-4K-SARS-COV-2-7N-1. Only fragment 3 has been


deoptimized:


GGGTCCCACGTGCTAGCGCTAACATAGGTTGTAACCATACAGGTGTTG


TTGGAGAAGGTTCCGAAGGTCTTAATGACAACCTTCTTGAAATACTCCAAAAAG


AGAAAGTCAACATCAATATTGTTGGTGACTTTAAACTTAATGAAGAGATCGCCAT


TATTTTGGCATCTTTTTCTGCTTCCACAAGTGCTTTTGTGGAAACTGTGAAAGGTT


TGGATTATAAAGCATTCAAACAAATTGTTGAATCCTGTGGTAATTTTAAAGTTAC


AAAAGGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAACAGAAATCAATACT


GAGTCCTCTTTATGCATTTGCATCAGAGGCTGCTCGTGTTGTACGATCAATTTTCT


CCCGCACTCTTGAAACTGCTCAAAATTCTGTGCGTGTTTTACAGAAGGCCGCTAT


AACAATACTAGATGGAATTTCACAGTATTCACTGAGACTCATTGATGCTATGATG


TTCACATCTGATTTGGCTACTAACAATCTAGTTGTAATGGCCTACATTACAGGTG


GTGTTGTTCAGTTGACTTCGCAGTGGCTAACTAACATCTTTGGCACTGTTTATGAA


AAACTCAAACCCGTCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGGTGTAGAG


TTTCTTAGAGACGGTTGGGAAATTGTTAAATTTATCTCAACCTGTGCTTGTGAAAT


TGTCGGTGGACAAATTGTCACCTGTGCAAAGGAAATTAAGGAGAGTGTTCAGAC


ATTCTTTAAGCTTGTAAATAAATTTTTGGCTTTGTGTGCTGACTCTATCATTATTG


GTGGAGCTAAACTTAAAGCCTTGAATTTAGGTGAAACATTTGTCACGCACTCAAA


GGGATTGTACAGAAAGTGTGTTAAATCCAGAGAAGAAACTGGCCTACTCATGCC


TCTAAAAGCCCCAAAAGAAATTATCTTCTTAGAGGGAGAAACACTTCCCACAGA


AGTGTTAACAGAGGAAGTTGTCTTGAAAACTGGTGATTTACAACCATTAGAACA


ACCTACTAGTGAAGCTGTTGAAGCTCCATTGGTTGGTACACCAGTTTGTATTAAC


GGGCTTATGTTGCTCGAAATCAAAGACACAGAAAAGTACTGTGCCCTTGCACCTA


ATATGATGGTAACAAACAATACCTTCACACTCAAAGGCGGTGCACCAACAAAGG


TTACTTTTGGTGATGACACTGTGATAGAAGTGCAAGGTTACAAGAGTGTGAATAT


CACTTTTGAACTTGATGAAAGGATTGATAAAGTACTTAATGAGAAGTGCTCTGCC


TATACAGTTGAACTCGGTACAGAAGTAAATGAGTTCGCCTGTGTTGTGGCAGATG


CTGTCATAAAAACTTTGCAACCAGTATCTGAATTACTTACACCACTGGGCATTGA


TTTAGATGAGTGGAGTATGGCTACATACTACTTATTTGATGAGTCTGGTGAGTTT


AAATTGGCTTCACATATGTATTGTTCTTTCTACCCTCCAGATGAGGATGAAGAAG


AAGGTGATTGTGAAGAAGAAGAGTTTGAGCCATCAACTCAATATGAGTATGGTA


CTGAAGATGATTACCAAGGTAAACCTTTGGAATTTGGTGCCACTTCTGCTGCTCT


TCAACCTGAAGAAGAGCAAGAAGAAGATTGGTTAGATGATGATAGTCAACAAAC


TGTTGGTCAACAAGACGGCAGTGAGGACAATCAGACAACTACTATTCAAACAAT


TGTTGAGGTTCAACCTCAATTAGAGATGGAACTTACACCAGTTGTTCAGACTATT


GAAGTGAATAGTTTTAGTGGTTATTTAAAACTTACTGACAATGTATACATTAAAA


ATGCAGACATTGTGGAAGAAGCTAAAAAGGTAAAACCAACAGTGGTTGTTAATG


CAGCCAATGTTTACCTTAAACATGGAGGAGGTGTTGCAGGAGCCTTAAATAAGG


CTACTAACAATGCCATGCAAGTTGAATCTGATGATTACATAGCTACTAATGGACC


ACTTAAAGTGGGTGGTAGTTGTGTTTTAAGCGGACACAATCTTGCTAAACACTGT


CTTCATGTTGTCGGCCCAAATGTTAACAAAGGTGAAGACATTCAACTTCTTAAGA


GTGCTTATGAAAATTTTAATCAGCACGAAGTTCTACTTGCACCATTATTATCAGCT


GGTATTTTTGGTGCTGACCCTATACATTCTTTAAGAGTTTGTGTAGATACTGTTCG


CACAAATGTCTACTTAGCTGTCTTTGATAAAAATCTCTATGACAAACTTGTTTCAA


GCTTTTTGGAAATGAAGAGTGAAAAGCAAGTTGAACAAAAGATCGCTGAGATTC


CTAAAGAGGAAGTTAAGCCATTTATAACTGAAAGTAAACCTTCAGTTGAACAGA


GAAAACAAGATGATAAGAAAATCAAAGCTTGTGTTGAAGAAGTTACAACAACTC


TGGAAGAAACTAAGTTCCTCACAGAAAACTTGTTACTTTATATTGACATTAATGG


CAATCTTCATCCAGATTCTGCCACTCTTGTTAGTGACATTGACATCACTTTCTTAA


AGAAAGATGCTCCATATATAGTGGGTGATGTTGTTCAAGAGGGTGTTTTAACTGC


TGTGGTTATACCTACTAAAAAGGCTGGTGGCACTACTGAAATGCTAGCGAAAGC


TTTGAGAAAAGTGCCAACAGACAATTATATAACCACTTACCCGGGTCAGGGTTTA


AATGGTTACACTGTAGAGGAGGCAAAGACAGTGCTTAAAAAGTGTAAAAGTGCC


TTTTACATTCTACCATCTATTATCTCTAATGAGAAGCAAGAAATTCTTGGAACTGT


TTCTTGGAATTTGCGAGAAATGCTTGCACATGCAGAAGAAACACGCAAATTAAT


GCCTGTCTGTGTGGAAACTAAAGCCATAGTTTCAACTATACAGCGTAAATATAAG


GGTATTAAAATACAAGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTTACA


CCAGTAAAACAACTGTAGCGTCACTTATCAACACACTTAACGATCTAAATGAAA


CTCTTGTTACAATGCCACTTGGCTATGTAACACATGGCTTAAATTTGGAAGAAGC


TGCTCGGTATATGAGATCTCTCAAAGTGCCAGCTACAGTTTCTGTTTCTTCACCTG


ATGCTGTTACAGCGTATAATGGTTATCTTACTTCTTCTTCTAAAACACCTGAAGAA


CATTTTATTGAAACCATCTCACTTGCTGGTTCCTATAAAGATTGGTCCTATTCTGG


ACAATCTACACAACTAGGTATAGAATTTCTTAAGAGAGGTGATAAAAGTGTATAT


TACACTAGTAATCCTACCACATTCCACCTAGATGGTGAAGTTATCACCTTTGACA


ATCTTAAGACACTTCTTTCTTTGAGAGAAGTGAGGACTATTAAGGTGTTTACAAC


AGTAGACAACATTAACCTCCACACGCAAGTTGTGGACATGTCAATGACATATGG


ACAACAGTTTGGTCCAACTTATTTGGATGGAGCTGATGTTACTAAAATAAAACCT


CATAATTCACATGAAGGTAAAACATTTTATGTTTTACCTAATGATGACACTCTAC


GTGTTGAGGCTTTTGAGTACTACCACACAACTGATCCTAGTTTTCTGGGTAGGTA


CATGTCAGCATTAAATCACACTAAAAAGTGGAAATACCCACAAGTTAATGGTTT


AACTTCTATTAAATGGGCAGATAACAACTGTTATCTTGCCACTGCATTGTTAACA


CTCCAACAAATAGAGTTGAAGTTTAATCCACCTGCTCTACAAGATGCTTATTACA


GAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGCACTTATCTTAGCCTACTGTAA


TAAGACAGTAGGTGAGTTAGGTGATGTTAGAGAAACAATGAGTTACTTGTTTCAA


CATGCCAATTTAGATTCTTGCAAAAGAGTCTTGAACGTGGTGTGTAAAACTTGTG


GACAACAGCAGACAACCCTTAAGGGTGTAGAAGCTGTTATGTACATGGGCACAC


TTTCTTATGAACAATTTAAGAAAGGTGTTCAGATACCTTGTACGTGTGGTAAACA


AGCTACAAAATATCTAGTACAACAGGAGTCACCTTTTGTTATGATGTCAGCACCA


CCTGCTCAGTATGAACTTAAGCATGGTACATTTACTTGTGCTAGTGAGTACACTG


GTAATTACCAGTGTGGTCACTATAAACATATAACTTCTAAAGAAACTTTGTATTG


CATAGACGGTGCTTTACTTACAAAGTCCTCAGAATACAAAGGTCCTATTACGGAT


GTTTTCTACAAAGAAAACAGTTACACAACAACCATAAAACCAGTTACTTATAAAT


TGGATGGTGTTGTTTGTACAGAAATTGACCCTAAGTTGGACAATTATTATAAGAA


AGACAATTCTTATTTCACAGAGCAACCAATTGATCTTGTACCAAACCAACCATAT


CCAAACGCAAGCTTCGATAATTTTAAGTTTGTATGTGATAATATCAAATTTGCTG


ATGATTTAAACCAGTTAACTGGTTATAAGAAACCTGCTTCAAGAGAGCTTAAAGT


TACATTTTTCCCTGACTTAAATGGTGATGTGGTGGCTATTGATTATAAACACTACA


CACCCTCTTTTAAGAAAGGAGCTAAATTGTTACATAAACCTATTGTTTGGCATGT


TAACAATGCAACTAATAAAGCCACGTATAAACCAAATACCTGGTGTATACGTTGT


CTTTGGAGCACAAAACCAGTTGAAACATCAAATTCGTTTGATGTACTGAAGTCAG


AGGACGCGCAGGGAATGGATAATCTTGCCTGCGAAGATCTAAAACCAGTCTCTG


AAGAAGTAGTGGAAAATCCTACCATACAGAAAGACGTTCTTGAGTGTAATGTGA


AAACTACCGAAGTTGTAGGAGACATTATACTTAAACCAGCAAATAATAGTTTAA


AAATTACAGAAGAGGTTGGCCACACAGATCTAATGGCTGCTTATGTAGACAATT


CTAGTCTTACTATTAAGAAACCTAATGAATTATCTAGAGTATTAGGTTTGAAAAC


CCTTGCTACTCATGGTTTAGCTGCTGTTAATAGTGTCCCTTGGGATACTATAGCTA


ATTATGCTAAGCCTTTTCTTAACAAAGTTGTTAGTACAACTACTAACATAGTTAC


ACGGTGTTTAAACCGTGTTTGTACTAATTATATGCCTTATTTCTTTACTTTATTGCT


ACAATTGTGTACTTTTACTAGAAGTACAAATTCTAGAATTAAAGCATCTATGCCG


ACTACTATAGCAAAGAATACTGTTAAGAGTGTCGGTAAATTTTGTCTAGAGGCTT


CATTTAATTATTTGAAGTCACCTAATTTTTCTAAACTGATAAATATTATAATTTGG


TTTTTACTATTAAGTGTTTGCCTAGGTTCTTTAATCTACTCAACCGCGGCGTTAGG


TGTTTTAATGTCTAATTTAGGTATGCCGTCTTACTGTACGGGTTACCGTGAAGGTT


ATTTGAACTCTACGAATGTCACGATTGCGACGTACTGTACGGGTTCTATACCGTG


TAGTGTTTGTCTTAGTGGTTTAGATTCTTTAGACACGTATCCGTCTTTAGAAACGA


TACAAATTACGATTTCATCTTTTAAATGGGATTTAACGGCGTTTGGTTTAGTTGCG


GAGTGGTTTTTGGCGTATATTCTTTTCACGCGTTTTTTCTATGTACTTGGTTTGGCG


GCGATCATGCAATTGTTTTTCAGCTATTTTGCGGTACATTTTATTAGTAATTCTTG


GCTTATGTGGTTAATAATTAATCTTGTACAAATGGCGCCGATTTCAGCGATGGTT


AGAATGTACATCTTCTTTGCGTCATTTTATTATGTATGGAAAAGTTATGTGCATGT


TGTAGACGGTTGTAATTCATCAACGTGTATGATGTGTTACAAACGTAATAGAGCG


ACGCGTGTCGAATGTACGACGATTGTTAATGGTGTTAGACGTTCCTTTTATGTCTA


TGCGAATGGTGGTAAAGGTTTTTGCAAACTACACAATTGGAATTGTGTTAATTGT


GATACGTTCTGTGCGGGTAGTACGTTTATTAGTGATGAAGTTGCGCGTGACTTGT


CACTACAGTTTAAACGTCCGATAAATCCGACGGACCAGTCTTCTTACATCGTTGA


TAGTGTTACGGTGAAGAATGGTTCCATCCATCTTTACTTTGATAAAGCGGGTCAA


AAGACGTATGAACGTCATTCTCTCTCTCATTTTGTTAACTTAGACAACCTGCGTGC


GAATAACACGAAAGGTTCATTGCCGATTAATGTTATAGTTTTTGATGGTAAATCA


AAATGTGAAGAATCATCTGCGAAATCAGCGTCTGTTTACTACAGTCAGCTTATGT


GTCAACCGATACTGTTACTAGATCAGGCGTTAGTGTCTGATGTTGGTGATAGTGC


GGAAGTTGCGGTTAAAATGTTTGATGCGTACGTTAATACGTTTTCATCAACGTTT


AACGTACCGATGGAAAAACTCAAAACGCTAGTTGCGACGGCGGAAGCGGAACTT


GCGAAGAATGTGTCCTTAGACAATGTCTTATCTACGTTTATTTCAGCGGCGCGTC


AAGGTTTTGTTGATTCAGATGTAGAAACGAAAGATGTTGTTGAATGTCTTAAATT


GTCACATCAATCTGACATAGAAGTTACGGGTGATAGTTGTAATAACTATATGCTC


ACGTATAACAAAGTTGAAAACATGACGCCGCGTGACCTTGGTGCGTGTATTGACT


GTAGTGCGCGTCATATTAATGCGCAGGTAGCGAAAAGTCACAACATTGCGTTGA


TATGGAACGTTAAAGATTTCATGTCATTGTCTGAACAACTACGTAAACAAATACG


TAGTGCGGCGAAAAAGAATAACTTACCGTTTAAGTTGACGTGTGCGACGACGCG


TCAAGTTGTTAATGTTGTAACGACGAAGATAGCGCTTAAGGGTGGTAAAATTGTT


AATAATTGGTTGAAGCAATTAATTAAA





SEQ ID NO: 61 - Clone pCC1-4K-SARS-COV-2-7N-2. Only fragment 2 has been


deoptimized.





SEQ ID NO: 62 - Clone pCC1-4K-SARS-COV-2-7N-3. Only fragment 1 has been


deoptimized.





SEQ ID NO: 63 - Clone pCC1-4K-SARS-COV-2-7N-4. Only fragments 1 and 2


have been deoptimized.





SEQ ID NO: 64 - Clone pCC1-4K-SARS-COV-2-7N-5. Only fragments 1 and 3


have been deoptimized.





SEQ ID NO: 65 - Clone pCC1-4K-SARS-COV-2-7N-6. Only fragments 2 and 3


have been deoptimized.





SEQ ID NO: 66 - Clone pCC1-4K-SARS-COV-2-7N-7. All 3 fragments were


deoptimized. Deoptimized sequence between SanDI to PacI in ORF1a:


GGGTCCCGCGTGCGAGCGCGAACATAGGTTGTAACCATACGGGTGTT


GTTGGTGAAGGTTCCGAAGGTCTTAATGACAACCTTCTTGAAATACTCCAAAAAG


AGAAAGTCAACATAAATATAGTTGGTGACTTTAAACTTAATGAAGAGATAGCGA


TAATATTGGCGTCTTTTTCTGCGTCCACGAGTGCGTTTGTGGAAACAGTGAAAGG


TTTGGATTATAAAGCGTTCAAACAAATAGTTGAATCCTGTGGTAATTTTAAAGTT


ACGAAAGGTAAAGCGAAAAAAGGTGCGTGGAATATAGGTGAACAAAAATCAAT


ACTGAGTCCGCTTTATGCGTTTGCGTCAGAGGCGGCGCGTGTTGTACGTTCAATA


TTCTCCCGTACGCTTGAAACGGCGCAAAATTCTGTGCGTGTTTTACAAAAGGCGG


CGATAACGATACTAGATGGTATATCACAATATTCACTGCGTCTCATAGATGCGAT


GATGTTCACGTCTGATTTGGCGACGAACAATCTAGTTGTAATGGCGTACATAACG


GGTGGTGTTGTTCAATTGACGTCGCAATGGCTAACGAACATATTTGGTACGGTTT


ATGAAAAACTCAAACCGGTCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGGTG


TAGAGTTTCTTCGTGACGGTTGGGAAATAGTTAAATTTATATCAACGTGTGCGTG


TGAAATAGTCGGTGGTCAAATAGTCACGTGTGCGAAGGAAATAAAGGAGAGTGT


TCAAACGTTCTTTAAGCTTGTAAATAAATTTTTGGCGTTGTGTGCGGACTCTATAA


TAATAGGTGGTGCGAAACTTAAAGCGTTGAATTTAGGTGAAACGTTTGTCACGCA


CTCAAAGGGTTTGTACCGTAAGTGTGTTAAATCCCGTGAAGAAACGGGTCTACTC


ATGCCGCTAAAAGCGCCGAAAGAAATAATATTCTTAGAGGGTGAAACGCTTCCG


ACGGAAGTGTTAACGGAGGAAGTTGTCTTGAAAACGGGTGATTTACAACCGTTA


GAACAACCGACGAGTGAAGCGGTTGAAGCGCCGTTGGTTGGTACGCCGGTTTGT


ATAAACGGTCTTATGTTGCTCGAAATAAAAGACACGGAAAAGTACTGTGCGCTT


GCGCCGAATATGATGGTAACGAACAATACGTTCACGCTCAAAGGTGGTGCGCCG


ACGAAGGTTACGTTTGGTGATGACACGGTGATAGAAGTGCAAGGTTACAAGAGT


GTGAATATAACGTTTGAACTTGATGAACGTATAGATAAAGTACTTAATGAGAAGT


GCTCTGCGTATACGGTTGAACTCGGTACGGAAGTAAATGAGTTCGCGTGTGTTGT


GGCGGATGCGGTCATAAAAACGTTGCAACCGGTATCTGAATTACTTACGCCGCTG


GGTATAGATTTAGATGAGTGGAGTATGGCGACGTACTACTTATTTGATGAGTCTG


GTGAGTTTAAATTGGCGTCACATATGTATTGTTCTTTCTACCCGCCGGATGAGGA


TGAAGAAGAAGGTGATTGTGAAGAAGAAGAGTTTGAGCCGTCAACGCAATATGA


GTATGGTACGGAAGATGATTACCAAGGTAAACCGTTGGAATTTGGTGCGACGTCT


GCGGCGCTTCAACCGGAAGAAGAGCAAGAAGAAGATTGGTTAGATGATGATAGT


CAACAAACGGTTGGTCAACAAGACGGTAGTGAGGACAATCAAACGACGACGAT


ACAAACGATAGTTGAGGTTCAACCGCAATTAGAGATGGAACTTACGCCGGTTGT


TCAAACGATAGAAGTGAATAGTTTTAGTGGTTATTTAAAACTTACGGACAATGTA


TACATAAAAAATGCGGACATAGTGGAAGAAGCGAAAAAGGTAAAACCGACGGT


GGTTGTTAATGCGGCGAATGTTTACCTTAAACATGGTGGTGGTGTTGCGGGTGCG


TTAAATAAGGCGACGAACAATGCGATGCAAGTTGAATCTGATGATTACATAGCG


ACGAATGGTCCGCTTAAAGTGGGTGGTAGTTGTGTTTTAAGCGGTCACAATCTTG


CGAAACACTGTCTTCATGTTGTCGGTCCGAATGTTAACAAAGGTGAAGACATTCA


ACTTCTTAAGAGTGCGTATGAAAATTTTAATCAACACGAAGTTCTACTTGCGCCG


TTATTATCAGCGGGTATATTTGGTGCGGACCCGATACATTCTTTACGTGTTTGTGT


AGATACGGTTCGTACGAATGTCTACTTAGCGGTCTTTGATAAAAATCTCTATGAC


AAACTTGTTTCAAGCTTTTTGGAAATGAAGAGTGAAAAGCAAGTTGAACAAAAG


ATAGCAGAGATACCGAAAGAGGAAGTTAAGCCGTTTATAACGGAAAGTAAACCG


TCAGTTGAACAGCGTAAACAAGATGATAAGAAAATAAAAGCGTGTGTTGAAGAA


GTTACGACGACGCTGGAAGAAACGAAGTTCCTCACGGAAAACTTGTTACTTTATA


TAGACATAAATGGTAATCTTCATCCGGATTCTGCGACGCTTGTTAGTGACATAGA


CATAACGTTCTTAAAGAAAGATGCGCCGTATATAGTGGGTGATGTTGTTCAAGAG


GGTGTTTTAACGGCGGTGGTTATACCGACGAAAAAGGCGGGTGGTACGACGGAA


ATGCTAGCGAAAGCGTTGCGTAAAGTGCCGACGGACAATTATATAACGACGTAC


CCGGGTCAAGGTTTAAATGGTTACACGGTAGAGGAGGCGAAGACGGTGCTTAAA


AAGTGTAAAAGTGCGTTTTACATACTACCGTCTATAATATCTAATGAGAAGCAAG


AAATACTTGGTACGGTTTCTTGGAATTTGCGGGAAATGCTTGCGCATGCGGAAGA


AACGCGTAAATTAATGCCGGTCTGTGTGGAAACGAAAGCGATAGTTTCAACGAT


ACAGCGTAAATATAAGGGTATTAAAATACAAGAGGGTGTGGTTGATTATGGTGC


GCGTTTTTACTTTTACACGAGTAAAACGACGGTAGCGTCACTTATCAACACGCTT


AACGATCTAAATGAAACGCTTGTTACGATGCCGCTTGGTTATGTAACGCATGGTT


TAAATTTGGAAGAAGCGGCGCGTTATATGCGTTCTCTCAAAGTGCCGGCGACGGT


TTCTGTTTCTTCACCGGATGCGGTTACGGCGTATAATGGTTATCTTACGTCTTCTT


CTAAAACGCCGGAAGAACATTTTATTGAAACGATCTCACTTGCGGGTTCCTATAA


AGATTGGTCCTATTCTGGTCAATCTACGCAACTAGGTATAGAATTTCTTAAGCGT


GGTGATAAAAGTGTATATTACACGAGTAATCCGACGACGTTCCACCTAGATGGT


GAAGTTATCACGTTTGACAATCTTAAGACGCTTCTTTCTTTGCGTGAAGTGCGTAC


GATTAAGGTGTTTACGACGGTAGACAACATTAACCTCCACACGCAAGTTGTGGA


CATGTCAATGACGTATGGTCAACAGTTTGGTCCGACGTATTTGGATGGTGCGGAT


GTTACGAAAATAAAACCGCATAATTCACATGAAGGTAAAACGTTTTATGTTTTAC


CGAATGATGACACGCTACGTGTTGAGGCGTTTGAGTACTACCACACAACGGATC


CGAGTTTTCTGGGTCGTTACATGTCAGCGTTAAATCACACGAAAAAGTGGAAATA


CCCGCAAGTTAATGGTTTAACGTCTATTAAATGGGCGGATAACAACTGTTATCTT


GCGACGGCGTTGTTAACGCTCCAACAAATAGAGTTGAAGTTTAATCCGCCGGCG


CTACAAGATGCGTATTACCGTGCGCGTGCGGGTGAAGCGGCGAACTTTTGTGCGC


TTATCTTAGCGTACTGTAATAAGACGGTAGGTGAGTTAGGTGATGTTCGTGAAAC


GATGAGTTACTTGTTTCAACATGCGAATTTAGATTCTTGCAAACGTGTCTTGAAC


GTGGTGTGTAAAACGTGTGGTCAACAGCAAACGACGCTTAAGGGTGTAGAAGCG


GTTATGTACATGGGTACACTTTCTTATGAACAATTTAAGAAAGGTGTTCAAATAC


CGTGTACGTGTGGTAAACAAGCGACAAAATATCTAGTACAACAGGAGTCACCGT


TTGTTATGATGTCAGCGCCGCCGGCGCAGTATGAACTTAAGCATGGTACGTTTAC


GTGTGCGAGTGAGTACACGGGTAATTACCAGTGTGGTCACTATAAACATATAAC


GTCTAAAGAAACGTTGTATTGCATAGACGGTGCGTTACTTACGAAGTCCTCAGAA


TACAAAGGTCCGATTACGGATGTTTTCTACAAAGAAAACAGTTACACAACAACG


ATAAAACCGGTTACGTATAAATTGGATGGTGTTGTTTGTACGGAAATTGACCCGA


AGTTGGACAATTATTATAAGAAAGACAATTCTTATTTCACGGAGCAACCGATTGA


TCTTGTACCGAACCAACCGTATCCGAACGCGAGCTTCGATAATTTTAAGTTTGTA


TGTGATAATATCAAATTTGCGGATGATTTAAACCAATTAACGGGTTATAAGAAAC


CGGCGTCACGTGAGCTTAAAGTTACATTTTTCCCGGACTTAAATGGTGATGTGGT


GGCGATTGATTATAAACACTACACGCCGTCTTTTAAGAAAGGTGCGAAATTGTTA


CATAAACCGATTGTTTGGCATGTTAACAATGCGACGAATAAAGCGACGTATAAA


CCGAATACGTGGTGTATACGTTGTCTTTGGAGCACGAAACCGGTTGAAACATCAA


ATTCGTTTGATGTACTGAAGTCAGAGGACGCGCAGGGTATGGATAATCTTGCGTG


CGAAGATCTAAAACCGGTCTCTGAAGAAGTAGTGGAAAATCCGACGATACAGAA


AGACGTTCTTGAGTGTAATGTGAAAACGACGGAAGTTGTAGGTGACATTATACTT


AAACCGGCGAATAATAGTTTAAAAATTACGGAAGAGGTTGGTCACACAGATCTA


ATGGCGGCGTATGTAGACAATTCTAGTCTTACGATTAAGAAACCGAATGAATTAT


CTCGTGTATTAGGTTTGAAAACGCTTGCGACGCATGGTTTAGCGGCGGTTAATAG


TGTCCCGTGGGATACGATAGCGAATTATGCGAAGCCGTTTCTTAACAAAGTTGTT


AGTACGACGACGAACATAGTTACGCGTTGTTTAAACCGTGTTTGTACGAATTATA


TGCCGTATTTCTTTACGTTATTGCTACAATTGTGTACGTTTACGCGTAGTACGAAT


TCTCGTATTAAAGCGTCTATGCCGACGACGATAGCGAAGAATACGGTTAAGAGT


GTCGGTAAATTTTGTCTAGAGGCGTCATTTAATTATTTGAAGTCACCGAATTTTTC


TAAACTGATAAATATTATAATTTGGTTTTTACTATTAAGTGTTTGCCTAGGTTCTT


TAATCTACTCAACCGCGGCGTTAGGTGTTTTAATGTCTAATTTAGGTATGCCGTCT


TACTGTACGGGTTACCGTGAAGGTTATTTGAACTCTACGAATGTCACGATTGCGA


CGTACTGTACGGGTTCTATACCGTGTAGTGTTTGTCTTAGTGGTTTAGATTCTTTA


GACACGTATCCGTCTTTAGAAACGATACAAATTACGATTTCATCTTTTAAATGGG


ATTTAACGGCGTTTGGTTTAGTTGCGGAGTGGTTTTTGGCGTATATTCTTTTCACG


CGTTTTTTCTATGTACTTGGTTTGGCGGCGATCATGCAATTGTTTTTCAGCTATTTT


GCGGTACATTTTATTAGTAATTCTTGGCTTATGTGGTTAATAATTAATCTTGTACA


AATGGCGCCGATTTCAGCGATGGTTAGAATGTACATCTTCTTTGCGTCATTTTATT


ATGTATGGAAAAGTTATGTGCATGTTGTAGACGGTTGTAATTCATCAACGTGTAT


GATGTGTTACAAACGTAATAGAGCGACGCGTGTCGAATGTACGACGATTGTTAAT


GGTGTTAGACGTTCCTTTTATGTCTATGCGAATGGTGGTAAAGGTTTTTGCAAACT


ACACAATTGGAATTGTGTTAATTGTGATACGTTCTGTGCGGGTAGTACGTTTATT


AGTGATGAAGTTGCGCGTGACTTGTCACTACAGTTTAAACGTCCGATAAATCCGA


CGGACCAGTCTTCTTACATCGTTGATAGTGTTACGGTGAAGAATGGTTCCATCCA


TCTTTACTTTGATAAAGCGGGTCAAAAGACGTATGAACGTCATTCTCTCTCTCATT


TTGTTAACTTAGACAACCTGCGTGCGAATAACACGAAAGGTTCATTGCCGATTAA


TGTTATAGTTTTTGATGGTAAATCAAAATGTGAAGAATCATCTGCGAAATCAGCG


TCTGTTTACTACAGTCAGCTTATGTGTCAACCGATACTGTTACTAGATCAGGCGTT


AGTGTCTGATGTTGGTGATAGTGCGGAAGTTGCGGTTAAAATGTTTGATGCGTAC


GTTAATACGTTTTCATCAACGTTTAACGTACCGATGGAAAAACTCAAAACGCTAG


TTGCGACGGCGGAAGCGGAACTTGCGAAGAATGTGTCCTTAGACAATGTCTTATC


TACGTTTATTTCAGCGGCGCGTCAAGGTTTTGTTGATTCAGATGTAGAAACGAAA


GATGTTGTTGAATGTCTTAAATTGTCACATCAATCTGACATAGAAGTTACGGGTG


ATAGTTGTAATAACTATATGCTCACGTATAACAAAGTTGAAAACATGACGCCGC


GTGACCTTGGTGCGTGTATTGACTGTAGTGCGCGTCATATTAATGCGCAGGTAGC


GAAAAGTCACAACATTGCGTTGATATGGAACGTTAAAGATTTCATGTCATTGTCT


GAACAACTACGTAAACAAATACGTAGTGCGGCGAAAAAGAATAACTTACCGTTT


AAGTTGACGTGTGCGACGACGCGTCAAGTTGTTAATGTTGTAACGACGAAGATA


GCGCTTAAGGGTGGTAAAATTGTTAATAATTGGTTGAAGCAATTAATTAAA





SEQ ID NO: 67 - Clone pCCI-4K-SARS-COV-2-4N-1-delta, with notable


sequences underlined or otherwise identified (eg. restriction enzyme sites, nucelotide


differences):


GATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGT


CACGACGTTGTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCG


AATTCTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATA


TGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAA


CGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATA


GGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGG


CAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGG


TAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACT


TGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGC


AGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCA


CCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCA


AAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGG


TGGGAGGTCTATATAAGCAGAGCTGGTTTAGTGAACCGTATTAAAGGTTTATACC


TTCCCAGGTAACAAACCAACCAACTTTCGATCTCTTGTAGATCTGTTCTCTAAAC


GAACTTTAAAATCTGTGTGGCTGTCACTCGGCTGCATGCTTAGTGCACTCACGCA


GTATAATTAATAACTAATTACTGTCGTTGACAGGACACGAGTAACTCGTCTATCT


TCTGCAGGCTGCTTACGGTTTCGTCCGTGTTGCAGCCGATCATCAGCACATCTAG


GTTTCGTCCGGGTGTGACCGAAAGGTAAGATGGAGAGCCTTGTCCCTGGTTTCAA


CGAGAAAACACACGTCCAACTCAGTTTGCCTGTTTTACAGGTTCGCGACGTGCTC


GTACGTGGCTTTGGAGACTCCGTGGAGGAGGTCTTATCAGAGGCACGTCAACAT


CTTAAAGATGGCACTTGTGGCTTAGTAGAAGTTGAAAAAGGCGTTTTGCCTCAAC


TTGAACAGCCCTATGTGTTCATCAAACGTTCGGATGCTCGAACTGCACCTCATGG


TCATGTTATGGTTGAGCTGGTAGCAGAACTCGAAGGCATTCAGTACGGTCGTAGT


GGTGAGACACTTGGTGTCCTTGTCCCTCATGTGGGCGAAATACCAGTGGCTTACC


GCAAGGTTCTTCTTCGTAAGAACGGTAATAAAGGAGCTGGTGGCCATAGTTACG


GCGCCGATCTAAAGTCATTTGACTTAGGCGACGAGCTTGGCACTGATCCTTATGA


AGATTTTCAAGAAAACTGGAACACTAAACATAGCAGTGGTGTTACCCGTGAACT


CATGCGTGAGCTTAACGGAGGGGCATACACTCGCTATGTCGATAACAACTTCTGT


GGCCCTGATGGCTACCCTCTTGAGTGCATTAAAGACCTTCTAGCACGTGCTGGTA


AAGCTTCATGCACTTTGTCCGAACAACTGGACTTTATTGACACTAAGAGGGGTGT


ATACTGCTGCCGTGAACATGAGCATGAAATTGCTTGGTACACGGAACGTTCTGAA


AAGAGCTATGAATTGCAGACACCTTTTGAAATTAAATTGGCAAAGAAATTTGAC


ACCTTCAATGGGGAATGTCCAAATTTTGTATTTCCCTTAAATTCCATAATCAAGA


CTATTCAACCAAGGGTTGAAAAGAAAAAGCTTGATGGCTTTATGGGTAGAATTC


GATCTGTCTATCCAGTTGCGTCACCAAATGAATGCAACCAAATGTGCCTTTCAAC


TCTCATGAAGTGTGATCATTGTGGTGAAACTTCATGGCAGACGGGCGATTTTGTT


AAAGCCACTTGCGAATTTTGTGGCACTGAGAATTTGACTAAAGAAGGTGCCACT


ACTTGTGGTTACTTACCCCAAAATGCTGTTGTTAAAATTTATTGTCCAGCATGTCA


CAATTCAGAAGTAGGACCTGAGCATAGTCTTGCCGAATACCATAATGAATCTGG


CTTGAAAACCATTCTTCGTAAGGGTGGTCGCACTATTGCCTTTGGAGGCTGTGTG


TTCTCTTATGTTGGTTGCCATAACAAGTGTGCCTATTGGGTCCCACGTGCTAGCG


CTAACATAGGTTGTAACCATACAGGTGTTGTTGGAGAAGGTTCCGAAGGTCTTAA


TGACAACCTTCTTGAAATACTCCAAAAAGAGAAAGTCAACATCAATATTGTTGGT


GACTTTAAACTTAATGAAGAGATCGCCATTATTTTGGCATCTTTTTCTGCTTCCAC


AAGTGCTTTTGTGGAAACTGTGAAAGGTTTGGATTATAAAGCATTCAAACAAATT


GTTGAATCCTGTGGTAATTTTAAAGTTACAAAAGGAAAAGCTAAAAAAGGTGCC


TGGAATATTGGTGAACAGAAATCAATACTGAGTCCTCTTTATGCATTTGCATCAG


AGGCTGCTCGTGTTGTACGATCAATTTTCTCCCGCACTCTTGAAACTGCTCAAAA


TTCTGTGCGTGTTTTACAGAAGGCCGCTATAACAATACTAGATGGAATTTCACAG


TATTCACTGAGACTCATTGATGCTATGATGTTCACATCTGATTTGGCTACTAACAA


TCTAGTTGTAATGGCCTACATTACAGGTGGTGTTGTTCAGTTGACTTCGCAGTGG


CTAACTAACATCTTTGGCACTGTTTATGAAAAACTCAAACCCGTCCTTGATTGGC


TTGAAGAGAAGTTTAAGGAAGGTGTAGAGTTTCTTAGAGACGGTTGGGAAATTG


TTAAATTTATCTCAACCTGTGCTTGTGAAATTGTCGGTGGACAAATTGTCACCTGT


GCAAAGGAAATTAAGGAGAGTGTTCAGACATTCTTTAAGCTTGTAAATAAATTTT


TGGCTTTGTGTGCTGACTCTATCATTATTGGTGGAGCTAAACTTAAAGCCTTGAAT


TTAGGTGAAACATTTGTCACGCACTCAAAGGGATTGTACAGAAAGTGTGTTAAAT


CCAGAGAAGAAACTGGCCTACTCATGCCTCTAAAAGCCCCAAAAGAAATTATCT


TCTTAGAGGGAGAAACACTTCCCACAGAAGTGTTAACAGAGGAAGTTGTCTTGA


AAACTGGTGATTTACAACCATTAGAACAACCTACTAGTGAAGCTGTTGAAGCTCC


ATTGGTTGGTACACCAGTTTGTATTAACGGGCTTATGTTGCTCGAAATCAAAGAC


ACAGAAAAGTACTGTGCCCTTGCACCTAATATGATGGTAACAAACAATACCTTCA


CACTCAAAGGCGGTGCACCAACAAAGGTTACTTTTGGTGATGACACTGTGATAG


AAGTGCAAGGTTACAAGAGTGTGAATATCACTTTTGAACTTGATGAAAGGATTG


ATAAAGTACTTAATGAGAAGTGCTCTGCCTATACAGTTGAACTCGGTACAGAAGT


AAATGAGTTCGCCTGTGTTGTGGCAGATGCTGTCATAAAAACTTTGCAACCAGTA


TCTGAATTACTTACACCACTGGGCATTGATTTAGATGAGTGGAGTATGGCTACAT


ACTACTTATTTGATGAGTCTGGTGAGTTTAAATTGGCTTCACATATGTATTGTTCT


TTCTACCCTCCAGATGAGGATGAAGAAGAAGGTGATTGTGAAGAAGAAGAGTTT


GAGCCATCAACTCAATATGAGTATGGTACTGAAGATGATTACCAAGGTAAACCT


TTGGAATTTGGTGCCACTTCTGCTGCTCTTCAACCTGAAGAAGAGCAAGAAGAAG


ATTGGTTAGATGATGATAGTCAACAAACTGTTGGTCAACAAGACGGCAGTGAGG


ACAATCAGACAACTACTATTCAAACAATTGTTGAGGTTCAACCTCAATTAGAGAT


GGAACTTACACCAGTTGTTCAGACTATTGAAGTGAATAGTTTTAGTGGTTATTTA


AAACTTACTGACAATGTATACATTAAAAATGCAGACATTGTGGAAGAAGCTAAA


AAGGTAAAACCAACAGTGGTTGTTAATGCAGCCAATGTTTACCTTAAACATGGA


GGAGGTGTTGCAGGAGCCTTAAATAAGGCTACTAACAATGCCATGCAAGTTGAA


TCTGATGATTACATAGCTACTAATGGACCACTTAAAGTGGGTGGTAGTTGTGTTT


TAAGCGGACACAATCTTGCTAAACACTGTCTTCATGTTGTCGGCCCAAATGTTAA


CAAAGGTGAAGACATTCAACTTCTTAAGAGTGCTTATGAAAATTTTAATCAGCAC


GAAGTTCTACTTGCACCATTATTATCAGCTGGTATTTTTGGTGCTGACCCTATACA


TTCTTTAAGAGTTTGTGTAGATACTGTTCGCACAAATGTCTACTTAGCTGTCTTTG


ATAAAAATCTCTATGACAAACTTGTTTCAAGCTTTTTGGAAATGAAGAGTGAAAA


GCAAGTTGAACAAAAGATCGCTGAGATTCCTAAAGAGGAAGTTAAGCCATTTAT


AACTGAAAGTAAACCTTCAGTTGAACAGAGAAAACAAGATGATAAGAAAATCA


AAGCTTGTGTTGAAGAAGTTACAACAACTCTGGAAGAAACTAAGTTCCTCACAG


AAAACTTGTTACTTTATATTGACATTAATGGCAATCTTCATCCAGATTCTGCCACT


CTTGTTAGTGACATTGACATCACTTTCTTAAAGAAAGATGCTCCATATATAGTGG


GTGATGTTGTTCAAGAGGGTGTTTTAACTGCTGTGGTTATACCTACTAAAAAGGC


TGGTGGCACTACTGAAATGCTAGCGAAAGCTTTGAGAAAAGTGCCAACAGACAA


TTATATAACCACTTACCCGGGTCAGGGTTTAAATGGTTACACTGTAGAGGAGGC


AAAGACAGTGCTTAAAAAGTGTAAAAGTGCCTTTTACATTCTACCATCTATTATC


TCTAATGAGAAGCAAGAAATTCTTGGAACTGTTTCTTGGAATTTGCGAGAAATGC


TTGCACATGCAGAAGAAACACGCAAATTAATGCCTGTCTGTGTGGAAACTAAAG


CCATAGTTTCAACTATACAGCGTAAATATAAGGGTATTAAAATACAAGAGGGTG


TGGTTGATTATGGTGCTAGATTTTACTTTTACACCAGTAAAACAACTGTAGCGTC


ACTTATCAACACACTTAACGATCTAAATGAAACTCTTGTTACAATGCCACTTGGC


TATGTAACACATGGCTTAAATTTGGAAGAAGCTGCTCGGTATATGAGATCTCTCA


AAGTGCCAGCTACAGTTTCTGTTTCTTCACCTGATGCTGTTACAGCGTATAATGGT


TATCTTACTTCTTCTTCTAAAACACCTGAAGAACATTTTATTGAAACCATCTCACT


TGCTGGTTCCTATAAAGATTGGTCCTATTCTGGACAATCTACACAACTAGGTATA


GAATTTCTTAAGAGAGGTGATAAAAGTGTATATTACACTAGTAATCCTACCACAT


TCCACCTAGATGGTGAAGTTATCACCTTTGACAATCTTAAGACACTTCTTTCTTTG


AGAGAAGTGAGGACTATTAAGGTGTTTACAACAGTAGACAACATTAACCTCCAC


ACGCAAGTTGTGGACATGTCAATGACATATGGACAACAGTTTGGTCCAACTTATT


TGGATGGAGCTGATGTTACTAAAATAAAACCTCATAATTCACATGAAGGTAAAA


CATTTTATGTTTTACCTAATGATGACACTCTACGTGTTGAGGCTTTTGAGTACTAC


CACACAACTGATCCTAGTTTTCTGGGTAGGTACATGTCAGCATTAAATCACACTA


AAAAGTGGAAATACCCACAAGTTAATGGTTTAACTTCTATTAAATGGGCAGATA


ACAACTGTTATCTTGCCACTGCATTGTTAACACTCCAACAAATAGAGTTGAAGTT


TAATCCACCTGCTCTACAAGATGCTTATTACAGAGCAAGGGCTGGTGAAGCTGCT


AACTTTTGTGCACTTATCTTAGCCTACTGTAATAAGACAGTAGGTGAGTTAGGTG


ATGTTAGAGAAACAATGAGTTACTTGTTTCAACATGCCAATTTAGATTCTTGCAA


AAGAGTCTTGAACGTGGTGTGTAAAACTTGTGGACAACAGCAGACAACCCTTAA


GGGTGTAGAAGCTGTTATGTACATGGGCACACTTTCTTATGAACAATTTAAGAAA


GGTGTTCAGATACCTTGTACGTGTGGTAAACAAGCTACAAAATATCTAGTACAAC


AGGAGTCACCTTTTGTTATGATGTCAGCACCACCTGCTCAGTATGAACTTAAGCA


TGGTACATTTACTTGTGCTAGTGAGTACACTGGTAATTACCAGTGTGGTCACTAT


AAACATATAACTTCTAAAGAAACTTTGTATTGCATAGACGGTGCTTTACTTACAA


AGTCCTCAGAATACAAAGGTCCTATTACGGATGTTTTCTACAAAGAAAACAGTTA


CACAACAACCATAAAACCAGTTACTTATAAATTGGATGGTGTTGTTTGTACAGAA


ATTGACCCTAAGTTGGACAATTATTATAAGAAAGACAATTCTTATTTCACAGAGC


AACCAATTGATCTTGTACCAAACCAACCATATCCAAACGCAAGCTTCGATAATTT


TAAGTTTGTATGTGATAATATCAAATTTGCTGATGATTTAAACCAGTTAACTGGTT


ATAAGAAACCTGCTTCAAGAGAGCTTAAAGTTACATTTTTCCCTGACTTAAATGG


TGATGTGGTGGCTATTGATTATAAACACTACACACCCTCTTTTAAGAAAGGAGCT


AAATTGTTACATAAACCTATTGTTTGGCATGTTAACAATGCAACTAATAAAGCCA


CGTATAAACCAAATACCTGGTGTATACGTTGTCTTTGGAGCACAAAACCAGTTGA


AACATCAAATTCGTTTGATGTACTGAAGTCAGAGGACGCGCAGGGAATGGATAA


TCTTGCCTGCGAAGATCTAAAACCAGTCTCTGAAGAAGTAGTGGAAAATCCTACC


ATACAGAAAGACGTTCTTGAGTGTAATGTGAAAACTACCGAAGTTGTAGGAGAC


ATTATACTTAAACCAGCAAATAATAGTTTAAAAATTACAGAAGAGGTTGGCCAC


ACAGATCTAATGGCTGCTTATGTAGACAATTCTAGTCTTACTATTAAGAAACCTA


ATGAATTATCTAGAGTATTAGGTTTGAAAACCCTTGCTACTCATGGTTTAGCTGCT


GTTAATAGTGTCCCTTGGGATACTATAGCTAATTATGCTAAGCCTTTTCTTAACAA


AGTTGTTAGTACAACTACTAACATAGTTACACGGTGTTTAAACCGTGTTTGTACT


AATTATATGCCTTATTTCTTTACTTTATTGCTACAATTGTGTACTTTTACTAGAAGT


ACAAATTCTAGAATTAAAGCATCTATGCCGACTACTATAGCAAAGAATACTGTTA


AGAGTGTCGGTAAATTTTGTCTAGAGGCTTCATTTAATTATTTGAAGTCACCTAAT


TTTTCTAAACTGATAAATATTATAATTTGGTTTTTACTATTAAGTGTTTGCCTAGG


TTCTTTAATATACTCAACGGCGGCGTTAGGTGTTTTAATGTCTAATTTAGGCATGC


CGTCTTACTGTACGGGTTACAGAGAAGGCTATTTGAACTCTACGAATGTCACGAT


AGCGACGTACTGTACGGGTTCTATACCGTGTAGTGTTTGTCTTAGTGGTTTAGATT


CTTTAGACACGTATCCGTCTTTAGAAACGATACAAATAACGATATCATCTTTTAA


ATGGGATTTAACGGCGTTTGGCTTAGTTGCGGAGTGGTTTTTGGCGTATATTCTTT


TCACGAGGTTTTTCTATGTACTTGGATTGGCGGCGATAATGCAATTGTTTTTCAGC


TATTTTGCGGTACATTTTATAAGTAATTCTTGGCTTATGTGGTTAATAATAAATCT


TGTACAAATGGCGCCGATATCAGCGATGGTTAGAATGTACATATTCTTTGCGTCA


TTTTATTATGTATGGAAAAGTTATGTGCATGTTGTAGACGGTTGTAATTCATCAAC


GTGTATGATGTGTTACAAACGTAATAGAGCGACGAGAGTCGAATGTACGACGAT


AGTTAATGGTGTTAGAAGGTCCTTTTATGTCTATGCGAATGGAGGTAAAGGCTTT


TGCAAACTACACAATTGGAATTGTGTTAATTGTGATACGTTCTGTGCGGGTAGTA


CGTTTATAAGTGATGAAGTTGCGAGAGACTTGTCACTACAGTTTAAAAGACCGAT


AAATCCGACGGACCAGTCTTCTTACATAGTTGATAGTGTTACGGTGAAGAATGGT


TCCATACATCTTTACTTTGATAAAGCGGGTCAAAAGACGTATGAAAGACATTCTC


TCTCTCATTTTGTTAACTTAGACAACCTGAGAGCGAATAACACGAAAGGTTCATT


GCCGATAAATGTTATAGTTTTTGATGGTAAATCAAAATGTGAAGAATCATCTGCG


AAATCAGCGTCTGTTTACTACAGTCAGCTTATGTGTCAACCGATACTGTTACTAG


ATCAGGCGTTAGTGTCTGATGTTGGTGATAGTGCGGAAGTTGCGGTTAAAATGTT


TGATGCGTACGTTAATACGTTTTCATCAACGTTTAACGTACCGATGGAAAAACTC


AAAACGCTAGTTGCGACGGCGGAAGCGGAACTTGCGAAGAATGTGTCCTTAGAC


AATGTCTTATCTACGTTTATATCAGCGGCGCGGCAAGGGTTTGTTGATTCAGATG


TAGAAACGAAAGATGTTGTTGAATGTCTTAAATTGTCACATCAATCTGACATAGA


AGTTACGGGCGATAGTTGTAATAACTATATGCTCACGTATAACAAAGTTGAAAAC


ATGACGCCGCGTGACCTTGGTGCGTGTATAGACTGTAGTGCGCGTCATATAAATG


CGCAGGTAGCGAAAAGTCACAACATAGCGTTGATATGGAACGTTAAAGATTTCA


TGTCATTGTCTGAACAACTACGAAAACAAATACGTAGTGCGGCGAAAAAGAATA


ACTTACCGTTTAAGTTGACGTGTGCGACGACGAGACAAGTTGTTAATGTTGTAAC


GACGAAGATAGCGCTTAAGGGTGGTAAAATAGTTAATAATTGGTTGAAGCAGTT




AATTAA
AGTTACACTTGTGTTCCTTTTTGTTGCTGCTATTTTCTATTTAATAACAC



CTGTTCATGTCATGTCTAAACATACTGACTTTTCAAGTGAAATCATAGGATACAA


GGCTATTGATGGTGGTGTCACTCGTGACATAGCATCTACAGATACTTGTTTTGCT


AACAAACATGCTGATTTTGACACATGGTTTAGCCAGCGTGGTGGTAGTTATACTA


ATGACAAAGCTTGCCCATTGATTGCTGCAGTCATAACAAGAGAAGTGGGTTTTGT


CGTGCCTGGTTTGCCTGGCACGATATTACGCACAACTAATGGTGACTTTTTGCAT


TTCTTACCTAGAGTTTTTAGTGCAGTTGGTAACATCTGTTACACACCATCAAAACT


TATAGAGTACACTGACTTTGCAACATCAGCTTGTGTTTTGGCTGCTGAATGTACA


ATTTTTAAAGATGCTTCTGGTAAGCCAGTACCATATTGTTATGATACCAATGTACT


AGAAGGTTCTGTTGCTTATGAAAGTTTACGCCCTGACACACGTTATGTGCTCATG


GATGGCTCTATTATTCAATTTCCTAACACCTACCTTGAAGGTTCTGTTAGAGTGGT


AACAACTTTTGATTCTGAGTACTGTAGGCACGGCACTTGTGAAAGATCAGAAGCT


GGTGTTTGTGTATCTACTAGTGGTAGATGGGTACTTAACAATGATTATTACAGAT


CTTTACCAGGAGTTTTCTGTGGTGTAGATGCTGTAAATTTACTTACTAATATGTTT


ACACCACTAATTCAACCTATTGGTGCTTTGGACATATCAGCATCTATAGTAGCTG


GTGGTATTGTAGCTATCGTAGTAACATGCCTTGCCTACTATTTTATGAGGTTTAGA


AGAGCTTTTGGTGAATACAGTCATGTAGTTGCCTTTAATACTTTACTATTCCTTAT


GTCATTCACTGTACTCTGTTTAACACCAGTTTACTCATTCTTACCTGGTGTTTATTC


TGTTATTTACTTGTACTTGACATTTTATCTTACTAATGATGTTTCTTTTTTAGCACA


TATTCAGTGGATGGTTATGTTCACACCTTTAGTACCTTTCTGGATAACAATTGCTT


ATATCATTTGTATTTCCACAAAGCATTTCTATTGGTTCTTTAGTAATTACCTAAAG


AGACGTGTAGTCTTTAATGGTGTTTCCTTTAGTACTTTTGAAGAAGCTGCGCTGTG


CACCTTTTTGTTAAATAAAGAAATGTATCTAAAGTTGCGTAGTGATGTGCTATTA


CCTCTTACGCAATATAATAGATACTTAGCTCTTTATAATAAGTACAAGTATTTTAG


TGGAGCAATGGATACAACTAGCTACAGAGAAGCTGCTTGTTGTCATCTCGCAAA


GGCTCTCAATGACTTCAGTAACTCAGGTTCTGATGTTCTTTACCAACCACCACAA


ACCTCTATCACCTCAGCTGTTTTGCAGAGTGGTTTTAGAAAAATGGCATTCCCAT


CTGGTAAAGTTGAGGGTTGTATGGTACAAGTAACTTGTGGTACAACTACACTTAA


CGGTCTTTGGCTTGATGACGTAGTTTACTGTCCAAGACATGTGATCTGCACCTCT


GAAGACATGCTTAACCCTAATTATGAAGATTTACTCATTCGTAAGTCTAATCATA


ATTTCTTGGTACAGGCTGGTAATGTTCAACTCAGGGTTATTGGACATTCTATGCA


AAATTGTGTACTTAAGCTTAAGGTTGATACAGCCAATCCTAAGACACCTAAGTAT


AAGTTTGTTCGCATTCAACCAGGACAGACTTTTTCAGTGTTAGCTTGTTACAATG


GTTCACCATCTGGTGTTTACCAATGTGCTATGAGGCCCAATTTCACTATTAAGGG


TTCATTCCTTAATGGTTCATGTGGTAGTGTTGGTTTTAACATAGATTATGACTGTG


TCTCTTTTTGTTACATGCACCATATGGAATTACCAACTGGAGTTCATGCTGGCAC


AGACTTAGAAGGTAACTTTTATGGACCTTTTGTTGACAGGCAAACAGCACAAGC


AGCTGGTACGGACACAACTATTACAGTTAATGTTTTAGCTTGGTTGTACGCTGCT


GTTATAAATGGAGACAGGTGGTTTCTCAATCGATTTACCACAACTCTTAATGACT


TTAACCTTGTGGCTATGAAGTACAATTATGAACCTCTAACACAAGACCATGTTGA


CATACTAGGACCTCTTTCTGCTCAAACTGGAATTGCCGTTTTAGATATGTGTGCTT


CATTAAAAGAATTACTGCAAAATGGTATGAATGGACGTACCATATTGGGTAGTG


CTTTATTAGAAGATGAATTTACACCTTTTGATGTTGTTAGACAATGCTCAGGTGTT


ACTTTCCAAAGTGCAGTGAAAAGAACAATCAAGGGTACACACCACTGGTTGTTA


CTCACAATTTTGACTTCACTTTTAGTTTTAGTCCAGAGTACTCAATGGTCTTTGTT


CTTTTTTTTGTATGAAAATGCCTTTTTACCTTTTGCTATGGGTATTATTGCTATGTC


TGCTTTTGCAATGATGTTTGTCAAACATAAGCATGCATTTCTCTGTTTGTTTTTGTT


ACCTTCTCTTGCCACTGTAGCTTATTTTAATATGGTCTATATGCCTGCTAGTTGGG


TGATGCGTATTATGACATGGTTGGATATGGTTGATACTAGTTTGTCTGGTTTTAAG


CTAAAAGACTGTGTTATGTATGCATCAGCTGTAGTGTTACTAATCCTTATGACAG


CAAGAACTGTGTATGATGATGGTGCTAGGAGAGTGTGGACACTTATGAATGTCTT


GACACTCGTTTATAAAGTTTATTATGGTAATGCTTTAGATCAAGCCATTTCCATGT


GGGCTCTTATAATCTCTGTTACTTCTAACTACTCAGGTGTAGTTACAACTGTCATG


TTTTTGGCCAGAGGTATTGTTTTTATGTGTGTTGAGTATTGCCCTATTTTCTTCATA


ACTGGTAATACACTTCAGTGTATAATGCTAGTTTATTGTTTCTTAGGCTATTTTTG


TACTTGTTACTTTGGCCTCTTTTGTTTACTCAACCGCTACTTTAGACTGACTCTTGG


TGTTTATGATTACTTAGTTTCTACACAGGAGTTTAGATATATGAATTCACAGGGA


CTACTCCCACCCAAGAATAGCATAGATGCCTTCAAACTCAACATTAAATTGTTGG


GTGTTGGTGGCAAACCTTGTATCAAAGTAGCCACTGTACAGTCTAAAATGTCAGA


TGTAAAGTGCACATCAGTAGTCTTACTCTCAGTTTTGCAACAACTCAGAGTAGAA


TCATCATCTAAATTGTGGGCTCAATGTGTCCAGTTACACAATGACATTCTCTTAG


CTAAAGATACTACTGAAGCCTTTGAAAAAATGGTTTCACTACTTTCTGTTTTGCTT


TCCATGCAGGGTGCTGTAGACATAAACAAGCTTTGTGAAGAAATGCTGGACAAC


AGGGCAACCTTACAAGCTATAGCCTCAGAGTTTAGTTCCCTTCCATCATATGCAG


CTTTTGCTACTGCTCAAGAAGCTTATGAGCAGGCTGTTGCTAATGGTGATTCTGA


AGTTGTTCTTAAAAAGTTGAAGAAGTCTTTGAATGTGGCTAAATCTGAATTTGAC


CGTGATGCAGCCATGCAACGTAAGTTGGAAAAGATGGCTGATCAAGCTATGACC


CAAATGTATAAACAGGCTAGATCTGAGGACAAGAGGGCAAAAGTTACTAGTGCT


ATGCAGACAATGCTTTTCACTATGCTTAGAAAGTTGGATAATGATGCACTCAACA


ACATTATCAACAATGCAAGAGATGGTTGTGTTCCCTTGAACATAATACCTCTTAC


AACAGCAGCCAAACTAATGGTTGTCATACCAGACTATAACACATATAAAAATAC


GTGTGATGGTACAACATTTACTTATGCATCAGCATTGTGGGAAATCCAACAGGTT


GTAGATGCAGATAGTAAAATTGTTCAACTTAGTGAAATTAGTATGGACAATTCAC


CTAATTTAGCATGGCCTCTTATTGTAACAGCTTTAAGGGCCAATTCTGCTGTCAA


ATTACAGAATAATGAGCTTAGTCCTGTTGCACTACGACAGATGTCTTGTGCTGCC


GGTACTACACAAACTGCTTGCACTGATGACAATGCGTTAGCTTACTACAACACAA


CAAAGGGAGGTAGGTTTGTACTTGCACTGTTATCCGATTTACAGGATTTGAAATG


GGCTAGATTCCCTAAGAGTGATGGAACTGGTACTATCTATACAGAACTGGAACC


ACCTTGTAGGTTTGTTACAGACACACCTAAAGGTCCTAAAGTGAAGTATTTATAC


TTTATTAAAGGATTAAACAACCTAAATAGAGGTATGGTACTTGGTAGTTTAGCTG


CCACAGTACGTCTACAAGCTGGTAATGCAACAGAAGTGCCTGCCAATTCAACTGT


ATTATCTTTCTGTGCTTTTGCTGTAGATGCTGCTAAAGCTTACAAAGATTATCTAG


CTAGTGGGGGACAACCAATCACTAATTGTGTTAAGATGTTGTGTACACACACTGG


TACTGGTCAGGCAATAACAGTTACACCGGAAGCCAATATGGATCAAGAATCCTT


TGGTGGTGCATCGTGTTGTCTGTACTGCCGTTGCCACATAGATCATCCAAATCCT


AAAGGATTTTGTGACTTAAAAGGTAAGTATGTACAAATACCTACAACTTGTGCTA


ATGACCCTGTGGGTTTTACACTTAAAAACACAGTCTGTACCGTCTGCGGTATGTG


GAAAGGTTATGGCTGTAGTTGTGATCAACTCCGCGAACCCATGCTTCAGTCAGCT


GATGCACAATCGTTTTTAAACGGGTTTGCGGTGTAAGTGCAGCCCGTCTTACACC


GTGCGGCACAGGCACTAGTACTGATGTCGTATACAGGGCTTTTGACATCTACAAT


GATAAAGTAGCTGGTTTTGCTAAATTCCTAAAAACTAATTGTTGTCGCTTCCAAG


AAAAGGACGAAGATGACAATTTAATTGATTCTTACTTTGTAGTTAAGAGACACAC


TTTCTCTAACTACCAACATGAAGAAACAATTTATAATTTACTTAAGGATTGTCCA


GCTGTTGCTAAACATGACTTCTTTAAGTTTAGAATAGACGGTGACATGGTACCAC


ATATATCACGTCAACGTCTTACTAAATACACAATGGCAGACCTCGTCTATGCTTT


AAGGCATTTTGATGAAGGTAATTGTGACACATTAAAAGAAATACTTGTCACATAC


AATTGTTGTGATGATGATTATTTCAATAAAAAGGACTGGTATGATTTTGTAGAAA


ACCCAGATATATTACGCGTATACGCCAACTTAGGTGAACGTGTACGCCAAGCTT


TGTTAAAAACAGTACAATTCTGTGATGCCATGCGAAATGCTGGTATTGTTGGTGT


ACTGACATTAGATAATCAAGATCTCAATGGTAACTGGTATGATTTCGGTGATTTC


ATACAAACCACGCCAGGTAGTGGAGTTCCTGTTGTAGATTCTTATTATTCATTGTT


AATGCCTATATTAACCTTGACCAGGGCTTTAACTGCAGAGTCACATGTTGACACT


GACTTAACAAAGCCTTACATTAAGTGGGATTTGTTAAAATATGACTTCACGGAAG


AGAGGTTAAAACTCTTTGACCGTTATTTTAAATATTGGGATCAGACATACCACCC


AAATTGTGTTAACTGTTTGGATGACAGATGCATTCTGCATTGTGCAAACTTTAAT


GTTTTATTCTCTACAGTGTTCCCACCTACAAGTTTTGGACCACTAGTGAGAAAAA


TATTTGTTGATGGTGTTCCATTTGTAGTTTCAACTGGATACCACTTCAGAGAGCTA


GGTGTTGTACATAATCAGGATGTAAACTTACATAGCTCTAGACTTAGTTTTAAGG


AATTACTTGTGTATGCTGCTGACCCTGCTATGCACGCTGCTTCTGGTAATCTATTA


CTAGATAAACGCACTACGTGCTTTTCAGTAGCTGCACTTACTAACAATGTTGCTT


TTCAAACTGTCAAACCCGGTAATTTTAACAAAGACTTCTATGACTTTGCTGTGTCT


AAGGGTTTCTTTAAGGAAGGAAGTTCTGTTGAATTAAAACACTTCTTCTTTGCTC


AGGATGGTAATGCTGCTATCAGCGATTATGACTACTATCGTTATAATCTACCAAC


AATGTGTGATATCAGACAACTACTATTTGTAGTTGAAGTTGTTGATAAGTACTTT


GATTGTTACGATGGTGGCTGTATTAATGCTAACCAAGTCATCGTCAACAACCTAG


ACAAATCAGCTGGTTTTCCATTTAATAAATGGGGTAAGGCTAGACTTTATTATGA


TTCAATGAGTTATGAGGATCAAGATGCACTTTTCGCATATACAAAACGTAATGTC


ATCCCTACTATAACTCAAATGAATCTTAAGTATGCCATTAGTGCAAAGAATAGAG


CTCGCACCGTAGCTGGTGTCTCTATCTGTAGTACTATGACCAATAGACAGTTTCA


TCAAAAATTATTGAAATCAATAGCCGCCACTAGAGGAGCTACTGTAGTAATTGG


AACAAGCAAATTCTATGGTGGTTGGCACAACATGTTAAAAACTGTTTATAGTGAT


GTAGAAAACCCTCACCTTATGGGTTGGGATTATCCTAAATGTGATAGAGCCATGC


CTAACATGCTTAGAATTATGGCCTCACTTGTTCTTGCTCGCAAACATACAACGTG


TTGTAGCTTGTCACACCGTTTCTATAGATTAGCTAATGAGTGTGCTCAAGTATTGA


GTGAAATGGTCATGTGTGGCGGTTCACTATATGTTAAACCAGGTGGAACCTCATC


AGGAGATGCCACAACTGCTTATGCTAATAGTGTTTTTAACATTTGTCAAGCTGTC


ACGGCCAATGTTAATGCACTTTTATCTACTGATGGTAACAAAATTGCCGATAAGT


ATGTCCGCAATTTACAACACAGACTTTATGAGTGTCTCTATAGAAATAGAGATGT


TGACACAGACTTTGTGAATGAGTTTTACGCATATTTGCGTAAACATTTCTCAATG


ATGATACTCTCTGACGATGCTGTTGTGTGTTTCAATAGCACTTATGCATCTCAAGG


TCTAGTGGCTAGCATAAAGAACTTTAAGTCAGTTCTTTATTATCAAAACAATGTT


TTTATGTCTGAAGCAAAATGTTGGACTGAGACTGACCTTACTAAAGGACCTCATG


AATTTTGCTCTCAACATACAATGCTAGTTAAACAGGGTGATGATTATGTGTACCT


TCCTTACCCAGATCCATCAAGAATCCTAGGGGCCGGCTGTTTTGTAGATGATATC


GTAAAAACAGATGGTACACTTATGATTGAACGGTTCGTGTCTTTAGCTATAGATG


CTTACCCACTTACTAAACATCCTAATCAGGAGTATGCTGATGTCTTTCATTTGTAC


TTACAATACATAAGAAAGCTACATGATGAGTTAACAGGACACATGTTAGACATG


TATTCTGTTATGCTTACTAATGATAACACTTCAAGGTATTGGGAACCTGAGTTTTA


TGAGGCTATGTACACACCGCATACAGTCTTACAGGCTGTTGGGGCTTGTGTTCTT


TGCAATTCACAGACTTCATTAAGATGTGGTGCTTGCATACGTAGACCATTCTTAT


GTTGTAAATGCTGTTACGACCATGTCATATCAACATCACATAAATTAGTCTTGTCT


GTTAATCCGTATGTTTGCAATGCTCCAGGTTGTGATGTCACAGATGTGACTCAAC


TTTACTTAGGAGGTATGAGCTATTATTGTAAATCACATAAACCACCCATTAGTTTT


CCATTGTGTGCTAATGGACAAGTTTTTGGTTTATATAAAAATACATGTGTTGGTA


GCGATAATGTTACTGACTTTAATGCAATTGCAACATGTGACTGGACAAATGCTGG


TGATTACATTTTAGCTAACACCTGTACTGAAAGACTCAAGCTTTTTGCAGCAGAA


ACGCTCAAAGCTACTGAGGAGACATTTAAACTGTCTTATGGTATTGCTACTGTAC


GTGAAGTGCTGTCTGACAGAGAATTACATCTTTCATGGGAAGTTGGTAAACCTAG


ACCACCACTTAACCGAAATTATGTCTTTACTGGTTATCGTGTAACTAAAAACAGT


AAAGTACAAATAGGAGAGTACACCTTTGAAAAAGGTGACTATGGTGATGCTGTT


GTTTACCGAGGTACAACAACTTACAAATTAAATGTTGGTGATTATTTTGTGCTGA


CATCACATACAGTAATGCCATTAAGTGCACCTACACTAGTGCCACAAGAGCACT


ATGTTAGAATTACTGGCTTATACCCAACACTCAATATCTCAGATGAGTTTTCTAG


CAATGTTGCAAATTATCAAAAGGTTGGTATGCAAAAGTATTCTACACTCCAGGGA


CCACCTGGTACTGGTAAGAGTCATTTTGCTATTGGCCTAGCTCTCTACTACCCTTC


TGCTCGCATAGTGTATACAGCTTGCTCTCATGCCGCTGTTGATGCACTATGTGAG


AAGGCATTAAAATATTTGCCTATAGATAAATGTAGTAGAATTATACCTGCACGTG


CTCGTGTAGAGTGTTTTGATAAATTCAAAGTGAATTCAACATTAGAACAGTATGT


CTTTTGTACTGTAAATGCATTGCCTGAGACGACAGCAGATATAGTTGTCTTTGAT


GAAATTTCAATGGCCACAAATTATGATTTGAGTGTTGTCAATGCCAGATTACGTG


CTAAGCACTATGTGTACATTGGCGACCCTGCTCAATTACCTGCACCACGCACATT


GCTAACTAAGGGCACACTAGAACCAGAATATTTCAATTCAGTGTGTAGACTTATG


AAAACTATAGGTCCAGACATGTTCCTCGGAACTTGTCGGCGTTGTCCTGCTGAAA


TTGTTGACACTGTGAGTGCTTTGGTTTATGATAATAAGCTTAAAGCACATAAAGA


CAAATCAGCTCAATGCTTTAAAATGTTTTATAAGGGTGTTATCACGCATGATGTT


TCATCTGCAATTAACAGGCCACAAATAGGCGTGGTAAGAGAATTCCTTACACGT


AACCCTGCTTGGAGAAAAGCTGTCTTTATTTCACCTTATAATTCACAGAATGCTG


TAGCCTCAAAGATTTTGGGACTACCAACTCAAACTGTTGATTCATCACAGGGCTC


AGAATATGACTATGTCATATTCACTCAAACCACTGAAACAGCTCACTCTTGTAAT


GTAAACAGATTTAATGTTGCTATTACCAGAGCAAAAGTAGGCATACTTTGCATAA


TGTCTGATAGAGACCTTTATGACAAGTTGCAATTTACAAGTCTTGAAATTCCACG


TAGGAATGTGGCAACTTTACAAGCTGAAAATGTAACAGGACTCTTTAAAGATTGT


AGTAAGGTAATCACTGGGTTACATCCTACACAGGCACCTACACACCTCAGTGTTG


ACACTAAATTCAAAACTGAAGGTTTATGTGTTGACATACCTGGCATACCTAAGG


ACATGACCTATAGAAGACTCATCTCTATGATGGGTTTTAAAATGAATTATCAAGT


TAATGGTTACCCTAACATGTTTATCACCCGCGAAGAAGCTATAAGACATGTACGT


GCATGGATTGGCTTCGATGTCGAGGGGTGTCATGCTACTAGAGAAGCTGTTGGTA


CCAATTTACCTTTACAGCTAGGTTTTTCTACAGGTGTTAACCTAGTTGCTGTACCT


ACAGGTTATGTTGATACACCTAATAATACAGATTTTTCCAGAGTTAGTGCTAAAC


CACCGCCTGGAGATCAATTTAAACACCTCATACCACTTATGTACAAAGGACTTCC


TTGGAATGTAGTGCGTATAAAGATTGTACAAATGTTAAGTGACACACTTAAAAAT


CTCTCTGACAGAGTCGTATTTGTCTTATGGGCACATGGCTTTGAGTTGACATCTAT


GAAGTATTTTGTGAAAATAGGACCTGAGCGCACCTGTTGTCTATGTGATAGACGT


GCCACATGCTTTTCCACTGCTTCAGACACTTATGCCTGTTGGCATCATTCTATTGG


ATTTGATTACGTCTATAATCCGTTTATGATTGATGTTCAACAATGGGGTTTTACAG


GTAACCTACAAAGCAACCATGATCTGTATTGTCAAGTCCATGGTAATGCACATGT


AGCTAGTTGTGATGCAATCATGACTAGGTGTCTAGCTGTCCACGAGTGCTTTGTT


AAGCGTGTTGACTGGACTATTGAATATCCTATAATTGGTGATGAACTGAAGATTA


ATGCGGCTTGTAGAAAGGTTCAACACATGGTTGTTAAAGCTGCATTATTAGCAGA


CAAATTCCCAGTTCTTCACGACATTGGTAACCCTAAAGCTATTAAGTGTGTACCT


CAAGCTGATGTAGAATGGAAGTTCTATGATGCACAGCCTTGTAGTGACAAAGCTT


ATAAAATAGAAGAATTATTCTATTCTTATGCCACACATTCTGACAAATTCACAGA


TGGTGTATGCCTATTTTGGAATTGCAATGTCGATAGATATCCTGCTAATTCCATTG


TTTGTAGATTTGACACTAGAGTGCTATCTAACCTTAACTTGCCTGGTTGTGATGGT


GGCAGTTTGTATGTAAATAAACATGCATTCCACACACCAGCTTTTGATAAAAGTG


CTTTTGTTAATTTAAAACAATTACCATTTTTCTATTACTCTGACAGTCCATGTGAG


TCTCATGGAAAACAAGTAGTGTCAGATATAGATTATGTACCACTAAAGTCTGCTA


CGTGTATAACACGTTGCAATTTAGGTGGTGCTGTCTGTAGACATCATGCTAATGA


GTACAGATTGTATCTCGATGCTTATAACATGATGATCTCAGCTGGCTTTAGCTTGT


GGGTTTACAAACAATTTGATACTTATAACCTCTGGAACACTTTTACAAGACTTCA


GAGTTTAGAAAATGTGGCTTTTAATGTTGTAAATAAGGGACACTTTGATGGACAA


CAGGGTGAAGTACCAGTTTCTATCATTAATAACACTGTTTACACAAAAGTTGATG


GTGTTGATGTAGAATTGTTTGAAAATAAAACAACATTACCTGTTAATGTAGCATT


TGAGCTTTGGGCTAAGCGCAACATTAAACCAGTACCAGAGGTGAAAATACTCAA


TAATTTGGGTGTGGACATTGCTGCTAATACTGTGATCTGGGACTACAAAAGAGAT


GCTCCAGCACATATATCTACTATTGGTGTTTGTTCTATGACTGACATAGCCAAGA


AACCAACTGAAACGATTTGTGCACCACTCACTGTCTTTTTTGATGGTAGAGTTGA


TGGTCAAGTAGACTTATTTAGAAATGCCCGTAATGGTGTTCTTATTACAGAAGGT


AGTGTTAAAGGTTTACAACCATCTGTAGGTCCCAAACAAGCTAGTCTTAATGGAG


TCACATTAATTGGAGAAGCCGTAAAAACACAGTTCAATTATTATAAGAAAGTTG


ATGGTGTTGTCCAACAATTACCTGAAACTTACTTTACTCAGAGTAGAAATTTACA


AGAATTTAAACCCAGGAGTCAAATGGAAATTGATTTCTTAGAATTAGCTATGGAT


GAATTCATTGAACGGTATAAATTAGAAGGCTATGCCTTCGAACATATCGTTTATG


GAGATTTTAGTCATAGTCAGTTAGGTGGTTTACATCTACTGATTGGACTAGCTAA


ACGTTTTAAGGAATCACCTTTTGAATTAGAAGATTTTATTCCTATGGACAGTACA


GTTAAAAACTATTTCATAACAGATGCGCAAACAGGTTCATCTAAGTGTGTGTGTT


CTGTTATTGATTTATTACTTGATGATTTTGTTGAAATAATAAAATCCCAAGATTTA


TCTGTAGTTTCTAAGGTTGTCAAAGTGACTATTGACTATACAGAAATTTCATTTAT


GCTTTGGTGTAAAGATGGCCATGTAGAAACATTTTACCCAAAATTACAATCTAGT


CAAGCGTGGCAACCGGGTGTTGCTATGCCTAATCTTTACAAAATGCAAAGAATG


CTATTAGAAAAGTGTGACCTTCAAAATTATGGTGATAGTGCAACATTACCTAAAG


GCATAATGATGAATGTCGCAAAATATACTCAACTGTGTCAATATTTAAACACATT


AACATTAGCTGTACCCTATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGAT


AAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGTGGTTGCCTACGGGTACG


CTGCTTGTCGATTCAGATCTTAATGACTTTGTCTCTGATGCAGATTCAACTTTGAT


TGGTGATTGTGCAACTGTACATACAGCTAATAAATGGGATCTCATTATTAGTGAT


ATGTACGACCCTAAGACTAAAAATGTTACAAAAGAAAATGACTCTAAAGAGGGT


TTTTTCACTTACATTTGTGGGTTTATACAACAAAAGCTAGCTCTTGGAGGTTCCGT


GGCTATAAAGATAACAGAACATTCTTGGAATGCTGATCTTTATAAGCTCATGGGA


CACTTCGCATGGTGGACAGCCTTTGTTACTAATGTGAATGCGTCATCATCTGAAG


CATTTTTAATTGGATGTAATTATCTTGGCAAACCACGCGAACAAATAGATGGTTA


TGTCATGCATGCAAATTACATATTTTGGAGGAATACAAATCCAATTCAGTTGTCT


TCCTATTCTTTATTTGACATGAGTAAATTTCCCCTTAAATTAAGGGGTACTGCTGT


TATGTCTTTAAAAGAAGGTCAAATCAATGATATGATTTTATCTCTTCTTAGTAAA


GGTAGACTTATAATTAGAGAAAACAACAGAGTTGTTATTTCTAGTGATGTTCTTG


TTAACAACTAAACGAACAATGTTTGTTTTTCTTGTTTTATTGCCACTAGTCTCTAG


TCAGTGTGTTAATCTTACAACCAGAACTCAATTACCCCCTGCATACACTAATTCTT


TCACACGTGGTGTTTATTACCCTGACAAAGTTTTCAGATCCTCAGTTTTACATTCA


ACTCAGGACTTGTTCTTACCTTTCTTTTCCAATGTTACTTGGTTCCATGCTATACAT


GTCTCTGGGACCAATGGTACTAAGAGGTTTGATAACCCTGTCCTACCATTTAATG


ATGGTGTTTATTTTGCTTCCAtTGAGAAGTCTAACATAATAAGAGGCTGGATTTTT


GGTACTACTTTAGAcTCGAAGACCCAGTCCCTACTTATTGTTAATAACGCTACTAA


TGTTGTTATTAAAGTCTGTGAATTTCAATTTTGTAATGATCCATTTTTGGaTGTTTA


TTACCACAAAAACAACAAAAGTTGGATGaAAAGTGAGTTCAGAGTTTATTCTAGT


GCGAATAATTGCACTTTTGAATATGTCTCTCAGCCTTTTCTTATGGACCTTGAAGG


AAAACAGGGTAATTTCAAAAATCTTAGGGAATTTGTGTTTAAGAATATTGATGGT


TATTTTAAAATATATTCTAAGCACACGCCTATTAATTTAGTGCGTGATCTCCCtCA


GGGTTTTTCGGCTTTAGAACCATTGGTAGATTTGCCAATAGGTATTAACATCACT


AGGTTTCAAACTTTACTTGCTTTACATAGAAGTTATTTGACTCCTGGTGATTCTTC


TTCAGGTTGGACAGCTGGTGCTGCAGCTTATTATGTGGGTTATCTTCAACCTAGG


ACTTTTCTATTAAAATATAATGAAAATGGAACCATTACAGATGCTGTAGACTGTG


CACTTGACCCTCTCTCAGAAACAAAGTGTACGTTGAAATCCTTCACTGTAGAAAA


AGGAATCTATCAAACTTCTAACTTTAGAGTCCAACCAACAGAATCTATTGTTAGA


TTTCCTAATATTACAAACTTGTGCCCTTTTGGTGAAGTTTTTAACGCCACCAGATT


TGCATCTGTTTATGCTTGGAACAGGAAGAGAATCAGCAACTGTGTTGCTGATTAT


TCTGTCCTATATAATTCCGCATCATTTTCCACTTTTAAGTGTTATGGAGTGTCTCC


TACTAAATTAAATGATCTCTGCTTTACTAATGTCTATGCAGATTCATTTGTAATTA


GAGGTGATGAAGTCAGACAAATCGCTCCAGGGCAAACTGGAAAGATTGCTGATT


ATAATTATAAATTACCAGATGATTTTACAGGCTGCGTTATAGCTTGGAATTCTAA


CAATCTTGATTCTAAGGTTGGTGGTAATTATAATTACCgGTATAGATTGTTTAGGA


AGTCTAATCTCAAACCTTTTGAGAGAGATATTTCAACTGAAATCTATCAGGCCGG


TAGCACACCTTGTAATGGTGTTcAAGGTTTTAATTGTTACTTTCCTTTACAATCAT


ATGGTTTCCAACCCACTAATGGTGTTGGTTACCAACCATACAGAGTAGTAGTACT


TTCTTTTGAACTTCTACATGCACCAGCAACTGTTTGTGGACCTAAAAAGTCTACT


AATTTGGTTAAAAACAAATGTGTCAATTTCAACTTCAATGGTTTAACAGGCACAG


GTGTTCTTACTGAGTCTAACAAAAAGTTTCTGCCTTTCCAACAATTTGGCAGAGA


CATTGCTGACACTACTGATGCTGTCCGTGATCCACAGACACTTGAGATTCTTGAC


ATTACACCATGTTCTTTTGGTGGTGTCAGTGTTATAACACCAGGAACAAATACTT


CTAACCAGGTTGCTGTTCTTTATCAGGgTGTTAACTGCACAGAAGTCCCTGTTGCT


ATTCATGCAGATCAACTTACTCCTACTTGGCGTGTTTATTCTACAGGTTCTAATGT


TTTTCAAACACGTGCAGGCTGTTTAATAGGGGCTGAACATGTCAACAACTCATAT


GAGTGTGACATACCCATTGGTGCAGGTATATGCGCTAGTTATCAGACTCAGACTA


ATTCTCgTCGGCGGGCACGTAGTGTAGCTAGTCAATCCATCATTGCCTACACTAT


GTCACTTGGTGCAGAAAATTCAGTTGCTTACTCTAATAACTCTATTGCCATACCC


ACAAATTTTACTATTAGTGTTACCACAGAAATTCTACCAGTGTCTATGACCAAGA


CATCAGTAGATTGTACAATGTACATTTGTGGTGATTCAACTGAATGCAGCAATCT


TTTGTTGCAATATGGCAGTTTTTGTACACAATTAAACCGTGCTTTAACTGGAATA


GCTGTTGAACAAGACAAAAACACCCAAGAAGTTTTTGCACAAGTCAAACAAATT


TACAAAACACCACCAATTAAAGATTTTGGTGGTTTTAATTTTTCACAAATATTAC


CAGATCCATCAAAACCAAGCAAGAGGTCATTTATTGAAGATCTACTTTTCAACAA


AGTGACACTTGCAGATGCTGGCTTCATCAAACAATATGGTGATTGCCTTGGTGAT


ATTGCTGCTAGAGACCTCATTTGTGCACAAAAGTTTAACGGCCTTACTGTTTTGC


CACCTTTGCTCACAGATGAAATGATTGCTCAATACACTTCTGCACTGTTAGCGGG


TACAATCACTTCTGGTTGGACCTTTGGTGCAGGTGCTGCATTACAAATACCATTT


GCTATGCAAATGGCTTATAGGTTTAATGGTATTGGAGTTACACAGAATGTTCTCT


ATGAGAACCAAAAATTGATTGCCAACCAATTTAATAGTGCTATTGGCAAAATTCA


AGACTCACTTTCTTCCACAGCAAGTGCACTTGGAAAACTTCAAGATGTGGTCAAC


CAAAATGCACAAGCTTTAAACACGCTTGTTAAACAACTTAGCTCCAATTTTGGTG


CAATTTCAAGTGTTTTAAATGATATCCTTTCACGTCTTGACAAAGTTGAGGCTGA


AGTGCAAATTGATAGGTTGATCACAGGCAGACTTCAAAGTTTGCAGACATATGTG


ACTCAACAATTAATTAGAGCTGCAGAAATCAGAGCTTCTGCTAATCTTGCTGCTA


CTAAAATGTCAGAGTGTGTACTTGGACAATCAAAAAGAGTTGATTTTTGTGGAAA


GGGCTATCATCTTATGTCCTTCCCTCAGTCAGCACCTCATGGTGTAGTCTTCTTGC


ATGTGACTTATGTCCCTGCACAAGAAAAGAACTTCACAACTGCTCCTGCCATTT


GTCATGATGGAAAAGCACACTTTCCTCGTGAAGGTGTCTTTGTTTCAAATGGCAC


ACACTGGTTTGTAACACAAAGGAATTTTTATGAACCACAAATCATTACTACAGAC


AACACATTTGTGTCTGGTAACTGTGATGTTGTAATAGGAATTGTCAACAACACAG


TTTATGATCCTTTGCAACCTGAATTAGACTCATTCAAGGAGGAGTTAGATAAATA


TTTTAAGAATCATACATCACCAGATGTTGATTTAGGTGACATCTCTGGCATTAAT


GCTTCAGTTGTAAACATTCAAAAAGAAATTGACCGCCTCAATGAGGTTGCCAAG


AATTTAAATGAATCTCTCATCGATCTCCAAGAACTTGGAAAGTATGAGCAGTATA


TAAAATGGCCATGGTACATTTGGCTAGGTTTTATAGCTGGCTTGATTGCCATAGT


AATGGTGACAATTATGCTTTGCTGTATGACCAGTTGCTGTAGTTGTCTCAAGGGC


TGTTGTTCTTGTGGATCCTGCTGCAAATTTGATGAAGACGACTCTGAGCCAGTGC


TCAAAGGAGTCAAATTACATTACACATAAACGAACTTATGGATTTGTTTATGAGA


ATCTTCACAATTGGAACTGTAACTTTGAAGCAAGGTGAAATCAAGGATGCTACTC


CTTCAGATTTTGTTCGCGCTACTGCAACGATACCGATACAAGCCTCACTCCCTTTC


GGATGGCTTATTGTTGGCGTTGCACTTCTTGCTGTTTTTCAGAGCGCTTCCAAAAT


CATAACCCTCAAAAAGAGATGGCAACTAGCACTCTCCAAGGGTGTTCACTTTGTT


TGCAACTTGCTGTTGTTGTTTGTAACAGTTTACTCACACCTTTTGCTCGTTGCTGC


TGGCCTTGAAGCCCCTTTTCTCTATCTTTATGCTTTAGTCTACTTCTTGCAGAGTAT


AAACTTTGTAAGAATAATAATGAGGCTTTGGCTTTGCTGGAAATGCCGTTCCAAA


AACCCATTACTTTATGATGCCAACTATTTTCTTTGCTGGCATACTAATTGTTACGA


CTATTGTATACCTTACAATAGTGTAACTTCTTCAATTGTCATTACTTCAGGTGATG


GCACAACAAGTCCTATTTCTGAACATGACTACCAGATTGGTGGTTATACTGAAAA


ATGGGAATCTGGAGTAAAAGACTGTGTTGTATTACACAGTTACTTCACTTCAGAC


TATTACCAGCTGTACTCAACTCAATTGAGTACAGACACTGGTGTTGAACATGTTA


CCTTCTTCATCTACAATAAAATTGTTGATGAGCCTGAAGAACATGTCCAAATTCA


CACAATCGACGGTTCATCCGGAGTTGTTAATCCAGTAATGGAACCAATTTATGAT


GAACCGACGACGACTACTAGCGTGCCTTTGTAAGCACAAGCTGATGAGTACGAA


CTTATGTACTCATTCGTTTCGGAAGAGACAGGTACGTTAATAGTTAATAGCGTAC


TTCTTTTTCTTGCTTTCGTGGTATTCTTGCTAGTTACACTAGCCATCCTTACTGCGC


TTCGATTGTGTGCGTACTGCTGCAATATTGTTAACGTGAGTCTTGTAAAACCTTCT


TTTTACGTTTACTCTCGTGTTAAAAATCTGAATTCTTCTAGAGTTCCTGATCTTCT


GGTCTAAACGAACTAAATATTATATTAGTTTTTCTGTTTGGAACTTTAATTTTAGC


CATGGCAGATTCCAACGGTACTATTACCGTTGAAGAGCTTAAAAAGCTCCTTGAA


CAATGGAACCTAGTAATAGGTTTCCTATTCCTTACATGGATTTGTCTTCTACAATT


TGCCTATGCCAACAGGAATAGGTTTTTGTATATAATTAAGTTAATTTTCCTCTGGC


TGTTATGGCCAGTAACTTTAGCTTGTTTTGTGCTTGCTGCTGTTTACAGAATAAAT


TGGATCACCGGTGGAATTGCTATCGCAATGGCTTGTCTTGTAGGCTTGATGTGGC


TCAGCTACTTCATTGCTTCTTTCAGACTGTTTGCGCGTACGCGATCCATGTGGTCA


TTCAATCCAGAAACTAACATTCTTCTCAACGTGCCACTCCATGGCACTATTCTGA


CCAGACCGCTTCTAGAAAGTGAACTCGTAATCGGAGCTGTGATCCTTCGTGGACA


TCTTCGTATTGCTGGACACCATCTAGGACGCTGTGACATCAAGGACCTGCCTAAA


GAAATCACTGTTGCTACATCACGAACGCTTTCTTATTACAAATTGGGAGCTTCGC


AGCGTGTAGCAGGTGACTCAGGTTTTGCTGCATACAGTCGCTACAGGATTGGCAA


CTATAAATTAAACACAGACCATTCCAGTAGCAGTGACAATATTGCTTTGCTTGTA


CAGTAAGTGACAACAGATGTTTCATCTCGTTGACTTTCAGGTTACTATAGCAGAG


ATATTACTAATTATTATGAGGACTTTTAAAGTTTCCATTTGGAATCTTGATTACAT


CATAAACCTCATAATTAAAAATTTATCTAAGTCACTAACTGAGAATAAATATTCT


CAATTAGATGAAGAGCAACCAATGGAGATTGATTAAACGAACATGAAAATTATT


CTTTTCTTGGCACTGATAACACTCGCTACTTGTGAGCTTTATCACTACCAAGAGTG


TGTTAGAGGTACAACAGTACTTTTAAAAGAACCTTGCTCTTCTGGAACATACGAG


GGCAATTCACCATTTCATCCTCTAGCTGATAACAAATTTGCACTGACTTGCTTTAG


CACTCAATTTGCTTTTGCTTGTCCTGACGGCGTAAAACACGTCTATCAGTTACGTG


CCAGATCAGTTTCACCTAAACTGTTCATCAGACAAGAGGAAGTTCAAGAACTTTA


CTCTCCAATTTTTCTTATTGTTGCGGCAATAGTGTTTATAACACTTTGCTTCACAC


TCAAAAGAAAGACAGAATGATTGAACTTTCATTAATTGACTTCTATTTGTGCTTTT


TAGCCTTTCTGCTATTCCTTGTTTTAATTATGCTTATTATCTTTTGGTTCTCACTTG


AACTGCAAGATCATAATGAAACTTGTCACGCCTAAACGAACATGAAATTTCTTGT


TTTCTTAGGAATCATCACAACTGTAGCTGCATTTCACCAAGAATGTAGTTTACAG


TCATGTACTCAACATCAACCATATGTAGTTGATGACCCGTGTCCTATTCACTTCTA


TTCTAAATGGTATATTAGAGTAGGAGCTAGAAAATCAGCACCTTTAATTGAATTG


TGCGTGGATGAGGCTGGTTCTAAATCACCCATTCAGTACATCGATATCGGTAATT


ATACAGTTTCCTGTTTACCTTTTACAATTAATTGCCAGGAACCTAAATTGGGTAGT


CTTGTAGTGCGTTGTTCGTTCTATGAAGACTTTTTAGAGTATCATGACGTTCGTGT


TGTTTTAGATTTCATCTAAACGAACAAACTAAAATGTCTGATAATGGACCCCAAA


ATCAGCGAAATGCACCCCGCATTACGTTTGGTGGACCCTCAGATTCAACTGGCAG


TAACCAGAATGGAGAACGCAGTGGGGCGCGATCAAAACAACGTCGGCCCCAAG


GTTTACCCAATAATACTGCGTCTTGGTTCACCGCTCTCACTCAACATGGCAAGGA


AGACCTTAAATTCCCTCGAGGACAAGGCGTTCCAATTAACACCAATAGCAGTCC


AGATGACCAAATTGGCTACTACCGAAGAGCTACCAGACGAATTCGTGGTGGTGA


CGGTAAAATGAAAGATCTCAGTCCAAGATGGTATTTCTACTACCTAGGAACTGG


GCCAGAAGCTGGACTTCCCTATGGTGCTAACAAAGACGGCATCATATGGGTTGC


AACTGAGGGAGCCTTGAATACACCAAAAGATCACATTGGCACCCGCAATCCTGC


TAACAATGCTGCAATCGTGCTACAACTTCCTCAAGGAACAACATTGCCAAAAGG


CTTCTACGCAGAAGGGAGCAGAGGCGGCAGTCAAGCCTCTTCTCGTTCCTCATCA


CGTAGTCGCAACAGTTCAAGAAATTCAACTCCAGGCAGCAGTAGGGGAACTTCT


CCTGCTAGAATGGCTGGCAATGGCGGTGATGCTGCTCTTGCTTTGCTGCTGCTTG


ACAGATTGAACCAGCTTGAGAGCAAAATGTCTGGTAAAGGCCAACAACAACAAG


GCCAAACTGTCACTAAGAAATCTGCTGCTGAGGCTTCTAAGAAGCCTCGGCAAA


AACGTACTGCCACTAAAGCATACAATGTAACACAAGCTTTCGGCAGACGTGGTC


CAGAACAAACCCAAGGAAATTTTGGGGACCAGGAACTAATCAGACAAGGAACT


GATTACAAACATTGGCCGCAAATTGCACAATTTGCCCCCAGCGCTTCAGCGTTCT


TCGGAATGTCGCGCATTGGCATGGAAGTCACACCTTCGGGAACGTGGTTGACCTA


CACAGGTGCCATCAAATTGGATGACAAAGATCCAAATTTCAAAGATCAAGTCAT


TTTGCTGAATAAGCATATTGACGCATACAAAACATTCCCACCAACAGAGCCTAA


AAAGGACAAAAAGAAGAAGGCTGATGAAACTCAAGCCTTACCGCAGAGACAGA


AGAAACAGCAAACTGTGACTCTTCTTCCTGCTGCAGATTTGGATGATTTCTCCAA


ACAATTGCAACAATCCATGAGCAGTGCTGACTCAACTCAGGCCTAAACTCATGC


AGACCACACAAGGCAGATGGGCTATATAAACGTTTTCGCTTTTCCGTTTACGATA


TATAGTCTACTCTTGTGCAGAATGAATTCTCGTAACTACATAGCACAAGTAGATG


TAGTTAACTTTAATCTCACATAGCAATCTTTAATCAGTGTGTAACATTAGGGAGG


ACTTGAAAGAGCCACCACATTTTCACCGAGGCCACGCGGAGTACGATCGAGTGT


ACAGTGAACAATGCTAGGGAGAGCTGCCTATATGGAAGAGCCCTAATGTGTAAA


ATTAATTTTAGTAGTGCTATCCCCATGTGATTTTAATAGCTTCTTAGGAGAATGAC


AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA


AAAAAAAGGGTCGGCATGGCATCTCCACCTCCTCGCGGTCCGACCTGGGCATCC


GAAGGAGGACGCACGTCCACTCGGATGGCTAAGGGAGCAGCACACTGGCGGCC


GTTACTAGGGCCGCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGAG


ATCCAATTTTTAAGTGTATAATGTGTTAAACTACTGATTCTAATTGTTTGTGTATT


TTAGATTCACAGTCCCAAGGCTCATTTCAGGCCCCTCAGTCCTCACAGTCTGTTC


ATGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACC


TCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAA


CTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTC


ACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAA


TGTATCTTAAAGCTTGAGTATTCTATAGTCTCACCTAAATAGCTTGGCGTAATCAT


GGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACAT


ACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACT


CACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGC


CAGCTGCATTAATGAATCGGCCAACGCGAACCCCTTGCGGCCGCCCGGGCCGTC


GACCAATTCTCATGTTTGACAGCTTATCATCGAATTTCTGCCATTCATCCGCTTAT


TATCACTTATTCAGGCGTAGCAACCAGGCGTTTAAGGGCACCAATAACTGCCTTA


AAAAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCATTAAGC


ATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATCGCCAGC


GGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAAACGGGGG


CGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAACTCACCCA


GGGATTGGCTGAGACGAAAAACATATTCTCAATAAACCCTTTAGGGAAATAGGC


CAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAAACTGCCGG


AAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTTGCTCATGGA


AAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCACCGTCTTTCAT


TGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAATGTGAATAAA


GGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAGGCCGTAATAT


CCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAAATGCCTCAA


AATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCAGTGATTTTT


TTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAAAATACGCC


CGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTGCCGATCA


ACGTCTCATTTTCGCCAAAAGTTGGCCCAGGGCTTCCCGGTATCAACAGGGACAC


CAGGATTTATTTATTCTGCGAAGTGATCTTCCGTCACAGGTATTTATTCGCGATAA


GCTCATGGAGCGGCGTAACCGTCGCACAGGAAGGACAGAGAAAGCGCGGATCT


GGGAAGTGACGGACAGAACGGTCAGGACCTGGATTGGGGAGGCGGTTGCCGCC


GCTGCTGCTGACGGTGTGACGTTCTCTGTTCCGGTCACACCACATACGTTCCGCC


ATTCCTATGCGATGCACATGCTGTATGCCGGTATACCGCTGAAAGTTCTGCAAAG


CCTGATGGGACATAAGTCCATCAGTTCAACGGAAGTCTACACGAAGGTTTTTGCG


CTGGATGTGGCTGCCCGGCACCGGGTGCAGTTTGCGATGCCGGAGTCTGATGCG


GTTGCGATGCTGAAACAATTATCCTGAGAATAAATGCCTTGGCCTTTATATGGAA


ATGTGGAACTGAGTGGATATGCTGTTTTTGTCTGTTAAACAGAGAAGCTGGCTGT


TATCCACTGAGAAGCGAACGAAACAGTCGGGAAAATCTCCCATTATCGTAGAGA


TCCGCATTATTAATCTCAGGAGCCTGTGTAGCGTTTATAGGAAGTAGTGTTCTGT


CATGATGCCTGCAAGCGGTAACGAAAACGATTTGAATATGCCTTCAGGAACAAT


AGAAATCTTCGTGCGGTGTTACGTTGAAGTGGAGCGGATTATGTCAGCAATGGAC


AGAACAACCTAATGAACACAGAACCATGATGTGGTCTGTCCTTTTACAGCCAGTA


GTGCTCGCCGCAGTCGAGCGACAGGGCGAAGCCCTCGGCTGGTTGCCCTCGCCG


CTGGGCTGGCGGCCGTCTATGGCCCTGCAAACGCGCCAGAAACGCCGTCGAAGC


CGTGTGCGAGACACCGCGGCCGGCCGCCGGCGTTGTGGATACCTCGCGGAAAAC


TTGGCCCTCACTGACAGATGAGGGGCGGACGTTGACACTTGAGGGGCCGACTCA


CCCGGCGCGGCGTTGACAGATGAGGGGCAGGCTCGATTTCGGCCGGCGACGTGG


AGCTGGCCAGCCTCGCAAATCGGCGAAAACGCCTGATTTTACGCGAGTTTCCCAC


AGATGATGTGGACAAGCCTGGGGATAAGTGCCCTGCGGTATTGACACTTGAGGG


GCGCGACTACTGACAGATGAGGGGCGCGATCCTTGACACTTGAGGGGCAGAGTG


CTGACAGATGAGGGGCGCACCTATTGACATTTGAGGGGCTGTCCACAGGCAGAA


AATCCAGCATTTGCAAGGGTTTCCGCCCGTTTTTCGGCCACCGCTAACCTGTCTTT


TAACCTGCTTTTAAACCAATATTTATAAACCTTGTTTTTAACCAGGGCTGCGCCCT


GTGCGCGTGACCGCGCACGCCGAAGGGGGGTGCCCCCCCTTCTCGAACCCTCCC


GGTCGAGTGAGCGAGGAAGCACCAGGGAACAGCACTTATATATTCTGCTTACAC


ACGATGCCTGAAAAAACTTCCCTTGGGGTTATCCACTTATCCACGGGGATATTTT


TATAATTATTTTTTTTATAGTTTTTAGATCTTCTTTTTTAGAGCGCCTTGTAGGCCT


TTATCCATGCTGGTTCTAGAGAAGGTGTTGTGACAAATTGCCCTTTCAGTGTGAC


AAATCACCCTCAAATGACAGTCCTGTCTGTGACAAATTGCCCTTAACCCTGTGAC


AAATTGCCCTCAGAAGAAGCTGTTTTTTCACAAAGTTATCCCTGCTTATTGACTCT


TTTTTATTTAGTGTGACAATCTAAAAACTTGTCACACTTCACATGGATCTGTCATG


GCGGAAACAGCGGTTATCAATCACAAGAAACGTAAAAATAGCCCGCGAATCGTC


CAGTCAAACGACCTCACTGAGGCGGCATATAGTCTCTCCCGGGATCAAAAACGT


ATGCTGTATCTGTTCGTTGACCAGATCAGAAAATCTGATGGCACCCTACAGGAAC


ATGACGGTATCTGCGAGATCCATGTTGCTAAATATGCTGAAATATTCGGATTGAC


CTCTGCGGAAGCCAGTAAGGATATACGGCAGGCATTGAAGAGTTTCGCGGGGAA


GGAAGTGGTTTTTTATCGCCCTGAAGAGGATGCCGGCGATGAAAAAGGCTATGA


ATCTTTTCCTTGGTTTATCAAACGTGCGCACAGTCCATCCAGAGGGCTTTACAGT


GTACATATCAACCCATATCTCATTCCCTTCTTTATCGGGTTACAGAACCGGTTTAC


GCAGTTTCGGCTTAGTGAAACAAAAGAAATCACCAATCCGTATGCCATGCGTTTA


TACGAATCCCTGTGTCAGTATCGTAAGCCGGATGGCTCAGGCATCGTCTCTCTGA


AAATCGACTGGATCATAGAGCGTTACCAGCTGCCTCAAAGTTACCAGCGTATGCC


TGACTTCCGCCGCCGCTTCCTGCAGGTCTGTGTTAATGAGATCAACAGCAGAACT


CCAATGCGCCTCTCATACATTGAGAAAAAGAAAGGCCGCCAGACGACTCATATC


GTATTTTCCTTCCGCGATATCACTTCCATGACGACAGGATAGTCTGAGGGTTATC


TGTCACAGATTTGAGGGTGGTTCGTCACATTTGTTCTGACCTACTGAGGGTAATTT


GTCACAGTTTTGCTGTTTCCTTCAGCCTGCATGGATTTTCTCATACTTTTTGAACT


GTAATTTTTAAGGAAGCCAAATTTGAGGGCAGTTTGTCACAGTTGATTTCCTTCTC


TTTCCCTTCGTCATGTGACCTGATATCGGGGGTTAGTTCGTCATCATTGATGAGGG


TTGATTATCACAGTTTATTACTCTGAATTGGCTATCCGCGTGTGTACCTCTACCTG


GAGTTTTTCCCACGGTGGATATTTCTTCTTGCGCTGAGCGTAAGAGCTATCTGAC


AGAACAGTTCTTCTTTGCTTCCTCGCCAGTTCGCTCGCTATGCTCGGTTACACGGC


TGCGGCG





SEQ ID NO: 68 - Clone pCCI-4K-SARS-COV-2-7N-1-delta, with notable


sequences underlined or otherwise identified (eg. restriction enzyme sites, nucelotide


differences):


GATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGT


CACGACGTTGTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCG


AATTCTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATA


TGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAA


CGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATA


GGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGG


CAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGG


TAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACT


TGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGC


AGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCA


CCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCA


AAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGG


TGGGAGGTCTATATAAGCAGAGCTGGTTTAGTGAACCGTATTAAAGGTTTATACC


TTCCCAGGTAACAAACCAACCAACTTTCGATCTCTTGTAGATCTGTTCTCTAAAC


GAACTTTAAAATCTGTGTGGCTGTCACTCGGCTGCATGCTTAGTGCACTCACGCA


GTATAATTAATAACTAATTACTGTCGTTGACAGGACACGAGTAACTCGTCTATCT


TCTGCAGGCTGCTTACGGTTTCGTCCGTGTTGCAGCCGATCATCAGCACATCTAG


GTTTCGTCCGGGTGTGACCGAAAGGTAAGATGGAGAGCCTTGTCCCTGGTTTCAA


CGAGAAAACACACGTCCAACTCAGTTTGCCTGTTTTACAGGTTCGCGACGTGCTC


GTACGTGGCTTTGGAGACTCCGTGGAGGAGGTCTTATCAGAGGCACGTCAACAT


CTTAAAGATGGCACTTGTGGCTTAGTAGAAGTTGAAAAAGGCGTTTTGCCTCAAC


TTGAACAGCCCTATGTGTTCATCAAACGTTCGGATGCTCGAACTGCACCTCATGG


TCATGTTATGGTTGAGCTGGTAGCAGAACTCGAAGGCATTCAGTACGGTCGTAGT


GGTGAGACACTTGGTGTCCTTGTCCCTCATGTGGGCGAAATACCAGTGGCTTACC


GCAAGGTTCTTCTTCGTAAGAACGGTAATAAAGGAGCTGGTGGCCATAGTTACG


GCGCCGATCTAAAGTCATTTGACTTAGGCGACGAGCTTGGCACTGATCCTTATGA


AGATTTTCAAGAAAACTGGAACACTAAACATAGCAGTGGTGTTACCCGTGAACT


CATGCGTGAGCTTAACGGAGGGGCATACACTCGCTATGTCGATAACAACTTCTGT


GGCCCTGATGGCTACCCTCTTGAGTGCATTAAAGACCTTCTAGCACGTGCTGGTA


AAGCTTCATGCACTTTGTCCGAACAACTGGACTTTATTGACACTAAGAGGGGTGT


ATACTGCTGCCGTGAACATGAGCATGAAATTGCTTGGTACACGGAACGTTCTGAA


AAGAGCTATGAATTGCAGACACCTTTTGAAATTAAATTGGCAAAGAAATTTGAC


ACCTTCAATGGGGAATGTCCAAATTTTGTATTTCCCTTAAATTCCATAATCAAGA


CTATTCAACCAAGGGTTGAAAAGAAAAAGCTTGATGGCTTTATGGGTAGAATTC


GATCTGTCTATCCAGTTGCGTCACCAAATGAATGCAACCAAATGTGCCTTTCAAC


TCTCATGAAGTGTGATCATTGTGGTGAAACTTCATGGCAGACGGGCGATTTTGTT


AAAGCCACTTGCGAATTTTGTGGCACTGAGAATTTGACTAAAGAAGGTGCCACT


ACTTGTGGTTACTTACCCCAAAATGCTGTTGTTAAAATTTATTGTCCAGCATGTCA


CAATTCAGAAGTAGGACCTGAGCATAGTCTTGCCGAATACCATAATGAATCTGG


CTTGAAAACCATTCTTCGTAAGGGTGGTCGCACTATTGCCTTTGGAGGCTGTGTG


TTCTCTTATGTTGGTTGCCATAACAAGTGTGCCTATTGGGTCCCACGTGCTAGCG


CTAACATAGGTTGTAACCATACAGGTGTTGTTGGAGAAGGTTCCGAAGGTCTTAA


TGACAACCTTCTTGAAATACTCCAAAAAGAGAAAGTCAACATCAATATTGTTGGT


GACTTTAAACTTAATGAAGAGATCGCCATTATTTTGGCATCTTTTTCTGCTTCCAC


AAGTGCTTTTGTGGAAACTGTGAAAGGTTTGGATTATAAAGCATTCAAACAAATT


GTTGAATCCTGTGGTAATTTTAAAGTTACAAAAGGAAAAGCTAAAAAAGGTGCC


TGGAATATTGGTGAACAGAAATCAATACTGAGTCCTCTTTATGCATTTGCATCAG


AGGCTGCTCGTGTTGTACGATCAATTTTCTCCCGCACTCTTGAAACTGCTCAAAA


TTCTGTGCGTGTTTTACAGAAGGCCGCTATAACAATACTAGATGGAATTTCACAG


TATTCACTGAGACTCATTGATGCTATGATGTTCACATCTGATTTGGCTACTAACAA


TCTAGTTGTAATGGCCTACATTACAGGTGGTGTTGTTCAGTTGACTTCGCAGTGG


CTAACTAACATCTTTGGCACTGTTTATGAAAAACTCAAACCCGTCCTTGATTGGC


TTGAAGAGAAGTTTAAGGAAGGTGTAGAGTTTCTTAGAGACGGTTGGGAAATTG


TTAAATTTATCTCAACCTGTGCTTGTGAAATTGTCGGTGGACAAATTGTCACCTGT


GCAAAGGAAATTAAGGAGAGTGTTCAGACATTCTTTAAGCTTGTAAATAAATTTT


TGGCTTTGTGTGCTGACTCTATCATTATTGGTGGAGCTAAACTTAAAGCCTTGAAT


TTAGGTGAAACATTTGTCACGCACTCAAAGGGATTGTACAGAAAGTGTGTTAAAT


CCAGAGAAGAAACTGGCCTACTCATGCCTCTAAAAGCCCCAAAAGAAATTATCT


TCTTAGAGGGAGAAACACTTCCCACAGAAGTGTTAACAGAGGAAGTTGTCTTGA


AAACTGGTGATTTACAACCATTAGAACAACCTACTAGTGAAGCTGTTGAAGCTCC


ATTGGTTGGTACACCAGTTTGTATTAACGGGCTTATGTTGCTCGAAATCAAAGAC


ACAGAAAAGTACTGTGCCCTTGCACCTAATATGATGGTAACAAACAATACCTTCA


CACTCAAAGGCGGTGCACCAACAAAGGTTACTTTTGGTGATGACACTGTGATAG


AAGTGCAAGGTTACAAGAGTGTGAATATCACTTTTGAACTTGATGAAAGGATTG


ATAAAGTACTTAATGAGAAGTGCTCTGCCTATACAGTTGAACTCGGTACAGAAGT


AAATGAGTTCGCCTGTGTTGTGGCAGATGCTGTCATAAAAACTTTGCAACCAGTA


TCTGAATTACTTACACCACTGGGCATTGATTTAGATGAGTGGAGTATGGCTACAT


ACTACTTATTTGATGAGTCTGGTGAGTTTAAATTGGCTTCACATATGTATTGTTCT


TTCTACCCTCCAGATGAGGATGAAGAAGAAGGTGATTGTGAAGAAGAAGAGTTT


GAGCCATCAACTCAATATGAGTATGGTACTGAAGATGATTACCAAGGTAAACCT


TTGGAATTTGGTGCCACTTCTGCTGCTCTTCAACCTGAAGAAGAGCAAGAAGAAG


ATTGGTTAGATGATGATAGTCAACAAACTGTTGGTCAACAAGACGGCAGTGAGG


ACAATCAGACAACTACTATTCAAACAATTGTTGAGGTTCAACCTCAATTAGAGAT


GGAACTTACACCAGTTGTTCAGACTATTGAAGTGAATAGTTTTAGTGGTTATTTA


AAACTTACTGACAATGTATACATTAAAAATGCAGACATTGTGGAAGAAGCTAAA


AAGGTAAAACCAACAGTGGTTGTTAATGCAGCCAATGTTTACCTTAAACATGGA


GGAGGTGTTGCAGGAGCCTTAAATAAGGCTACTAACAATGCCATGCAAGTTGAA


TCTGATGATTACATAGCTACTAATGGACCACTTAAAGTGGGTGGTAGTTGTGTTT


TAAGCGGACACAATCTTGCTAAACACTGTCTTCATGTTGTCGGCCCAAATGTTAA


CAAAGGTGAAGACATTCAACTTCTTAAGAGTGCTTATGAAAATTTTAATCAGCAC


GAAGTTCTACTTGCACCATTATTATCAGCTGGTATTTTTGGTGCTGACCCTATACA


TTCTTTAAGAGTTTGTGTAGATACTGTTCGCACAAATGTCTACTTAGCTGTCTTTG


ATAAAAATCTCTATGACAAACTTGTTTCAAGCTTTTTGGAAATGAAGAGTGAAAA


GCAAGTTGAACAAAAGATCGCTGAGATTCCTAAAGAGGAAGTTAAGCCATTTAT


AACTGAAAGTAAACCTTCAGTTGAACAGAGAAAACAAGATGATAAGAAAATCA


AAGCTTGTGTTGAAGAAGTTACAACAACTCTGGAAGAAACTAAGTTCCTCACAG


AAAACTTGTTACTTTATATTGACATTAATGGCAATCTTCATCCAGATTCTGCCACT


CTTGTTAGTGACATTGACATCACTTTCTTAAAGAAAGATGCTCCATATATAGTGG


GTGATGTTGTTCAAGAGGGTGTTTTAACTGCTGTGGTTATACCTACTAAAAAGGC


TGGTGGCACTACTGAAATGCTAGCGAAAGCTTTGAGAAAAGTGCCAACAGACAA


TTATATAACCACTTACCCGGGTCAGGGTTTAAATGGTTACACTGTAGAGGAGGC


AAAGACAGTGCTTAAAAAGTGTAAAAGTGCCTTTTACATTCTACCATCTATTATC


TCTAATGAGAAGCAAGAAATTCTTGGAACTGTTTCTTGGAATTTGCGAGAAATGC


TTGCACATGCAGAAGAAACACGCAAATTAATGCCTGTCTGTGTGGAAACTAAAG


CCATAGTTTCAACTATACAGCGTAAATATAAGGGTATTAAAATACAAGAGGGTG


TGGTTGATTATGGTGCTAGATTTTACTTTTACACCAGTAAAACAACTGTAGCGTC


ACTTATCAACACACTTAACGATCTAAATGAAACTCTTGTTACAATGCCACTTGGC


TATGTAACACATGGCTTAAATTTGGAAGAAGCTGCTCGGTATATGAGATCTCTCA


AAGTGCCAGCTACAGTTTCTGTTTCTTCACCTGATGCTGTTACAGCGTATAATGGT


TATCTTACTTCTTCTTCTAAAACACCTGAAGAACATTTTATTGAAACCATCTCACT


TGCTGGTTCCTATAAAGATTGGTCCTATTCTGGACAATCTACACAACTAGGTATA


GAATTTCTTAAGAGAGGTGATAAAAGTGTATATTACACTAGTAATCCTACCACAT


TCCACCTAGATGGTGAAGTTATCACCTTTGACAATCTTAAGACACTTCTTTCTTTG


AGAGAAGTGAGGACTATTAAGGTGTTTACAACAGTAGACAACATTAACCTCCAC


ACGCAAGTTGTGGACATGTCAATGACATATGGACAACAGTTTGGTCCAACTTATT


TGGATGGAGCTGATGTTACTAAAATAAAACCTCATAATTCACATGAAGGTAAAA


CATTTTATGTTTTACCTAATGATGACACTCTACGTGTTGAGGCTTTTGAGTACTAC


CACACAACTGATCCTAGTTTTCTGGGTAGGTACATGTCAGCATTAAATCACACTA


AAAAGTGGAAATACCCACAAGTTAATGGTTTAACTTCTATTAAATGGGCAGATA


ACAACTGTTATCTTGCCACTGCATTGTTAACACTCCAACAAATAGAGTTGAAGTT


TAATCCACCTGCTCTACAAGATGCTTATTACAGAGCAAGGGCTGGTGAAGCTGCT


AACTTTTGTGCACTTATCTTAGCCTACTGTAATAAGACAGTAGGTGAGTTAGGTG


ATGTTAGAGAAACAATGAGTTACTTGTTTCAACATGCCAATTTAGATTCTTGCAA


AAGAGTCTTGAACGTGGTGTGTAAAACTTGTGGACAACAGCAGACAACCCTTAA


GGGTGTAGAAGCTGTTATGTACATGGGCACACTTTCTTATGAACAATTTAAGAAA


GGTGTTCAGATACCTTGTACGTGTGGTAAACAAGCTACAAAATATCTAGTACAAC


AGGAGTCACCTTTTGTTATGATGTCAGCACCACCTGCTCAGTATGAACTTAAGCA


TGGTACATTTACTTGTGCTAGTGAGTACACTGGTAATTACCAGTGTGGTCACTAT


AAACATATAACTTCTAAAGAAACTTTGTATTGCATAGACGGTGCTTTACTTACAA


AGTCCTCAGAATACAAAGGTCCTATTACGGATGTTTTCTACAAAGAAAACAGTTA


CACAACAACCATAAAACCAGTTACTTATAAATTGGATGGTGTTGTTTGTACAGAA


ATTGACCCTAAGTTGGACAATTATTATAAGAAAGACAATTCTTATTTCACAGAGC


AACCAATTGATCTTGTACCAAACCAACCATATCCAAACGCAAGCTTCGATAATTT


TAAGTTTGTATGTGATAATATCAAATTTGCTGATGATTTAAACCAGTTAACTGGTT


ATAAGAAACCTGCTTCAAGAGAGCTTAAAGTTACATTTTTCCCTGACTTAAATGG


TGATGTGGTGGCTATTGATTATAAACACTACACACCCTCTTTTAAGAAAGGAGCT


AAATTGTTACATAAACCTATTGTTTGGCATGTTAACAATGCAACTAATAAAGCCA


CGTATAAACCAAATACCTGGTGTATACGTTGTCTTTGGAGCACAAAACCAGTTGA


AACATCAAATTCGTTTGATGTACTGAAGTCAGAGGACGCGCAGGGAATGGATAA


TCTTGCCTGCGAAGATCTAAAACCAGTCTCTGAAGAAGTAGTGGAAAATCCTACC


ATACAGAAAGACGTTCTTGAGTGTAATGTGAAAACTACCGAAGTTGTAGGAGAC


ATTATACTTAAACCAGCAAATAATAGTTTAAAAATTACAGAAGAGGTTGGCCAC


ACAGATCTAATGGCTGCTTATGTAGACAATTCTAGTCTTACTATTAAGAAACCTA


ATGAATTATCTAGAGTATTAGGTTTGAAAACCCTTGCTACTCATGGTTTAGCTGCT


GTTAATAGTGTCCCTTGGGATACTATAGCTAATTATGCTAAGCCTTTTCTTAACAA


AGTTGTTAGTACAACTACTAACATAGTTACACGGTGTTTAAACCGTGTTTGTACT


AATTATATGCCTTATTTCTTTACTTTATTGCTACAATTGTGTACTTTTACTAGAAGT


ACAAATTCTAGAATTAAAGCATCTATGCCGACTACTATAGCAAAGAATACTGTTA


AGAGTGTCGGTAAATTTTGTCTAGAGGCTTCATTTAATTATTTGAAGTCACCTAAT


TTTTCTAAACTGATAAATATTATAATTTGGTTTTTACTATTAAGTGTTTGCCTAGG



TTCTTTAATCTACTCAACCGCGGCGTTAGGTGTTTTAATGTCTAATTTAGGTATGC




CGTCTTACTGTACGGGTTACCGTGAAGGTTATTTGAACTCTACGAATGTCACGAT




TGCGACGTACTGTACGGGTTCTATACCGTGTAGTGTTTGTCTTAGTGGTTTAGATT




CTTTAGACACGTATCCGTCTTTAGAAACGATACAAATTACGATTTCATCTTTTAAA




TGGGATTTAACGGCGTTTGGTTTAGTTGCGGAGTGGTTTTTGGCGTATATTCTTTT




CACGCGTTTTTTCTATGTACTTGGTTTGGCGGCGATCATGCAATTGTTTTTCAGCT




ATTTTGCGGTACATTTTATTAGTAATTCTTGGCTTATGTGGTTAATAATTAATCTT




GTACAAATGGCGCCGATTTCAGCGATGGTTAGAATGTACATCTTCTTTGCGTCAT




TTTATTATGTATGGAAAAGTTATGTGCATGTTGTAGACGGTTGTAATTCATCAAC




GTGTATGATGTGTTACAAACGTAATAGAGCGACGCGTGTCGAATGTACGACGATT




GTTAATGGTGTTAGACGTTCCTTTTATGTCTATGCGAATGGTGGTAAAGGTTTTTG




CAAACTACACAATTGGAATTGTGTTAATTGTGATACGTTCTGTGCGGGTAGTACG




TTTATTAGTGATGAAGTTGCGCGTGACTTGTCACTACAGTTTAAACGTCCGATAA




ATCCGACGGACCAGTCTTCTTACATCGTTGATAGTGTTACGGTGAAGAATGGTTC




CATCCATCTTTACTTTGATAAAGCGGGTCAAAAGACGTATGAACGTCATTCTCTC




TCTCATTTTGTTAACTTAGACAACCTGCGTGCGAATAACACGAAAGGTTCATTGC




CGATTAATGTTATAGTTTTTGATGGTAAATCAAAATGTGAAGAATCATCTGCGAA




ATCAGCGTCTGTTTACTACAGTCAGCTTATGTGTCAACCGATACTGTTACTAGAT




CAGGCGTTAGTGTCTGATGTTGGTGATAGTGCGGAAGTTGCGGTTAAAATGTTTG




ATGCGTACGTTAATACGTTTTCATCAACGTTTAACGTACCGATGGAAAAACTCAA




AACGCTAGTTGCGACGGCGGAAGCGGAACTTGCGAAGAATGTGTCCTTAGACAA




TGTCTTATCTACGTTTATTTCAGCGGCGCGTCAAGGTTTTGTTGATTCAGATGTAG




AAACGAAAGATGTTGTTGAATGTCTTAAATTGTCACATCAATCTGACATAGAAGT




TACGGGTGATAGTTGTAATAACTATATGCTCACGTATAACAAAGTTGAAAACATG




ACGCCGCGTGACCTTGGTGCGTGTATTGACTGTAGTGCGCGTCATATTAATGCGC




AGGTAGCGAAAAGTCACAACATTGCGTTGATATGGAACGTTAAAGATTTCATGTC




ATTGTCTGAACAACTACGTAAACAAATACGTAGTGCGGCGAAAAAGAATAACTT




ACCGTTTAAGTTGACGTGTGCGACGACGCGTCAAGTTGTTAATGTTGTAACGACG




AAGATAGCGCTTAAGGGTGGTAAAATTGTTAATAATTGGTTGAAGCAATTAATT





AA
AGTTACACTTGTGTTCCTTTTTGTTGCTGCTATTTTCTATTTAATAACACCTGTT



CATGTCATGTCTAAACATACTGACTTTTCAAGTGAAATCATAGGATACAAGGCTA


TTGATGGTGGTGTCACTCGTGACATAGCATCTACAGATACTTGTTTTGCTAACAA


ACATGCTGATTTTGACACATGGTTTAGCCAGCGTGGTGGTAGTTATACTAATGAC


AAAGCTTGCCCATTGATTGCTGCAGTCATAACAAGAGAAGTGGGTTTTGTCGTGC


CTGGTTTGCCTGGCACGATATTACGCACAACTAATGGTGACTTTTTGCATTTCTTA


CCTAGAGTTTTTAGTGCAGTTGGTAACATCTGTTACACACCATCAAAACTTATAG


AGTACACTGACTTTGCAACATCAGCTTGTGTTTTGGCTGCTGAATGTACAATTTTT


AAAGATGCTTCTGGTAAGCCAGTACCATATTGTTATGATACCAATGTACTAGAAG


GTTCTGTTGCTTATGAAAGTTTACGCCCTGACACACGTTATGTGCTCATGGATGG


CTCTATTATTCAATTTCCTAACACCTACCTTGAAGGTTCTGTTAGAGTGGTAACAA


CTTTTGATTCTGAGTACTGTAGGCACGGCACTTGTGAAAGATCAGAAGCTGGTGT


TTGTGTATCTACTAGTGGTAGATGGGTACTTAACAATGATTATTACAGATCTTTAC


CAGGAGTTTTCTGTGGTGTAGATGCTGTAAATTTACTTACTAATATGTTTACACCA


CTAATTCAACCTATTGGTGCTTTGGACATATCAGCATCTATAGTAGCTGGTGGTA


TTGTAGCTATCGTAGTAACATGCCTTGCCTACTATTTTATGAGGTTTAGAAGAGCT


TTTGGTGAATACAGTCATGTAGTTGCCTTTAATACTTTACTATTCCTTATGTCATT


CACTGTACTCTGTTTAACACCAGTTTACTCATTCTTACCTGGTGTTTATTCTGTTAT


TTACTTGTACTTGACATTTTATCTTACTAATGATGTTTCTTTTTTAGCACATATTCA


GTGGATGGTTATGTTCACACCTTTAGTACCTTTCTGGATAACAATTGCTTATATCA


TTTGTATTTCCACAAAGCATTTCTATTGGTTCTTTAGTAATTACCTAAAGAGACGT


GTAGTCTTTAATGGTGTTTCCTTTAGTACTTTTGAAGAAGCTGCGCTGTGCACCTT


TTTGTTAAATAAAGAAATGTATCTAAAGTTGCGTAGTGATGTGCTATTACCTCTT


ACGCAATATAATAGATACTTAGCTCTTTATAATAAGTACAAGTATTTTAGTGGAG


CAATGGATACAACTAGCTACAGAGAAGCTGCTTGTTGTCATCTCGCAAAGGCTCT


CAATGACTTCAGTAACTCAGGTTCTGATGTTCTTTACCAACCACCACAAACCTCT


ATCACCTCAGCTGTTTTGCAGAGTGGTTTTAGAAAAATGGCATTCCCATCTGGTA


AAGTTGAGGGTTGTATGGTACAAGTAACTTGTGGTACAACTACACTTAACGGTCT


TTGGCTTGATGACGTAGTTTACTGTCCAAGACATGTGATCTGCACCTCTGAAGAC


ATGCTTAACCCTAATTATGAAGATTTACTCATTCGTAAGTCTAATCATAATTTCTT


GGTACAGGCTGGTAATGTTCAACTCAGGGTTATTGGACATTCTATGCAAAATTGT


GTACTTAAGCTTAAGGTTGATACAGCCAATCCTAAGACACCTAAGTATAAGTTTG


TTCGCATTCAACCAGGACAGACTTTTTCAGTGTTAGCTTGTTACAATGGTTCACC


ATCTGGTGTTTACCAATGTGCTATGAGGCCCAATTTCACTATTAAGGGTTCATTCC


TTAATGGTTCATGTGGTAGTGTTGGTTTTAACATAGATTATGACTGTGTCTCTTTT


TGTTACATGCACCATATGGAATTACCAACTGGAGTTCATGCTGGCACAGACTTAG


AAGGTAACTTTTATGGACCTTTTGTTGACAGGCAAACAGCACAAGCAGCTGGTAC


GGACACAACTATTACAGTTAATGTTTTAGCTTGGTTGTACGCTGCTGTTATAAAT


GGAGACAGGTGGTTTCTCAATCGATTTACCACAACTCTTAATGACTTTAACCTTG


TGGCTATGAAGTACAATTATGAACCTCTAACACAAGACCATGTTGACATACTAGG


ACCTCTTTCTGCTCAAACTGGAATTGCCGTTTTAGATATGTGTGCTTCATTAAAAG


AATTACTGCAAAATGGTATGAATGGACGTACCATATTGGGTAGTGCTTTATTAGA


AGATGAATTTACACCTTTTGATGTTGTTAGACAATGCTCAGGTGTTACTTTCCAAA


GTGCAGTGAAAAGAACAATCAAGGGTACACACCACTGGTTGTTACTCACAATTTT


GACTTCACTTTTAGTTTTAGTCCAGAGTACTCAATGGTCTTTGTTCTTTTTTTTGTA


TGAAAATGCCTTTTTACCTTTTGCTATGGGTATTATTGCTATGTCTGCTTTTGCAA


TGATGTTTGTCAAACATAAGCATGCATTTCTCTGTTTGTTTTTGTTACCTTCTCTTG


CCACTGTAGCTTATTTTAATATGGTCTATATGCCTGCTAGTTGGGTGATGCGTATT


ATGACATGGTTGGATATGGTTGATACTAGTTTGTCTGGTTTTAAGCTAAAAGACT


GTGTTATGTATGCATCAGCTGTAGTGTTACTAATCCTTATGACAGCAAGAACTGT


GTATGATGATGGTGCTAGGAGAGTGTGGACACTTATGAATGTCTTGACACTCGTT


TATAAAGTTTATTATGGTAATGCTTTAGATCAAGCCATTTCCATGTGGGCTCTTAT


AATCTCTGTTACTTCTAACTACTCAGGTGTAGTTACAACTGTCATGTTTTTGGCCA


GAGGTATTGTTTTTATGTGTGTTGAGTATTGCCCTATTTTCTTCATAACTGGTAAT


ACACTTCAGTGTATAATGCTAGTTTATTGTTTCTTAGGCTATTTTTGTACTTGTTAC


TTTGGCCTCTTTTGTTTACTCAACCGCTACTTTAGACTGACTCTTGGTGTTTATGAT


TACTTAGTTTCTACACAGGAGTTTAGATATATGAATTCACAGGGACTACTCCCAC


CCAAGAATAGCATAGATGCCTTCAAACTCAACATTAAATTGTTGGGTGTTGGTGG


CAAACCTTGTATCAAAGTAGCCACTGTACAGTCTAAAATGTCAGATGTAAAGTGC


ACATCAGTAGTCTTACTCTCAGTTTTGCAACAACTCAGAGTAGAATCATCATCTA


AATTGTGGGCTCAATGTGTCCAGTTACACAATGACATTCTCTTAGCTAAAGATAC


TACTGAAGCCTTTGAAAAAATGGTTTCACTACTTTCTGTTTTGCTTTCCATGCAGG


GTGCTGTAGACATAAACAAGCTTTGTGAAGAAATGCTGGACAACAGGGCAACCT


TACAAGCTATAGCCTCAGAGTTTAGTTCCCTTCCATCATATGCAGCTTTTGCTACT


GCTCAAGAAGCTTATGAGCAGGCTGTTGCTAATGGTGATTCTGAAGTTGTTCTTA


AAAAGTTGAAGAAGTCTTTGAATGTGGCTAAATCTGAATTTGACCGTGATGCAGC


CATGCAACGTAAGTTGGAAAAGATGGCTGATCAAGCTATGACCCAAATGTATAA


ACAGGCTAGATCTGAGGACAAGAGGGCAAAAGTTACTAGTGCTATGCAGACAAT


GCTTTTCACTATGCTTAGAAAGTTGGATAATGATGCACTCAACAACATTATCAAC


AATGCAAGAGATGGTTGTGTTCCCTTGAACATAATACCTCTTACAACAGCAGCCA


AACTAATGGTTGTCATACCAGACTATAACACATATAAAAATACGTGTGATGGTAC


AACATTTACTTATGCATCAGCATTGTGGGAAATCCAACAGGTTGTAGATGCAGAT


AGTAAAATTGTTCAACTTAGTGAAATTAGTATGGACAATTCACCTAATTTAGCAT


GGCCTCTTATTGTAACAGCTTTAAGGGCCAATTCTGCTGTCAAATTACAGAATAA


TGAGCTTAGTCCTGTTGCACTACGACAGATGTCTTGTGCTGCCGGTACTACACAA


ACTGCTTGCACTGATGACAATGCGTTAGCTTACTACAACACAACAAAGGGAGGT


AGGTTTGTACTTGCACTGTTATCCGATTTACAGGATTTGAAATGGGCTAGATTCC


CTAAGAGTGATGGAACTGGTACTATCTATACAGAACTGGAACCACCTTGTAGGTT


TGTTACAGACACACCTAAAGGTCCTAAAGTGAAGTATTTATACTTTATTAAAGGA


TTAAACAACCTAAATAGAGGTATGGTACTTGGTAGTTTAGCTGCCACAGTACGTC


TACAAGCTGGTAATGCAACAGAAGTGCCTGCCAATTCAACTGTATTATCTTTCTG


TGCTTTTGCTGTAGATGCTGCTAAAGCTTACAAAGATTATCTAGCTAGTGGGGGA


CAACCAATCACTAATTGTGTTAAGATGTTGTGTACACACACTGGTACTGGTCAGG


CAATAACAGTTACACCGGAAGCCAATATGGATCAAGAATCCTTTGGTGGTGCAT


CGTGTTGTCTGTACTGCCGTTGCCACATAGATCATCCAAATCCTAAAGGATTTTG


TGACTTAAAAGGTAAGTATGTACAAATACCTACAACTTGTGCTAATGACCCTGTG


GGTTTTACACTTAAAAACACAGTCTGTACCGTCTGCGGTATGTGGAAAGGTTATG


GCTGTAGTTGTGATCAACTCCGCGAACCCATGCTTCAGTCAGCTGATGCACAATC


GTTTTTAAACGGGTTTGCGGTGTAAGTGCAGCCCGTCTTACACCGTGCGGCACAG


GCACTAGTACTGATGTCGTATACAGGGCTTTTGACATCTACAATGATAAAGTAGC


TGGTTTTGCTAAATTCCTAAAAACTAATTGTTGTCGCTTCCAAGAAAAGGACGAA


GATGACAATTTAATTGATTCTTACTTTGTAGTTAAGAGACACACTTTCTCTAACTA


CCAACATGAAGAAACAATTTATAATTTACTTAAGGATTGTCCAGCTGTTGCTAAA


CATGACTTCTTTAAGTTTAGAATAGACGGTGACATGGTACCACATATATCACGTC


AACGTCTTACTAAATACACAATGGCAGACCTCGTCTATGCTTTAAGGCATTTTGA


TGAAGGTAATTGTGACACATTAAAAGAAATACTTGTCACATACAATTGTTGTGAT


GATGATTATTTCAATAAAAAGGACTGGTATGATTTTGTAGAAAACCCAGATATAT


TACGCGTATACGCCAACTTAGGTGAACGTGTACGCCAAGCTTTGTTAAAAACAG


TACAATTCTGTGATGCCATGCGAAATGCTGGTATTGTTGGTGTACTGACATTAGA


TAATCAAGATCTCAATGGTAACTGGTATGATTTCGGTGATTTCATACAAACCACG


CCAGGTAGTGGAGTTCCTGTTGTAGATTCTTATTATTCATTGTTAATGCCTATATT


AACCTTGACCAGGGCTTTAACTGCAGAGTCACATGTTGACACTGACTTAACAAAG


CCTTACATTAAGTGGGATTTGTTAAAATATGACTTCACGGAAGAGAGGTTAAAAC


TCTTTGACCGTTATTTTAAATATTGGGATCAGACATACCACCCAAATTGTGTTAAC


TGTTTGGATGACAGATGCATTCTGCATTGTGCAAACTTTAATGTTTTATTCTCTAC


AGTGTTCCCACCTACAAGTTTTGGACCACTAGTGAGAAAAATATTTGTTGATGGT


GTTCCATTTGTAGTTTCAACTGGATACCACTTCAGAGAGCTAGGTGTTGTACATA


ATCAGGATGTAAACTTACATAGCTCTAGACTTAGTTTTAAGGAATTACTTGTGTA


TGCTGCTGACCCTGCTATGCACGCTGCTTCTGGTAATCTATTACTAGATAAACGC


ACTACGTGCTTTTCAGTAGCTGCACTTACTAACAATGTTGCTTTTCAAACTGTCAA


ACCCGGTAATTTTAACAAAGACTTCTATGACTTTGCTGTGTCTAAGGGTTTCTTTA


AGGAAGGAAGTTCTGTTGAATTAAAACACTTCTTCTTTGCTCAGGATGGTAATGC


TGCTATCAGCGATTATGACTACTATCGTTATAATCTACCAACAATGTGTGATATC


AGACAACTACTATTTGTAGTTGAAGTTGTTGATAAGTACTTTGATTGTTACGATG


GTGGCTGTATTAATGCTAACCAAGTCATCGTCAACAACCTAGACAAATCAGCTGG


TTTTCCATTTAATAAATGGGGTAAGGCTAGACTTTATTATGATTCAATGAGTTATG


AGGATCAAGATGCACTTTTCGCATATACAAAACGTAATGTCATCCCTACTATAAC


TCAAATGAATCTTAAGTATGCCATTAGTGCAAAGAATAGAGCTCGCACCGTAGCT


GGTGTCTCTATCTGTAGTACTATGACCAATAGACAGTTTCATCAAAAATTATTGA


AATCAATAGCCGCCACTAGAGGAGCTACTGTAGTAATTGGAACAAGCAAATTCT


ATGGTGGTTGGCACAACATGTTAAAAACTGTTTATAGTGATGTAGAAAACCCTCA


CCTTATGGGTTGGGATTATCCTAAATGTGATAGAGCCATGCCTAACATGCTTAGA


ATTATGGCCTCACTTGTTCTTGCTCGCAAACATACAACGTGTTGTAGCTTGTCACA


CCGTTTCTATAGATTAGCTAATGAGTGTGCTCAAGTATTGAGTGAAATGGTCATG


TGTGGCGGTTCACTATATGTTAAACCAGGTGGAACCTCATCAGGAGATGCCACA


ACTGCTTATGCTAATAGTGTTTTTAACATTTGTCAAGCTGTCACGGCCAATGTTAA


TGCACTTTTATCTACTGATGGTAACAAAATTGCCGATAAGTATGTCCGCAATTTA


CAACACAGACTTTATGAGTGTCTCTATAGAAATAGAGATGTTGACACAGACTTTG


TGAATGAGTTTTACGCATATTTGCGTAAACATTTCTCAATGATGATACTCTCTGAC


GATGCTGTTGTGTGTTTCAATAGCACTTATGCATCTCAAGGTCTAGTGGCTAGCA


TAAAGAACTTTAAGTCAGTTCTTTATTATCAAAACAATGTTTTTATGTCTGAAGCA


AAATGTTGGACTGAGACTGACCTTACTAAAGGACCTCATGAATTTTGCTCTCAAC


ATACAATGCTAGTTAAACAGGGTGATGATTATGTGTACCTTCCTTACCCAGATCC


ATCAAGAATCCTAGGGGCCGGCTGTTTTGTAGATGATATCGTAAAAACAGATGGT


ACACTTATGATTGAACGGTTCGTGTCTTTAGCTATAGATGCTTACCCACTTACTAA


ACATCCTAATCAGGAGTATGCTGATGTCTTTCATTTGTACTTACAATACATAAGA


AAGCTACATGATGAGTTAACAGGACACATGTTAGACATGTATTCTGTTATGCTTA


CTAATGATAACACTTCAAGGTATTGGGAACCTGAGTTTTATGAGGCTATGTACAC


ACCGCATACAGTCTTACAGGCTGTTGGGGCTTGTGTTCTTTGCAATTCACAGACT


TCATTAAGATGTGGTGCTTGCATACGTAGACCATTCTTATGTTGTAAATGCTGTTA


CGACCATGTCATATCAACATCACATAAATTAGTCTTGTCTGTTAATCCGTATGTTT


GCAATGCTCCAGGTTGTGATGTCACAGATGTGACTCAACTTTACTTAGGAGGTAT


GAGCTATTATTGTAAATCACATAAACCACCCATTAGTTTTCCATTGTGTGCTAATG


GACAAGTTTTTGGTTTATATAAAAATACATGTGTTGGTAGCGATAATGTTACTGA


CTTTAATGCAATTGCAACATGTGACTGGACAAATGCTGGTGATTACATTTTAGCT


AACACCTGTACTGAAAGACTCAAGCTTTTTGCAGCAGAAACGCTCAAAGCTACT


GAGGAGACATTTAAACTGTCTTATGGTATTGCTACTGTACGTGAAGTGCTGTCTG


ACAGAGAATTACATCTTTCATGGGAAGTTGGTAAACCTAGACCACCACTTAACCG


AAATTATGTCTTTACTGGTTATCGTGTAACTAAAAACAGTAAAGTACAAATAGGA


GAGTACACCTTTGAAAAAGGTGACTATGGTGATGCTGTTGTTTACCGAGGTACAA


CAACTTACAAATTAAATGTTGGTGATTATTTTGTGCTGACATCACATACAGTAAT


GCCATTAAGTGCACCTACACTAGTGCCACAAGAGCACTATGTTAGAATTACTGGC


TTATACCCAACACTCAATATCTCAGATGAGTTTTCTAGCAATGTTGCAAATTATC


AAAAGGTTGGTATGCAAAAGTATTCTACACTCCAGGGACCACCTGGTACTGGTA


AGAGTCATTTTGCTATTGGCCTAGCTCTCTACTACCCTTCTGCTCGCATAGTGTAT


ACAGCTTGCTCTCATGCCGCTGTTGATGCACTATGTGAGAAGGCATTAAAATATT


TGCCTATAGATAAATGTAGTAGAATTATACCTGCACGTGCTCGTGTAGAGTGTTT


TGATAAATTCAAAGTGAATTCAACATTAGAACAGTATGTCTTTTGTACTGTAAAT


GCATTGCCTGAGACGACAGCAGATATAGTTGTCTTTGATGAAATTTCAATGGCCA


CAAATTATGATTTGAGTGTTGTCAATGCCAGATTACGTGCTAAGCACTATGTGTA


CATTGGCGACCCTGCTCAATTACCTGCACCACGCACATTGCTAACTAAGGGCACA


CTAGAACCAGAATATTTCAATTCAGTGTGTAGACTTATGAAAACTATAGGTCCAG


ACATGTTCCTCGGAACTTGTCGGCGTTGTCCTGCTGAAATTGTTGACACTGTGAG


TGCTTTGGTTTATGATAATAAGCTTAAAGCACATAAAGACAAATCAGCTCAATGC


TTTAAAATGTTTTATAAGGGTGTTATCACGCATGATGTTTCATCTGCAATTAACAG


GCCACAAATAGGCGTGGTAAGAGAATTCCTTACACGTAACCCTGCTTGGAGAAA


AGCTGTCTTTATTTCACCTTATAATTCACAGAATGCTGTAGCCTCAAAGATTTTGG


GACTACCAACTCAAACTGTTGATTCATCACAGGGCTCAGAATATGACTATGTCAT


ATTCACTCAAACCACTGAAACAGCTCACTCTTGTAATGTAAACAGATTTAATGTT


GCTATTACCAGAGCAAAAGTAGGCATACTTTGCATAATGTCTGATAGAGACCTTT


ATGACAAGTTGCAATTTACAAGTCTTGAAATTCCACGTAGGAATGTGGCAACTTT


ACAAGCTGAAAATGTAACAGGACTCTTTAAAGATTGTAGTAAGGTAATCACTGG


GTTACATCCTACACAGGCACCTACACACCTCAGTGTTGACACTAAATTCAAAACT


GAAGGTTTATGTGTTGACATACCTGGCATACCTAAGGACATGACCTATAGAAGA


CTCATCTCTATGATGGGTTTTAAAATGAATTATCAAGTTAATGGTTACCCTAACAT


GTTTATCACCCGCGAAGAAGCTATAAGACATGTACGTGCATGGATTGGCTTCGAT


GTCGAGGGGTGTCATGCTACTAGAGAAGCTGTTGGTACCAATTTACCTTTACAGC


TAGGTTTTTCTACAGGTGTTAACCTAGTTGCTGTACCTACAGGTTATGTTGATACA


CCTAATAATACAGATTTTTCCAGAGTTAGTGCTAAACCACCGCCTGGAGATCAAT


TTAAACACCTCATACCACTTATGTACAAAGGACTTCCTTGGAATGTAGTGCGTAT


AAAGATTGTACAAATGTTAAGTGACACACTTAAAAATCTCTCTGACAGAGTCGTA


TTTGTCTTATGGGCACATGGCTTTGAGTTGACATCTATGAAGTATTTTGTGAAAAT


AGGACCTGAGCGCACCTGTTGTCTATGTGATAGACGTGCCACATGCTTTTCCACT


GCTTCAGACACTTATGCCTGTTGGCATCATTCTATTGGATTTGATTACGTCTATAA


TCCGTTTATGATTGATGTTCAACAATGGGGTTTTACAGGTAACCTACAAAGCAAC


CATGATCTGTATTGTCAAGTCCATGGTAATGCACATGTAGCTAGTTGTGATGCAA


TCATGACTAGGTGTCTAGCTGTCCACGAGTGCTTTGTTAAGCGTGTTGACTGGAC


TATTGAATATCCTATAATTGGTGATGAACTGAAGATTAATGCGGCTTGTAGAAAG


GTTCAACACATGGTTGTTAAAGCTGCATTATTAGCAGACAAATTCCCAGTTCTTC


ACGACATTGGTAACCCTAAAGCTATTAAGTGTGTACCTCAAGCTGATGTAGAATG


GAAGTTCTATGATGCACAGCCTTGTAGTGACAAAGCTTATAAAATAGAAGAATT


ATTCTATTCTTATGCCACACATTCTGACAAATTCACAGATGGTGTATGCCTATTTT


GGAATTGCAATGTCGATAGATATCCTGCTAATTCCATTGTTTGTAGATTTGACACT


AGAGTGCTATCTAACCTTAACTTGCCTGGTTGTGATGGTGGCAGTTTGTATGTAA


ATAAACATGCATTCCACACACCAGCTTTTGATAAAAGTGCTTTTGTTAATTTAAA


ACAATTACCATTTTTCTATTACTCTGACAGTCCATGTGAGTCTCATGGAAAACAA


GTAGTGTCAGATATAGATTATGTACCACTAAAGTCTGCTACGTGTATAACACGTT


GCAATTTAGGTGGTGCTGTCTGTAGACATCATGCTAATGAGTACAGATTGTATCT


CGATGCTTATAACATGATGATCTCAGCTGGCTTTAGCTTGTGGGTTTACAAACAA


TTTGATACTTATAACCTCTGGAACACTTTTACAAGACTTCAGAGTTTAGAAAATG


TGGCTTTTAATGTTGTAAATAAGGGACACTTTGATGGACAACAGGGTGAAGTACC


AGTTTCTATCATTAATAACACTGTTTACACAAAAGTTGATGGTGTTGATGTAGAA


TTGTTTGAAAATAAAACAACATTACCTGTTAATGTAGCATTTGAGCTTTGGGCTA


AGCGCAACATTAAACCAGTACCAGAGGTGAAAATACTCAATAATTTGGGTGTGG


ACATTGCTGCTAATACTGTGATCTGGGACTACAAAAGAGATGCTCCAGCACATAT


ATCTACTATTGGTGTTTGTTCTATGACTGACATAGCCAAGAAACCAACTGAAACG


ATTTGTGCACCACTCACTGTCTTTTTTGATGGTAGAGTTGATGGTCAAGTAGACTT


ATTTAGAAATGCCCGTAATGGTGTTCTTATTACAGAAGGTAGTGTTAAAGGTTTA


CAACCATCTGTAGGTCCCAAACAAGCTAGTCTTAATGGAGTCACATTAATTGGAG


AAGCCGTAAAAACACAGTTCAATTATTATAAGAAAGTTGATGGTGTTGTCCAACA


ATTACCTGAAACTTACTTTACTCAGAGTAGAAATTTACAAGAATTTAAACCCAGG


AGTCAAATGGAAATTGATTTCTTAGAATTAGCTATGGATGAATTCATTGAACGGT


ATAAATTAGAAGGCTATGCCTTCGAACATATCGTTTATGGAGATTTTAGTCATAG


TCAGTTAGGTGGTTTACATCTACTGATTGGACTAGCTAAACGTTTTAAGGAATCA


CCTTTTGAATTAGAAGATTTTATTCCTATGGACAGTACAGTTAAAAACTATTTCAT


AACAGATGCGCAAACAGGTTCATCTAAGTGTGTGTGTTCTGTTATTGATTTATTA


CTTGATGATTTTGTTGAAATAATAAAATCCCAAGATTTATCTGTAGTTTCTAAGGT


TGTCAAAGTGACTATTGACTATACAGAAATTTCATTTATGCTTTGGTGTAAAGAT


GGCCATGTAGAAACATTTTACCCAAAATTACAATCTAGTCAAGCGTGGCAACCG


GGTGTTGCTATGCCTAATCTTTACAAAATGCAAAGAATGCTATTAGAAAAGTGTG


ACCTTCAAAATTATGGTGATAGTGCAACATTACCTAAAGGCATAATGATGAATGT


CGCAAAATATACTCAACTGTGTCAATATTTAAACACATTAACATTAGCTGTACCC


TATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAG


GTACAGCTGTTTTAAGACAGTGGTTGCCTACGGGTACGCTGCTTGTCGATTCAGA


TCTTAATGACTTTGTCTCTGATGCAGATTCAACTTTGATTGGTGATTGTGCAACTG


TACATACAGCTAATAAATGGGATCTCATTATTAGTGATATGTACGACCCTAAGAC


TAAAAATGTTACAAAAGAAAATGACTCTAAAGAGGGTTTTTTCACTTACATTTGT


GGGTTTATACAACAAAAGCTAGCTCTTGGAGGTTCCGTGGCTATAAAGATAACA


GAACATTCTTGGAATGCTGATCTTTATAAGCTCATGGGACACTTCGCATGGTGGA


CAGCCTTTGTTACTAATGTGAATGCGTCATCATCTGAAGCATTTTTAATTGGATGT


AATTATCTTGGCAAACCACGCGAACAAATAGATGGTTATGTCATGCATGCAAATT


ACATATTTTGGAGGAATACAAATCCAATTCAGTTGTCTTCCTATTCTTTATTTGAC


ATGAGTAAATTTCCCCTTAAATTAAGGGGTACTGCTGTTATGTCTTTAAAAGAAG


GTCAAATCAATGATATGATTTTATCTCTTCTTAGTAAAGGTAGACTTATAATTAG


AGAAAACAACAGAGTTGTTATTTCTAGTGATGTTCTTGTTAACAACTAAACGAAC


AATGTTTGTTTTTCTTGTTTTATTGCCACTAGTCTCTAGTCAGTGTGTTAATCTTA


CAACCAGAACTCAATTACCCCCTGCATACACTAATTCTTTCACACGTGGTGTTTA


TTACCCTGACAAAGTTTTCAGATCCTCAGTTTTACATTCAACTCAGGACTTGTTCT


TACCTTTCTTTTCCAATGTTACTTGGTTCCATGCTATACATGTCTCTGGGACCAAT


GGTACTAAGAGGTTTGATAACCCTGTCCTACCATTTAATGATGGTGTTTATTTTGC


TTCCAtTGAGAAGTCTAACATAATAAGAGGCTGGATTTTTGGTACTACTTTAGACT


CGAAGACCCAGTCCCTACTTATTGTTAATAACGCTACTAATGTTGTTATTAAAGT


CTGTGAATTTCAATTTTGTAATGATCCATTTTTGGaTGTTTATTACCACAAAAACA


ACAAAAGTTGGATGaAAAGTGAGTTCAGAGTTTATTCTAGTGCGAATAATTGCAC


TTTTGAATATGTCTCTCAGCCTTTTCTTATGGACCTTGAAGGAAAACAGGGTAATT


TCAAAAATCTTAGGGAATTTGTGTTTAAGAATATTGATGGTTATTTTAAAATATA


TTCTAAGCACACGCCTATTAATTTAGTGCGTGATCTCCCtCAGGGTTTTTCGGCTT


TAGAACCATTGGTAGATTTGCCAATAGGTATTAACATCACTAGGTTTCAAACTTT


ACTTGCTTTACATAGAAGTTATTTGACTCCTGGTGATTCTTCTTCAGGTTGGACAG


CTGGTGCTGCAGCTTATTATGTGGGTTATCTTCAACCTAGGACTTTTCTATTAAAA


TATAATGAAAATGGAACCATTACAGATGCTGTAGACTGTGCACTTGACCCTCTCT


CAGAAACAAAGTGTACGTTGAAATCCTTCACTGTAGAAAAAGGAATCTATCAAA


CTTCTAACTTTAGAGTCCAACCAACAGAATCTATTGTTAGATTTCCTAATATTACA


AACTTGTGCCCTTTTGGTGAAGTTTTTAACGCCACCAGATTTGCATCTGTTTATGC


TTGGAACAGGAAGAGAATCAGCAACTGTGTTGCTGATTATTCTGTCCTATATAAT


TCCGCATCATTTTCCACTTTTAAGTGTTATGGAGTGTCTCCTACTAAATTAAATGA


TCTCTGCTTTACTAATGTCTATGCAGATTCATTTGTAATTAGAGGTGATGAAGTCA


GACAAATCGCTCCAGGGCAAACTGGAAAGATTGCTGATTATAATTATAAATTAC


CAGATGATTTTACAGGCTGCGTTATAGCTTGGAATTCTAACAATCTTGATTCTAA


GGTTGGTGGTAATTATAATTACCgGTATAGATTGTTTAGGAAGTCTAATCTCAAA


CCTTTTGAGAGAGATATTTCAACTGAAATCTATCAGGCCGGTAGCACACCTTGTA


ATGGTGTTcAAGGTTTTAATTGTTACTTTCCTTTACAATCATATGGTTTCCAACCC


ACTAATGGTGTTGGTTACCAACCATACAGAGTAGTAGTACTTTCTTTTGAACTTCT


ACATGCACCAGCAACTGTTTGTGGACCTAAAAAGTCTACTAATTTGGTTAAAAAC


AAATGTGTCAATTTCAACTTCAATGGTTTAACAGGCACAGGTGTTCTTACTGAGT


CTAACAAAAAGTTTCTGCCTTTCCAACAATTTGGCAGAGACATTGCTGACACTAC


TGATGCTGTCCGTGATCCACAGACACTTGAGATTCTTGACATTACACCATGTTCTT


TTGGTGGTGTCAGTGTTATAACACCAGGAACAAATACTTCTAACCAGGTTGCTGT


TCTTTATCAGGgTGTTAACTGCACAGAAGTCCCTGTTGCTATTCATGCAGATCAA


CTTACTCCTACTTGGCGTGTTTATTCTACAGGTTCTAATGTTTTTCAAACACGTGC


AGGCTGTTTAATAGGGGCTGAACATGTCAACAACTCATATGAGTGTGACATACCC


ATTGGTGCAGGTATATGCGCTAGTTATCAGACTCAGACTAATTCTCgTCGGCGGG


CACGTAGTGTAGCTAGTCAATCCATCATTGCCTACACTATGTCACTTGGTGCAGA


AAATTCAGTTGCTTACTCTAATAACTCTATTGCCATACCCACAAATTTTACTATTA


GTGTTACCACAGAAATTCTACCAGTGTCTATGACCAAGACATCAGTAGATTGTAC


AATGTACATTTGTGGTGATTCAACTGAATGCAGCAATCTTTTGTTGCAATATGGC


AGTTTTTGTACACAATTAAACCGTGCTTTAACTGGAATAGCTGTTGAACAAGACA


AAAACACCCAAGAAGTTTTTGCACAAGTCAAACAAATTTACAAAACACCACCAA


TTAAAGATTTTGGTGGTTTTAATTTTTCACAAATATTACCAGATCCATCAAAACCA


AGCAAGAGGTCATTTATTGAAGATCTACTTTTCAACAAAGTGACACTTGCAGATG


CTGGCTTCATCAAACAATATGGTGATTGCCTTGGTGATATTGCTGCTAGAGACCT


CATTTGTGCACAAAAGTTTAACGGCCTTACTGTTTTGCCACCTTTGCTCACAGATG


AAATGATTGCTCAATACACTTCTGCACTGTTAGCGGGTACAATCACTTCTGGTTG


GACCTTTGGTGCAGGTGCTGCATTACAAATACCATTTGCTATGCAAATGGCTTAT


AGGTTTAATGGTATTGGAGTTACACAGAATGTTCTCTATGAGAACCAAAAATTGA


TTGCCAACCAATTTAATAGTGCTATTGGCAAAATTCAAGACTCACTTTCTTCCAC


AGCAAGTGCACTTGGAAAACTTCAAGATGTGGTCAACCAAAATGCACAAGCTTT


AAACACGCTTGTTAAACAACTTAGCTCCAATTTTGGTGCAATTTCAAGTGTTTTA


AATGATATCCTTTCACGTCTTGACAAAGTTGAGGCTGAAGTGCAAATTGATAGGT


TGATCACAGGCAGACTTCAAAGTTTGCAGACATATGTGACTCAACAATTAATTAG


AGCTGCAGAAATCAGAGCTTCTGCTAATCTTGCTGCTACTAAAATGTCAGAGTGT


GTACTTGGACAATCAAAAAGAGTTGATTTTTGTGGAAAGGGCTATCATCTTATGT


CCTTCCCTCAGTCAGCACCTCATGGTGTAGTCTTCTTGCATGTGACTTATGTCCC


TGCACAAGAAAAGAACTTCACAACTGCTCCTGCCATTTGTCATGATGGAAAAGC


ACACTTTCCTCGTGAAGGTGTCTTTGTTTCAAATGGCACACACTGGTTTGTAACA


CAAAGGAATTTTTATGAACCACAAATCATTACTACAGACAACACATTTGTGTCTG


GTAACTGTGATGTTGTAATAGGAATTGTCAACAACACAGTTTATGATCCTTTGCA


ACCTGAATTAGACTCATTCAAGGAGGAGTTAGATAAATATTTTAAGAATCATACA


TCACCAGATGTTGATTTAGGTGACATCTCTGGCATTAATGCTTCAGTTGTAAACA


TTCAAAAAGAAATTGACCGCCTCAATGAGGTTGCCAAGAATTTAAATGAATCTCT


CATCGATCTCCAAGAACTTGGAAAGTATGAGCAGTATATAAAATGGCCATGGTA


CATTTGGCTAGGTTTTATAGCTGGCTTGATTGCCATAGTAATGGTGACAATTATG


CTTTGCTGTATGACCAGTTGCTGTAGTTGTCTCAAGGGCTGTTGTTCTTGTGGATC




C
TGCTGCAAATTTGATGAAGACGACTCTGAGCCAGTGCTCAAAGGAGTCAAATT



ACATTACACATAAACGAACTTATGGATTTGTTTATGAGAATCTTCACAATTGGAA


CTGTAACTTTGAAGCAAGGTGAAATCAAGGATGCTACTCCTTCAGATTTTGTTCG


CGCTACTGCAACGATACCGATACAAGCCTCACTCCCTTTCGGATGGCTTATTGTT


GGCGTTGCACTTCTTGCTGTTTTTCAGAGCGCTTCCAAAATCATAACCCTCAAAA


AGAGATGGCAACTAGCACTCTCCAAGGGTGTTCACTTTGTTTGCAACTTGCTGTT


GTTGTTTGTAACAGTTTACTCACACCTTTTGCTCGTTGCTGCTGGCCTTGAAGCCC


CTTTTCTCTATCTTTATGCTTTAGTCTACTTCTTGCAGAGTATAAACTTTGTAAGA


ATAATAATGAGGCTTTGGCTTTGCTGGAAATGCCGTTCCAAAAACCCATTACTTT


ATGATGCCAACTATTTTCTTTGCTGGCATACTAATTGTTACGACTATTGTATACCT


TACAATAGTGTAACTTCTTCAATTGTCATTACTTCAGGTGATGGCACAACAAGTC


CTATTTCTGAACATGACTACCAGATTGGTGGTTATACTGAAAAATGGGAATCTGG


AGTAAAAGACTGTGTTGTATTACACAGTTACTTCACTTCAGACTATTACCAGCTG


TACTCAACTCAATTGAGTACAGACACTGGTGTTGAACATGTTACCTTCTTCATCT


ACAATAAAATTGTTGATGAGCCTGAAGAACATGTCCAAATTCACACAATCGACG


GTTCATCCGGAGTTGTTAATCCAGTAATGGAACCAATTTATGATGAACCGACGAC


GACTACTAGCGTGCCTTTGTAAGCACAAGCTGATGAGTACGAACTTATGTACTCA


TTCGTTTCGGAAGAGACAGGTACGTTAATAGTTAATAGCGTACTTCTTTTTCTTGC


TTTCGTGGTATTCTTGCTAGTTACACTAGCCATCCTTACTGCGCTTCGATTGTGTG


CGTACTGCTGCAATATTGTTAACGTGAGTCTTGTAAAACCTTCTTTTTACGTTTAC


TCTCGTGTTAAAAATCTGAATTCTTCTAGAGTTCCTGATCTTCTGGTCTAAACGAA


CTAAATATTATATTAGTTTTTCTGTTTGGAACTTTAATTTTAGCCATGGCAGATTC


CAACGGTACTATTACCGTTGAAGAGCTTAAAAAGCTCCTTGAACAATGGAACCT


AGTAATAGGTTTCCTATTCCTTACATGGATTTGTCTTCTACAATTTGCCTATGCCA


ACAGGAATAGGTTTTTGTATATAATTAAGTTAATTTTCCTCTGGCTGTTATGGCCA


GTAACTTTAGCTTGTTTTGTGCTTGCTGCTGTTTACAGAATAAATTGGATCACCGG


TGGAATTGCTATCGCAATGGCTTGTCTTGTAGGCTTGATGTGGCTCAGCTACTTCA


TTGCTTCTTTCAGACTGTTTGCGCGTACGCGATCCATGTGGTCATTCAATCCAGAA


ACTAACATTCTTCTCAACGTGCCACTCCATGGCACTATTCTGACCAGACCGCTTCT


AGAAAGTGAACTCGTAATCGGAGCTGTGATCCTTCGTGGACATCTTCGTATTGCT


GGACACCATCTAGGACGCTGTGACATCAAGGACCTGCCTAAAGAAATCACTGTT


GCTACATCACGAACGCTTTCTTATTACAAATTGGGAGCTTCGCAGCGTGTAGCAG


GTGACTCAGGTTTTGCTGCATACAGTCGCTACAGGATTGGCAACTATAAATTAAA


CACAGACCATTCCAGTAGCAGTGACAATATTGCTTTGCTTGTACAGTAAGTGACA


ACAGATGTTTCATCTCGTTGACTTTCAGGTTACTATAGCAGAGATATTACTAATTA


TTATGAGGACTTTTAAAGTTTCCATTTGGAATCTTGATTACATCATAAACCTCATA


ATTAAAAATTTATCTAAGTCACTAACTGAGAATAAATATTCTCAATTAGATGAAG


AGCAACCAATGGAGATTGATTAAACGAACATGAAAATTATTCTTTTCTTGGCACT


GATAACACTCGCTACTTGTGAGCTTTATCACTACCAAGAGTGTGTTAGAGGTACA


ACAGTACTTTTAAAAGAACCTTGCTCTTCTGGAACATACGAGGGCAATTCACCAT


TTCATCCTCTAGCTGATAACAAATTTGCACTGACTTGCTTTAGCACTCAATTTGCT


TTTGCTTGTCCTGACGGCGTAAAACACGTCTATCAGTTACGTGCCAGATCAGTTT


CACCTAAACTGTTCATCAGACAAGAGGAAGTTCAAGAACTTTACTCTCCAATTTT


TCTTATTGTTGCGGCAATAGTGTTTATAACACTTTGCTTCACACTCAAAAGAAAG


ACAGAATGATTGAACTTTCATTAATTGACTTCTATTTGTGCTTTTTAGCCTTTCTG


CTATTCCTTGTTTTAATTATGCTTATTATCTTTTGGTTCTCACTTGAACTGCAAGAT


CATAATGAAACTTGTCACGCCTAAACGAACATGAAATTTCTTGTTTTCTTAGGAA


TCATCACAACTGTAGCTGCATTTCACCAAGAATGTAGTTTACAGTCATGTACTCA


ACATCAACCATATGTAGTTGATGACCCGTGTCCTATTCACTTCTATTCTAAATGGT


ATATTAGAGTAGGAGCTAGAAAATCAGCACCTTTAATTGAATTGTGCGTGGATGA


GGCTGGTTCTAAATCACCCATTCAGTACATCGATATCGGTAATTATACAGTTTCC


TGTTTACCTTTTACAATTAATTGCCAGGAACCTAAATTGGGTAGTCTTGTAGTGCG


TTGTTCGTTCTATGAAGACTTTTTAGAGTATCATGACGTTCGTGTTGTTTTAGATT


TCATCTAAACGAACAAACTAAAATGTCTGATAATGGACCCCAAAATCAGCGAAA


TGCACCCCGCATTACGTTTGGTGGACCCTCAGATTCAACTGGCAGTAACCAGAAT


GGAGAACGCAGTGGGGCGCGATCAAAACAACGTCGGCCCCAAGGTTTACCCAAT


AATACTGCGTCTTGGTTCACCGCTCTCACTCAACATGGCAAGGAAGACCTTAAAT


TCCCTCGAGGACAAGGCGTTCCAATTAACACCAATAGCAGTCCAGATGACCAAA


TTGGCTACTACCGAAGAGCTACCAGACGAATTCGTGGTGGTGACGGTAAAATGA


AAGATCTCAGTCCAAGATGGTATTTCTACTACCTAGGAACTGGGCCAGAAGCTG


GACTTCCCTATGGTGCTAACAAAGACGGCATCATATGGGTTGCAACTGAGGGAG


CCTTGAATACACCAAAAGATCACATTGGCACCCGCAATCCTGCTAACAATGCTGC


AATCGTGCTACAACTTCCTCAAGGAACAACATTGCCAAAAGGCTTCTACGCAGA


AGGGAGCAGAGGCGGCAGTCAAGCCTCTTCTCGTTCCTCATCACGTAGTCGCAAC


AGTTCAAGAAATTCAACTCCAGGCAGCAGTAGGGGAACTTCTCCTGCTAGAATG


GCTGGCAATGGCGGTGATGCTGCTCTTGCTTTGCTGCTGCTTGACAGATTGAACC


AGCTTGAGAGCAAAATGTCTGGTAAAGGCCAACAACAACAAGGCCAAACTGTCA


CTAAGAAATCTGCTGCTGAGGCTTCTAAGAAGCCTCGGCAAAAACGTACTGCCA


CTAAAGCATACAATGTAACACAAGCTTTCGGCAGACGTGGTCCAGAACAAACCC


AAGGAAATTTTGGGGACCAGGAACTAATCAGACAAGGAACTGATTACAAACATT


GGCCGCAAATTGCACAATTTGCCCCCAGCGCTTCAGCGTTCTTCGGAATGTCGCG


CATTGGCATGGAAGTCACACCTTCGGGAACGTGGTTGACCTACACAGGTGCCATC


AAATTGGATGACAAAGATCCAAATTTCAAAGATCAAGTCATTTTGCTGAATAAGC


ATATTGACGCATACAAAACATTCCCACCAACAGAGCCTAAAAAGGACAAAAAGA


AGAAGGCTGATGAAACTCAAGCCTTACCGCAGAGACAGAAGAAACAGCAAACT


GTGACTCTTCTTCCTGCTGCAGATTTGGATGATTTCTCCAAACAATTGCAACAATC


CATGAGCAGTGCTGACTCAACTCAGGCCTAAACTCATGCAGACCACACAAGGCA


GATGGGCTATATAAACGTTTTCGCTTTTCCGTTTACGATATATAGTCTACTCTTGT


GCAGAATGAATTCTCGTAACTACATAGCACAAGTAGATGTAGTTAACTTTAATCT


CACATAGCAATCTTTAATCAGTGTGTAACATTAGGGAGGACTTGAAAGAGCCAC


CACATTTTCACCGAGGCCACGCGGAGTACGATCGAGTGTACAGTGAACAATGCT


AGGGAGAGCTGCCTATATGGAAGAGCCCTAATGTGTAAAATTAATTTTAGTAGTG


CTATCCCCATGTGATTTTAATAGCTTCTTAGGAGAATGACAAAAAAAAAAAAAA


AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGGTCGG


CATGGCATCTCCACCTCCTCGCGGTCCGACCTGGGCATCCGAAGGAGGACGCAC


GTCCACTCGGATGGCTAAGGGAGCAGCACACTGGCGGCCGTTACTAGGGCCGCG


CCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGAGATCCAATTTTTAAGTG


TATAATGTGTTAAACTACTGATTCTAATTGTTTGTGTATTTTAGATTCACAGTCCC


AAGGCTCATTTCAGGCCCCTCAGTCCTCACAGTCTGTTCATGATCATAATCAGCC


ATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTG


AACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTT


ATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTT


TTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTAAAGCTTGA


GTATTCTATAGTCTCACCTAAATAGCTTGGCGTAATCATGGTCATAGCTGTTTCCT


GTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATA


AAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGC


GCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAAT


CGGCCAACGCGAACCCCTTGCGGCCGCCCGGGCCGTCGACCAATTCTCATGTTTG


ACAGCTTATCATCGAATTTCTGCCATTCATCCGCTTATTATCACTTATTCAGGCGT


AGCAACCAGGCGTTTAAGGGCACCAATAACTGCCTTAAAAAAATTACGCCCCGC


CCTGCCACTCATCGCAGTACTGTTGTAATTCATTAAGCATTCTGCCGACATGGAA


GCCATCACAAACGGCATGATGAACCTGAATCGCCAGCGGCATCAGCACCTTGTC


GCCTTGCGTATAATATTTGCCCATGGTGAAAACGGGGGCGAAGAAGTTGTCCAT


ATTGGCCACGTTTAAATCAAAACTGGTGAAACTCACCCAGGGATTGGCTGAGAC


GAAAAACATATTCTCAATAAACCCTTTAGGGAAATAGGCCAGGTTTTCACCGTAA


CACGCCACATCTTGCGAATATATGTGTAGAAACTGCCGGAAATCGTCGTGGTATT


CACTCCAGAGCGATGAAAACGTTTCAGTTTGCTCATGGAAAACGGTGTAACAAG


GGTGAACACTATCCCATATCACCAGCTCACCGTCTTTCATTGCCATACGAAATTC


CGGATGAGCATTCATCAGGCGGGCAAGAATGTGAATAAAGGCCGGATAAAACTT


GTGCTTATTTTTCTTTACGGTCTTTAAAAAGGCCGTAATATCCAGCTGAACGGTCT


GGTTATAGGTACATTGAGCAACTGACTGAAATGCCTCAAAATGTTCTTTACGATG


CCATTGGGATATATCAACGGTGGTATATCCAGTGATTTTTTTCTCCATTTTAGCTT


CCTTAGCTCCTGAAAATCTCGATAACTCAAAAAATACGCCCGGTAGTGATCTTAT


TTCATTATGGTGAAAGTTGGAACCTCTTACGTGCCGATCAACGTCTCATTTTCGCC


AAAAGTTGGCCCAGGGCTTCCCGGTATCAACAGGGACACCAGGATTTATTTATTC


TGCGAAGTGATCTTCCGTCACAGGTATTTATTCGCGATAAGCTCATGGAGCGGCG


TAACCGTCGCACAGGAAGGACAGAGAAAGCGCGGATCTGGGAAGTGACGGACA


GAACGGTCAGGACCTGGATTGGGGAGGCGGTTGCCGCCGCTGCTGCTGACGGTG


TGACGTTCTCTGTTCCGGTCACACCACATACGTTCCGCCATTCCTATGCGATGCAC


ATGCTGTATGCCGGTATACCGCTGAAAGTTCTGCAAAGCCTGATGGGACATAAGT


CCATCAGTTCAACGGAAGTCTACACGAAGGTTTTTGCGCTGGATGTGGCTGCCCG


GCACCGGGTGCAGTTTGCGATGCCGGAGTCTGATGCGGTTGCGATGCTGAAACA


ATTATCCTGAGAATAAATGCCTTGGCCTTTATATGGAAATGTGGAACTGAGTGGA


TATGCTGTTTTTGTCTGTTAAACAGAGAAGCTGGCTGTTATCCACTGAGAAGCGA


ACGAAACAGTCGGGAAAATCTCCCATTATCGTAGAGATCCGCATTATTAATCTCA


GGAGCCTGTGTAGCGTTTATAGGAAGTAGTGTTCTGTCATGATGCCTGCAAGCGG


TAACGAAAACGATTTGAATATGCCTTCAGGAACAATAGAAATCTTCGTGCGGTGT


TACGTTGAAGTGGAGCGGATTATGTCAGCAATGGACAGAACAACCTAATGAACA


CAGAACCATGATGTGGTCTGTCCTTTTACAGCCAGTAGTGCTCGCCGCAGTCGAG


CGACAGGGCGAAGCCCTCGGCTGGTTGCCCTCGCCGCTGGGCTGGCGGCCGTCT


ATGGCCCTGCAAACGCGCCAGAAACGCCGTCGAAGCCGTGTGCGAGACACCGCG


GCCGGCCGCCGGCGTTGTGGATACCTCGCGGAAAACTTGGCCCTCACTGACAGA


TGAGGGGCGGACGTTGACACTTGAGGGGCCGACTCACCCGGCGCGGCGTTGACA


GATGAGGGGCAGGCTCGATTTCGGCCGGCGACGTGGAGCTGGCCAGCCTCGCAA


ATCGGCGAAAACGCCTGATTTTACGCGAGTTTCCCACAGATGATGTGGACAAGC


CTGGGGATAAGTGCCCTGCGGTATTGACACTTGAGGGGCGCGACTACTGACAGA


TGAGGGGCGCGATCCTTGACACTTGAGGGGCAGAGTGCTGACAGATGAGGGGCG


CACCTATTGACATTTGAGGGGCTGTCCACAGGCAGAAAATCCAGCATTTGCAAG


GGTTTCCGCCCGTTTTTCGGCCACCGCTAACCTGTCTTTTAACCTGCTTTTAAACC


AATATTTATAAACCTTGTTTTTAACCAGGGCTGCGCCCTGTGCGCGTGACCGCGC


ACGCCGAAGGGGGGTGCCCCCCCTTCTCGAACCCTCCCGGTCGAGTGAGCGAGG


AAGCACCAGGGAACAGCACTTATATATTCTGCTTACACACGATGCCTGAAAAAA


CTTCCCTTGGGGTTATCCACTTATCCACGGGGATATTTTTATAATTATTTTTTTTAT


AGTTTTTAGATCTTCTTTTTTAGAGCGCCTTGTAGGCCTTTATCCATGCTGGTTCT


AGAGAAGGTGTTGTGACAAATTGCCCTTTCAGTGTGACAAATCACCCTCAAATGA


CAGTCCTGTCTGTGACAAATTGCCCTTAACCCTGTGACAAATTGCCCTCAGAAGA


AGCTGTTTTTTCACAAAGTTATCCCTGCTTATTGACTCTTTTTTATTTAGTGTGACA


ATCTAAAAACTTGTCACACTTCACATGGATCTGTCATGGCGGAAACAGCGGTTAT


CAATCACAAGAAACGTAAAAATAGCCCGCGAATCGTCCAGTCAAACGACCTCAC


TGAGGCGGCATATAGTCTCTCCCGGGATCAAAAACGTATGCTGTATCTGTTCGTT


GACCAGATCAGAAAATCTGATGGCACCCTACAGGAACATGACGGTATCTGCGAG


ATCCATGTTGCTAAATATGCTGAAATATTCGGATTGACCTCTGCGGAAGCCAGTA


AGGATATACGGCAGGCATTGAAGAGTTTCGCGGGGAAGGAAGTGGTTTTTTATC


GCCCTGAAGAGGATGCCGGCGATGAAAAAGGCTATGAATCTTTTCCTTGGTTTAT


CAAACGTGCGCACAGTCCATCCAGAGGGCTTTACAGTGTACATATCAACCCATAT


CTCATTCCCTTCTTTATCGGGTTACAGAACCGGTTTACGCAGTTTCGGCTTAGTGA


AACAAAAGAAATCACCAATCCGTATGCCATGCGTTTATACGAATCCCTGTGTCAG


TATCGTAAGCCGGATGGCTCAGGCATCGTCTCTCTGAAAATCGACTGGATCATAG


AGCGTTACCAGCTGCCTCAAAGTTACCAGCGTATGCCTGACTTCCGCCGCCGCTT


CCTGCAGGTCTGTGTTAATGAGATCAACAGCAGAACTCCAATGCGCCTCTCATAC


ATTGAGAAAAAGAAAGGCCGCCAGACGACTCATATCGTATTTTCCTTCCGCGATA


TCACTTCCATGACGACAGGATAGTCTGAGGGTTATCTGTCACAGATTTGAGGGTG


GTTCGTCACATTTGTTCTGACCTACTGAGGGTAATTTGTCACAGTTTTGCTGTTTC


CTTCAGCCTGCATGGATTTTCTCATACTTTTTGAACTGTAATTTTTAAGGAAGCCA


AATTTGAGGGCAGTTTGTCACAGTTGATTTCCTTCTCTTTCCCTTCGTCATGTGAC


CTGATATCGGGGGTTAGTTCGTCATCATTGATGAGGGTTGATTATCACAGTTTATT


ACTCTGAATTGGCTATCCGCGTGTGTACCTCTACCTGGAGTTTTTCCCACGGTGG


ATATTTCTTCTTGCGCTGAGCGTAAGAGCTATCTGACAGAACAGTTCTTCTTTGCT


TCCTCGCCAGTTCGCTCGCTATGCTCGGTTACACGGCTGCGGCG






DETAILED DESCRIPTION

The present inventors have primarily developed a (partly) codon deoptimized (CD) SARS-COV-2 genome for use as a vaccine. The vaccine can prevent infection with SARS-CoV-2 virus and the complications that arise following infection (acute respiratory distress syndrome).


Using codon deoptimization (CD) technology, the inventors inserted a number of codon changes in the genome of the virus (wild-type SARS-COV-2, Wuhan strain, https://www.ncbi.nlm.nih.gov/nuccore/1798174254) with the objective of decreasing replication efficiency in mammalian cells and rendering the virus attenuated compared to wild-type SARS-COV-2. Using this strategy, the resulting viruses would be strongly attenuated but still produce viral proteins with properties similar to those produced by a wild-type virus. Thus, using CD technology, the inventors are able to generate live attenuated SARS-COV-2 vaccine candidates.


By inserting a substantial number of changes into each vaccine candidate, the chance of reversion to wild-type is negligible, which is a crucial safety feature of the vaccines. This represents a substantial competitive advantage over vaccines with only a small number of mutations.


CD in case of SARS-COV-2 presumably results in slower non-structural polyprotein translation leading to its reduced production, slower replication and, as a result, in attenuation of the virus, compared with wild-type SARS-COV-2. For some embodiments, such vaccine candidates have virtually no risk of de-attenuation (the chance of reversion to wild-type is negligible) because of too many substitutions, all of which have, taken alone, minimal effect on virus, have been made in the coding sequence.


CD, as used herein, involves substituting normal codons in the wild-type SARS-CoV-2 genome with synonymous codons used less frequently in the host (e.g. humans), so that the resulting virus proteins are identical to wild-type virus proteins. Moreover, the resulting virus is highly attenuated, but protein function is not compromised. CD entails genetically engineering the virus.


Non-limiting embodiments of the invention are defined below.


According to a first embodiment of the present invention, there is provided live attenuated severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), SARS-COV-2. SARS-COV-2 particle or SARS-COV-2 nucleic acid comprising a partly codon deoptimized SARS-COV-2 genome.


According to a second embodiment of the present invention, there is provided a recombinant, isolated or substantially purified nucleic acid comprising a partly codon deoptimized SARS-COV-2 genome or partly codon deoptimized region thereof.


According to a third embodiment of the present invention, there is provided a vector, plasmid or genetic construct comprising the nucleic acid of the second embodiment.


According to a fourth embodiment of the present invention, there is provided a cell or isolate containing the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of the first embodiment, the nucleic acid of the second embodiment, or the vector, plasmid or genetic construct of the third embodiment.


According to a fifth embodiment of the present invention, there is provided a vaccine comprising the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of the first embodiment, the recombinant, isolated or substantially purified nucleic acid of the second embodiment, the vector, plasmid or genetic construct of the third embodiment, or the cell or isolate of the fourth embodiment.


According to a sixth embodiment of the present invention, there is provided a pharmaceutical preparation comprising the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of the first embodiment, the recombinant, isolated or substantially purified nucleic acid of the second embodiment, the vector, plasmid or genetic construct of the third embodiment, or the cell or isolate of the fourth embodiment.


According to a seventh embodiment of the present invention, there is provided an immunogenic composition comprising the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of the first embodiment, the recombinant, isolated or substantially purified nucleic acid of the second embodiment, the vector, plasmid or genetic construct of the third embodiment, or the cell or isolate of the fourth embodiment.


According to an eighth embodiment of the present invention, there is provided a method of: (1) vaccinating a subject; (2) prophylactically immunizing a subject against SARS-CoV-2 or SARS-COV-2-like virus; (3) preventing a subject from contracting a SARS-COV-2 infection naturally or a SARS-COV-2-like infection naturally; (4) reducing the severity of a natural SARS-COV-2 disease or natural SARS-COV-2-like disease in a subject; or (5) treating a subject having a natural SARS-COV-2 infection or natural SARS-COV-2-like infection, said method comprising the step of administering to the subject: the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of the first embodiment; the recombinant, isolated or substantially purified nucleic acid of the second embodiment; the vector, plasmid or genetic construct of the third embodiment; the cell or isolate of the fourth embodiment; the vaccine of the fifth embodiment; the pharmaceutical preparation of the sixth embodiment; or the immunogenic composition of the seventh embodiment.


According to a ninth embodiment of the present invention, there is provided use of: the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of the first embodiment; the recombinant, isolated or substantially purified nucleic acid of the second embodiment; the vector, plasmid or genetic construct of the third embodiment; the cell or isolate of the fourth embodiment; the vaccine of the fifth embodiment; the pharmaceutical preparation of the sixth embodiment; or the immunogenic composition of the seventh embodiment, in the preparation of a medicament for: (1) vaccinating a subject; (2) prophylactically immunizing a subject against SARS-COV-2 or SARS-COV-2-like virus; (3) preventing a subject from contracting a SARS-COV-2 infection naturally or a SARS-COV-2-like infection naturally; (4) reducing the severity of a natural SARS-COV-2 disease or natural SARS-COV-2-like disease in a subject; or (5) treating a subject having a natural SARS-COV-2 infection or natural SARS-COV-2-like infection.


According to a tenth embodiment of the present invention, there is provided: a live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of the first embodiment; a recombinant, isolated or substantially purified nucleic acid of the second embodiment; a vector, plasmid or genetic construct of the third embodiment; a cell or isolate of the fourth embodiment; a vaccine of the fifth embodiment; a pharmaceutical preparation of the sixth embodiment; or an immunogenic composition of the seventh embodiment, for use in: (1) vaccinating a subject; (2) prophylactically immunizing a subject against SARS-COV-2 or SARS-COV-2-like virus; (3) preventing a subject from contracting a SARS-COV-2 infection naturally or a SARS-COV-2-like infection naturally; (4) reducing the severity of a natural SARS-COV-2 disease or natural SARS-COV-2-like disease in a subject; or (5) treating a subject having a natural SARS-COV-2 infection or natural SARS-COV-2-like infection.


According to an eleventh embodiment of the present invention, there is provided a method of generating a live attenuated SARS-COV-2 vaccine, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid, or recombinant, isolated or substantially purified nucleic acid comprising a partly codon deoptimized SARS-COV-2 genome or partly codon deoptimized region thereof, comprising the step of partly codon deoptimizing a SARS-COV-2 genome.


According to a twelfth embodiment of the present invention, there is provided a method of preparing a vaccine comprising live attenuated SARS-COV-2, said method comprising the steps of: (1) codon deoptimizing a SARS-COV-2 genome to produce a partly codon deoptimized live attenuated SARS-COV-2; and (2) enabling the partly codon deoptimized live attenuated SARS-COV-2 to replicate.


According to a thirteenth embodiment of the present invention, there is provided a method of preparing a vaccine comprising codon deoptimized SARS-COV-2, said method comprising the steps of: optionally, (1) codon deoptimizing a SARS-COV-2 genome to produce a partly codon deoptimized live attenuated SARS-COV-2; (2) enabling the partly codon deoptimized live attenuated SARS-COV-2 to replicate; and (3) preparing a vaccine dose containing the replicated SARS-COV-2 of step (2).


According to a fourteenth embodiment of the present invention, there is provided a method of eliciting an immune response in a subject, said method comprising the step of administering a live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-CoV-2 nucleic acid of the first embodiment; the recombinant, isolated or substantially purified nucleic acid of the second embodiment; the vector, plasmid or genetic construct of the third embodiment; the cell or isolate of the fourth embodiment; the vaccine of the fifth embodiment; the pharmaceutical preparation of the sixth embodiment; or the immunogenic composition of the seventh embodiment to the subject to thereby elicit an immune response.


It is to be appreciated that, context permitting, features of the above fourteen invention embodiments can be found elsewhere in this specification, including below.


By ‘live attenuated’ it is meant that the virus demonstrates substantially reduced or preferably no clinical signs of disease when administered to a subject, compared with wild-type SARS-COV-2.


‘Wild-type SARS-COV-2’ refers to the Wuhan strain, found at https://www.ncbi.nlm.nih.gov/nuccore/1798174254.


It is to be appreciated that, context permitting, wild-type SARS-COV-2 can include natural variants (present and future) of the Wuhan strain, including: Alpha, Pango lineage B.1.1.7; Beta, Pango lincages B.1.351, B.1.351.2, B.1.351.3; Gamma, Pango lineages P.1, P.1.1, P.1.2; Delta, Pango lincages B.1.617.2, AY.1, AY.2; Eta, Pango lineage B.1.525; Iota, Pango lineage B.1.526; Kappa, Pango lincage B.1.617.1; Lambda, Pango lineage C.37; and, Pango lincages B.1.427, B.1.429, P.2, P.3, R.1, R.2, B.1.466.2, B.1.621, AV.1, B.1.1.318, B.1.1.519, AT.1, C.36.3, C.36.3.1, B.1.214.2.


Any suitable region or regions of the SARS-COV-2 genome can be codon deoptimized. The wild-type Wuhan SARS-COV-2 genome sequence, gene sequences and protein sequences can be found in GenBank as entry NCBI Reference Sequence: NC_045512.2 (Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome). Those sequence are incorporated herein by reference.


In some embodiments the ORF1a region is codon deoptimized. The wild-type ORF1a sequence can be found in GenBank as entry NCBI Reference Sequence: NC_045512.2. The genome sequence, gene sequences and protein sequences are incorporated herein by reference.


In some embodiments the ORF1a region is codon deoptimized, but excluding/truncating the 5′ region by one or more nucleotides. In some embodiments the ORF1a region is codon deoptimized, but excluding/truncating the 3′ region of ORF1a by one or more nucleotides, thereby excluding the ribosomal frameshift region. In some embodiments, this corresponds between about nucleotide position 1534 to about nucleotide position 8586 of the Wuhan virus genome, but this need not be the case. These positions were chosen by the inventors in view of the cloning strategy. Other positions can be readily determined by the skilled person based on NCBI Reference Sequence: NC_045512.2. In some embodiments, only part of the ORF1a region of the viral genome is codon deoptimized or different parts or sub-regions of the ORF1a region of the viral genome are codon deoptimized.


Any suitable number of codon changes can be made. In some embodiments, CD results in no less than about 10 codon changes in ORF1a. In some embodiments, CD results in no more than about 1850 codon changes in ORF1a (with the upper limit for substitution being where the virus does not usually grow at all). In some embodiments, codon deoptimization results in between about 10 and about 1850 codon changes in ORF1a and all sub-ranges there between. This 10 to 1850 codon change range includes all integers between 10 and 1850 including 11, 12 . . . 1849 codon changes. In some embodiments, some or all of the codon changes can be situated immediately next to one another, in sequence. In some embodiments, some or all of the codon changes can be spaced apart from each other such that they are not situated immediately next to one another, in sequence—e.g. 3 to 4 codon (triplet) spacing. In some embodiments, some of the codon changes can be spaced apart from each other and some of the codon changes can be situated immediately next to one another.


In some embodiments, CD occurs in no more than about a 12 kbp nucleotide region of ORF1a. This can include an about 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5 or 12 kbp nucleotide codon deoptimized region. The region can be continuous/contiguous or not. In some embodiments, CD occurs in a continuous ORF1a region with a length of about 12 kbp. In some embodiments, CD results in about an 11,186 nucleotide region of ORF1a, preferably with no less than about 10 codon changes within that nucleotide region. In some embodiments, about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50% of ORF1a is codon deoptimized. In some embodiments, about 35% of ORF1a is codon deoptimized. In some embodiments, every 3rd or 4th codon is deoptimized along ORF1a.


Most amino acids are encoded by more than one codon. For instance, leucine, serine and arginine are encoded by six different codons, while only tryptophan and methionine have unique codons. ‘Synonymous’ codons are codons that encode the same amino acid. For example, CTT, CTC, CTA, CTG, TTA and TTG are synonymous codons that code for leucine. Synonymous codons are not used with equal frequency. In generally, the most frequently used codons in a particular organism are those for which the cognate tRNA is abundant, and the use of these codons enhances the rate and/or accuracy of protein translation. Conversely, tRNAs for the rarely used codons are found at relatively low levels, and the use of rare codons is thought to reduce translation rate and/or accuracy.


As used herein, a ‘rare’ codon is one of at least two synonymous codons encoding a particular amino acid that is present in an mRNA at a significantly lower frequency that the most frequently used codon for that amino acid. Conversely, a ‘frequent’ codon is one of at least two synonymous codons encoding a particular amino acid that is present in an mRNA at a significantly higher frequency that the least frequently used codon for that amino acid. For example, human genes use the leucine codon CTG 3.9% of the time, but use the synonymous codon CTA only 0.7% of the time. See Table 1a. Thus, CTG is a frequent codon, whereas CTA is a rare codon.









TABLE 1a







Codon usage in Homo sapiens (source:


http://www.kazusa.or.jp/codon/)











Amino Acid
Codon
Frequency %















Gly
GGG
1.65



Gly
GGA
1.65



Gly
GGT
1.08



Gly
GGC
2.22



Glu
GAG
3.96



Glu
GAA
2.90



Asp
GAT
2.18



Asp
GAC
2.51



Val
GTG
2.81



Val
GTA
0.71



Val
GTT
1.10



Val
GTC
1.45



Ala
GCG
0.74



Ala
GCA
1.58



Ala
GCT
1.85



Ala
GCC
2.77



End
AGG
1.20



End
AGA
1.22



Ser
AGT
1.21



Ser
AGC
1.95



Lys
AAG
3.19



Lys
AAA
2.44



Asn
AAT
1.70



Asn
AAC
1.91



Met
ATG
2.20



Met
ATA
0.75



Ile
ATT
1.60



Ile
ATC
2.08



Thr
ACG
0.61



Thr
ACA
1.51



Thr
ACT
1.31



Thr
ACC
1.89



Trp
TGG
1.32



Trp
TGA
0.16



Cys
TGT
1.06



Cys
TGC
1.26



End
TAG
0.08



End
TAA
0.10



Tyr
TAT
1.22



Tyr
TAC
1.53



Leu
TTG
1.29



Leu
TTA
0.77



Phe
TTT
1.76



Phe
TTC
2.03



Ser
TCG
0.44



Ser
TCA
1.22



Ser
TCT
1.52



Ser
TCC
1.77



Arg
CGG
1.14



Arg
CGA
0.62



Arg
CGT
0.45



Arg
CGC
1.04



Gln
CAG
3.42



Gln
CAA
1.23



His
CAT
1.09



His
CAC
1.51



Leu
CTG
3.96



Leu
CTA
0.72



Leu
CTT
1.32



Leu
CTC
1.96



Pro
CCG
0.69



Pro
CCA
1.69



Pro
CCT
1.75



Pro
CCC
1.98










‘Rare codons’ have a frequency of less than 0.5%. For example, TAA, TGA, TCG and CGT are rare codons. ‘Less rare’ codons have a frequency of less than 0.8%. For example, AUA, ACG, CGA, CCG, CTA, CTA, GCG, ATA, TTA are less rare codons. ‘Moderate codons’ have a frequency of less than 2%. For example, CGC, TGT, GGT, CAT, GTT, CGG, AGG, AGT, AGA, TAT, TCA, CAA, TGC, TTG, ACT, TGG, CTT, GTC, CAC, ACA, TCT, TAC, GCA, ATT, GGG, GGA, CCA, AAT, CCT, TTT, TCC, GCT, ACC, AAC, AGC, CTC and CCC are moderate codons. ‘Frequent codons’ have a frequency of more than 2%. For example, TTC, ATC, GAT, ATG, GGC, AAA, GAC, GCC, GTG, GAA, AAG, CAG, GAG and CTG are frequent codons.


The propensity for highly expressed genes to use frequent codons is called ‘codon bias’. A gene for a ribosomal protein might use only the 20 to 25 most frequent of the 61 codons, and have a high codon bias (a codon bias close to 1), while a poorly expressed gene might use all 61 codons, and have little or no codon bias (a codon bias close to 0). It is thought that the frequently used codons are codons where larger amounts of the cognate tRNA are expressed, and that use of these codons allows translation to proceed more rapidly, or more accurately, or both.


In some embodiments, the CD results in slower non-structural polyprotein translation leading to slower replication and, as a result, in attenuation of the virus. In some embodiments, every codon in the wild-type ORF1a or region thereof was analysed in terms of its usage frequency in Homo sapiens, and if the codon was frequent then it was changed in the viral genome to a least frequently or less frequently used synonymous codon. In some embodiments, a codon for an amino acid with codon degeneracy was changed only if the synonymous codons for that amino acid occurred in significantly different frequencies of usage in the genome of Homo sapiens. In some embodiments, Asp, and Asn codons of the viral genome are left unchanged. In some embodiments, a codon for an amino acid with high codon degeneracy was changed to a synonymous codon that was rarely, less rarely or moderately used in the genome of Homo sapiens. In some embodiments, a viral region most rich in codons that can be substituted for rare codon variants is CD.


In some embodiments, CD results in replacement with one or more rare codons.


In some embodiments, CD results in replacement with one or more less rare codons.


In some embodiments, CD results in replacement with one or more moderate codons.


In some embodiments, CD results in replacement with one or more rare codons, one or more less rare codons, or one or more moderate codons, or any combination of these.


In some embodiments, CD results in replacement with one or more CpG dinucleotides (CpG elements).


In some embodiments, CD results in replacement with one or more UpA (TA) dinucleotides (UpA elements).


In some embodiments, CD results in replacement with one or more CpG and one or more UpA dinucleotides/elements, or any combination of these.


In some embodiments, CD results in replacement with one or more rare codons, one or more less rare codons, or one or more moderate codons, one or more CpG dinucleotides/elements, one or more UpA dinucleotides/elements, or any combination of these.


UpA and CpG dinucleotides can act as a vaccine adjuvant as they are important immunoregulators for the RNA virus immune response. In some embodiments, CpG and/or UpA improve the function of antigen-presenting cells, boost the generation of a vaccine-specific immune response and increase the immunogenicity of administered vaccines. Rare serine codon TCG contains a CpG dinucleotide. Less rare codons CTA, CCG, ACG, GTA, ATA and GCG contain UpA or CpG dinucleotides/elements.


In some embodiments, one or more serine codons are changed. In some embodiments, one or more serine codons are changed to the rare TCG codon. (This codon has the CpG element.)


In some embodiments, one or more proline codons are changed. In some embodiments, one or more proline codons are changed to the less rare CCG codon. (This codon has the CpG element.)


In some embodiments, one or more threonine codons are changed. In some embodiments, one or more threonine codons are changed to the less rare ACG codon. (This codon has the CpG element.)


In some embodiments, one or more isoleucine codons are changed. In some embodiments, one or more isoleucine codons are changed to the less rare ATA codon. (This codon has the UpA element.)


In some embodiments, one or more alanine codons are changed. In some embodiments, one or more alanine codons are changed to the less rare GCG codon. (This codon has the CpG element.)


In some embodiments, one or more arginine codons are changed. In some embodiments, one or more arginine codons are changed to the rare CGT codon or less rare CGA codon. (These codons have the CpG elements.)


In some embodiments, one or more serine codons are changed, one or more proline codons are changed, one or more threonine codons are changed, one or more isoleucine codons are changed, one or more alanine codons are changed, one or more arginine codons are changed, or any combination of these.


In some embodiments, a region between about nucleotide positions 1534 and 8586 of the SARS-COV-2 wild-type genome (the ORF1a region) can be codon deoptimized, or any subrange/subregion located between 1534 and 8586. Any suitable number of amino acid codon changes can be made. In some embodiments, a total of at least about 24 codons are changed. In some embodiments, a total of up to about 546 codons are changed. This includes all whole numbers between 24 and 546, including 24, 25 etc. This also includes all subranges between 24-546, such as 24-50, 50-75, 75-100, etc.


For example, one or more of the amino acid codons shown in Table 11 can be changed/mutated—either individually or in any suitable combination with each other. For example, one or more of the following amino acid codons shown in Table 1b below can be changed/mutated—either individually or in any suitable combination with each other (including different codons for the same amino acid and/or with codons for different amino acids).












TABLE 1b







Number of codon changes in
Percentage of codon changes in


Amino
Change to
the 1534-8586 region for
the 1534-8586 region for that


acid
codon
that particular amino acid
particular amino acid







Ser
TCG, TCC
Approximately 0 to 160,
Approximately 0-100%, including



TCT, TCA
including all integers between
all percentages between 0 and



and/or AGT
0 and 160, preferably at least
100, preferably at least about




about 24, preferably no more
15%, preferably no more than




than about 160.
about 100%.


Arg
CGT, AGG,
Approximately 0 to 43,
Approximately 0-100%, including



CGG, CGC
including all integers between
all percentages between 0 and



and/or CGA
0 and 43, preferably at least
100, preferably at least about




about 11, preferably no more
26%, preferably no more than




than about 40.
about 93%.


Thr
ACG, ACA
Approximately 0 to 187,
Approximately 0-100%, including



and/or ACT
including all integers between
all percentages between 0 and




0 and 187, preferably at least
100, preferably at least about




about 33, preferably no more
18%, preferably no more than




than about 186.
about 99%.


Pro
CCG, CCT
Approximately 0 to 82,
Approximately 0-100%, including



and/or CCA
including all integers between
all percentages between 0 and




0 and 82, preferably at least
100, preferably at least about




about 10, preferably no more
12%, preferably no more than




than about 82.
about 100%.


Val
GTA, GTC
Approximately 0 to 165,
Approximately 0-100%, including



and/or GTT
including all integers between
all percentages between 0 and




0 and 165.
100.


Leu
CTA, CTC,
Approximately 0 to 199,
Approximately 0-100%, including



CTT, TTG
including all integers between
all percentages between 0 and



and/or TTA
0 and 199.
100.


Ala
GCG, GCT
Approximately 0 to 147,
Approximately 0-100%, including



and/or GCA
including all integers between
all percentages between 0 and




0 and 147, preferably at least
100, preferably at least about




about 34, preferably no more
23%, preferably no more than




than about 147.
about 100%.


Ile
ATA and/or
Approximately 0 to 87,
Approximately 0-100%, including



ATT
including all integers between
all percentages between 0 and




0 and 87, preferably no more
100, preferably no more than




than about 82.
about 94%.


Cys
TGT
Approximately 0 to 6,
Approximately 0-100%, including




including all integers between
all percentages between 0 and




0 and 6.
100.


Gly
GGT
Approximately 0 to 41,
Approximately 0-100%, including




including all integers between
all percentages between 0 and




0 and 41, preferably at least
100, preferably at least about




about 8, preferably no more
20%, preferably no more than




than about 41.
about 100%.


His
CAT
Approximately 0 to 13,
Approximately 0-100%, including




including all integers between
all percentages between 0 and




0 and 13.
100.


Tyr
TAT
Approximately 0 to 43
Approximately 0-100%, including




including all integers between
all percentages between 0 and




0 and 43.
100.


Gln
CAA
Approximately 0 to 28,
Approximately 0-100%, including




including all integers between
all percentages between 0 and




0 and 28, preferably at least
100, preferably at least about 4%,




about 1, preferably no more
preferably no more than about




than about 14.
50%.


Trp
TGG
0
0%


Asn
AAT
Approximately 0 to 38,
Approximately 0-100%, including




including all integers between
all percentages between 0 and




0 and 38.
100.


Phe
TTT
Approximately 0 to 22,
Approximately 0-100%, including




including all integers between
all percentages between 0 and




0 and 22.
100.


Asp
GAT
Approximately 0 to 39,
Approximately 0-100%, including




including all integers between
all percentages between 0 and




0 and 39.
100.


Met
ATG
0
0%


Lys
AAA
Approximately 0 to 56,
Approximately 0-100%, including




including all integers between
all percentages between 0 and




0 and 56.
100.


Glu
GAA
Approximately 0 to 41,
Approximately 0-100%, including




including all integers between
all percentages between 0 and




0 and 41.
100.









For example, in some embodiments, the 1534-8586 region can have about 24, 28, 25, 48, 53, 59, 77 or 160 Ser changes to Ser TCG.


For example, in some embodiments, the 1534-8586 region can have about 97 codon changes comprising: about 19 Ile changes to Ile ATA, about 10 Pro changes to Pro CCG, about 34 Thr changes to Thr ACG, and about 34 Ala changes to Ala GCG.


For example, in some embodiments, the codon deoptimized genome can have the deoptimized codons of the fragments/clones/vaccine candidates as shown or as substantially shown in any one of SEQ ID NO:1-31, 33-37 and 39-68, and as shown or as substantially shown in any one of FIGS. 8 to 12 and 22 to 25.


For example, in some embodiments, the codon deoptimized genome can have at least the deoptimized codons of the fragments/clones/vaccine candidates as shown in any one of SEQ ID NO:1-31, 33-37 and 39-68, and as shown or as substantially shown in any one of FIGS. 8 to 12 and 22 to 25.


For example, in some embodiments, the codon deoptimized genome can have fewer than the deoptimized codons of the fragments/clones/vaccine candidates as shown in any one of SEQ ID NO: 1-31, 33-37 and 39-68, and as shown or as substantially shown in any one of FIGS. 8 to 12 and 22 to 25.


For example, in some embodiments, the codon deoptimized genome can have anywhere between about 10% and about 100% of the deoptimized codons of the fragments/clones/vaccine candidates as shown in any one of SEQ ID NO: 1-31, 33-37 and 39-68, and as shown in any one of FIGS. 8 to 12 and 22 to 25, said 10% to 100% range including all integers between 10 and 100, including 11, 12 etc.


In some embodiments, the codon deoptimized genome has the deoptimized region or genomic sequence or substantially the same deoptimized region or genomic sequence of clone SARS-COV-2-77-1, SARS-COV-2-77-2, SARS-COV-2-77-3, SARS-COV-2-77-4, SARS-COV-2-77-5, SARS-COV-2-77-6, SARS-COV-2-77-7, SARS-COV-2-160-1, SARS-COV-2-160-2, SARS-COV-2-160-3, SARS-COV-2-160-4, SARS-COV-2-160-5, SARS-COV-2-160-6, SARS-COV-2-160-7, SARS-COV-2-4N-1 or SARS-COV-2-7N-1, or variant thereof.


In some embodiments, the codon deoptimized genome has the deoptimized region or genomic sequence of clone SARS-COV-2-4N-1, SARS-COV-2-7N-1, SARS-COV-2-77-7, SARS-COV-2-160-4 or SARS-COV-2-160-7, or substantially the same deoptimized region or genomic sequence as clone SARS-COV-2-4N-1, SARS-COV-2-7N-1, SARS-COV-2-77-7, SARS-COV-2-160-4 or SARS-COV-2-160-7, or variant thereof.


In some embodiments, the codon deoptimized genome has the deoptimized region or genomic sequence of clone SARS-COV-2-7N-1 or substantially the same deoptimized region or genomic sequence as clone SARS-COV-2-7N-1, or variant thereof.


In some embodiments, apart from the deoptimized region, a genomic remainder, or part thereof, of the live attenuated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid etc can comprise a sequence identical to, substantially identical to or similar to wild-type SARS-COV-2—i.e. the Wuhan isolate or variant thereof. Suitable variants include present and future variants of the Wuhan strain, including: Alpha, Pango lineage B.1.1.7; Beta, Pango lineages B.1.351, B.1.351.2, B.1.351.3; Gamma, Pango lincages P.1, P.1.1, P.1.2; Delta, Pango lineages B.1.617.2, AY.1, AY.2; Eta, Pango lineage B.1.525; Iota, Pango lineage B.1.526; Kappa, Pango lineage B.1.617.1; Lambda, Pango lineage C.37; and, Pango lineages B.1.427, B.1.429, P.2, P.3, R.1, R.2, B.1.466.2, B.1.621, AV.1, B.1.1.318, B.1.1.519, AT.1, C.36.3, C.36.3.1, B.1.214.2. Typically, a variant will include a mutated Spike gene.


In some embodiments of the genomic remainder, for example, for the live attenuated severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid etc, the Spike gene (or part thereof) of the Wuhan strain can be replaced with the Spike gene of Alpha, Beta, Gamma or Delta variants. All of these can have the Wuhan isolate backbone with the only changes being in the sequence of the Spike gene.


In some embodiments, apart from the deoptimized region, a genomic remainder, or part thereof, of the live attenuated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid etc can comprise a sequence of a genetically modified, recombinant or manufactured SARS-COV-2 genome.


In some embodiments, the chance of deattenuation to wild-type SARS-COV-2 is negligible.


In some embodiments, a recombinant/recombined ORF1a region can be used. In some embodiments, the ORF1a region can be cleaved into at least two, three, four, five, six, seven, eight, nine, ten or more fragments. Preferably, the ORF1a region can be cleaved into at least about three fragments. These ORF1a fragments can be generated using, for example, restriction enzymes. Suitable restriction enzymes include, for example, SanDI, SmaI, AvrII, PacI, SphI and PshAI. Deoptimized fragments can be generated using gene synthesis and restriction enzyme sites as described in FIGS. 4 and 15. Other restriction enzyme sites within ORF1a can be used for generating fragments and can be identified using sequence analysis software.


Any one or more of the ORF1a fragments can be codon deoptimized to any suitable degree. ORF1a can be codon deoptimized prior to being fragmented. Alternatively, ORF1a can be codon deoptimized after being fragmented (or sub-fragmented). A suitable fragment or sub-fragment of ORF1a or fragments or sub-fragments of ORF1a that can be codon deoptimized are shown in FIGS. 2, 3, 14 and 15.


The wild-type fragments and/codon deoptimized fragments can be assembled/ligated together in their natural five to three prime order to create a recombinant/genetically engineered ORF1a having 1, 2, 3 or more codon deoptimized fragment regions. For example, three wild-type and three codon deoptimized fragments can be assembled in different combinations to generate 7 different ORF1a fragment combinations (in addition to wildtype).


In some embodiments, the vaccine can comprise a single clone/vaccine candidate, for example, having the sequence shown in any one of SEQ ID NOs:39-68. In some embodiments, the vaccine can comprise a combination of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14. 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 or 28 clones/vaccine candidates having, for example, sequences shown in any one of SEQ ID NOs:39-68.


In some embodiments, the vaccine can comprise, for example, one or more of clones SARS-COV-2-77-1, SARS-COV-2-77-2, SARS-COV-2-77-3, SARS-COV-2-77-4, SARS-COV-2-77-5, SARS-COV-2-77-6, SARS-COV-2-77-7, SARS-COV-2-160-1, SARS-COV-2-160-2. SARS-COV-2-160-3, SARS-COV-2-160-4, SARS-COV-2-160-5, SARS-COV-2-160-6, SARS-COV-2-160-7. SARS-COV-2-4N-1 and SARS-COV-2-7N-1, or variant thereof.


In some embodiments, the vaccine can comprise one or more of clones SARS-CoV-2-4N-1 and SARS-COV-2-7N-1, or variant thereof.


As mentioned, any suitable region or regions of the SARS-COV-2 genome can be codon deoptimized. In some embodiments, the region of the SARS-COV-2 genome encoding the envelope structural protein (E protein) is codon deoptimized. (Wild type E protein is shown as SEQ ID NO:38.) In some embodiments, both E protein and ORF1a are codon deoptimized. In some embodiments, only part of E protein or all of E protein of the viral genome is codon deoptimized or different parts or sub-regions of E protein of the viral genome are codon deoptimized.


In some embodiments, the E protein putative transmembrane domain is codon deoptimized. In some embodiments, the E protein putative C-terminal protein-protein interaction motif is codon deoptimized. In some embodiments, both the E protein putative transmembrane domain and putative C-terminal protein-protein interaction motif are codon deoptimized.


In some embodiments, CD results in between about 1 and about 75 codon changes in E protein. The 1 to 75 codon change range includes all integers between 1 and 75 including 2, 3 . . . 74 codon changes. In some embodiments, some or all of the codon changes can be situated immediately next to one another, in sequence. In some embodiments, some or all of the codon changes can be spaced apart from each other such that they are not situated immediately next to one another, in sequence—e.g. 3 to 4 codon (triplet) spacing. In some embodiments, some of the codon changes can be spaced apart from each other and some of the codon changes can be situated immediately next to one another.


In some embodiments, CD results in between 1 and about 160 codon changes in E protein. The 1 to 160 codon change range includes all integers between 1 and 160 including 2. 3 . . . 159 codon changes. In some embodiments, some or all of the codon changes are of serine to TCG. Preferably there are 77 codon or 160 codon changes of serine to TCG.


In some embodiments, CD results in between 1 and about 496 codon changes in E protein. The 1 to 496 codon change range includes all integers between 1 and 496 including 2, 3 . . . 495 codon changes. In some embodiments, some of the codon changes are of proline to CCG, and preferably there are 81 proline codons deoptimized to CCG. In some embodiments, some of the codon changes are of threonine to ACG, and preferably there are 186 threonine codons deoptimized to ACG. In some embodiments, some of the codon changes are of isoleucine to ATA, and preferably there are 82 isoleucine codons deoptimized to ATA. In some embodiments, some of the codon changes are of alanine to GCG, and preferably there are 147 alanine codons deoptimized to GCG. In some embodiments, the codon changes are any combination thereof.


In some embodiments, CD results in between 1 and about 546 codon changes in E protein. The 1 to 546 codon change range includes all integers between 1 and 546 including 2. 3 . . . 545 codon changes. In some embodiments, some of the codon changes are of proline to CCG, and preferably there are 82 proline codons deoptimized to CCG. In some embodiments, some of the codon changes are of threonine to ACG, and preferably there are 178 threonine codons deoptimized to ACG. In some embodiments, some of the codon changes are of isoleucine to ATA, and preferably there are 44 isoleucine codons deoptimized to ATA. In some embodiments, some of the codon changes are of alanine to GCG, and preferably there are 147 alanine codons deoptimized to GCG. In some embodiments, some of the codon changes are of arginine to CGT, and preferably there are 40 arginine codons deoptimized to CGT. In some embodiments, some of the codon changes are of glycine to GGT, and preferably there are 41 glycine codons deoptimized to GGT. In some embodiments, some of the codon changes are of glutamine to CAA, and preferably there are 14 glutamine codons deoptimized to CAA. In some embodiments, the codon changes are any combination thereof.


In some embodiments, CD of E protein results in reduced neurovirulence.


The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-CoV-2 nucleic acid comprising a partly codon deoptimized SARS-COV-2 genome can be of any suitable form and can be prepared in any suitable way. Likewise, the recombinant, isolated or substantially purified nucleic acid comprising a partly codon deoptimized SARS-COV-2 genome or partly codon deoptimized region thereof can be prepared in any suitable way. Such techniques are described elsewhere in this specification (e.g. see below), the entire contents of which are incorporated herein by way of reference.


Likewise, a vaccine, vaccination dose, pharmaceutical preparation or immunogenic composition comprising the above can be of any suitable form and can be prepared in any suitable way. Such techniques are described elsewhere in this specification, the entire contents of which are incorporated herein by way of reference.


In addition to a live attenuated SARS-COV-2 vaccine, pharmaceutical preparation or immunogenic composition, the present invention encompasses SARS-COV-2 particles, nucleic acid and genetic vaccines that comprise a partly codon deoptimized SARS-COV-2 genome in the form of a nucleic acid. The nucleic acid can be DNA or RNA that is self-replicating/self-amplifying once used for vaccination. The nucleic acid can relate to the SARS-CoV-2 genome or SARS-COV-2 anti-genome. The nucleic acid can relate to positive-sense genomic RNA, negative-strand genomic RNA, or cDNA encoding the SARS-COV-2 genome. Such techniques are described in the following references, the entire contents of which are incorporated herein by way of cross-reference: (Karl Ljungberg & Peter Liljeström (2015) Self-replicating alphavirus RNA vaccines, Expert Review of Vaccines, 14:2, 177-194, DOI: 10.1586/14760584.2015.965690; Rodríguez-Gascón A, del Pozo-Rodríguez A, Solinís MA (2014) Development of nucleic acid vaccines: use of self-amplifying RNA in lipid nanoparticles. Int J Nanomedicine. 9: 1833-1843; US 2014/0112979 A1.


The vaccine, pharmaceutical preparation or immunogenic composition can comprise live virus or temporarily inactivated virus, provided that it is self-replicating/self-amplifying after vaccination. If inactivated, it can be inactivated in any suitable way (e.g. using high or low temperatures, radiation or chemically).


The vaccine, pharmaceutical preparation or immunogenic composition can comprise a delivery system or carrier or aid, and these can be of any suitable form and can be prepared in any suitable way. Suitable examples include a plasmid, genetic construct or vector to assist with self-replication/self-amplification, an RNA nanocarrier for RNA delivery, and lipid-based formulations for delivery, including liposomes, nanoemulsions and solid lipid nanoparticles.


In some embodiments, the vaccine can be prepared by way of passing SARS-COV-2 through a filter, such as a 0.22 μm hydrophilic PVDF membrane or hydrophilic Polyethersulfone membrane.


Manufacturing a vaccine can comprise growing/propagating the virus in Vero cells or Vero E6 cells. These cells can be used in large-scale bioreactors. However, it may be possible to grow the virus using other cell types, tissue culture methods and mediums.


In some embodiments, the vaccine can be stored long term and remain viable at a temperature of between about 2° C. and about −80° C. (including all 1 degree increments between 2 and −80, including 1, 0, −1, −2 . . . −79). By “long-term” it is meant that the vaccine can remain viable for at least 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 or 60 days. In some embodiments, it is possible that the vaccine can remain viable for more than 60 days. In some embodiments, it is possible that the vaccine can remain viable for 1 year, 2 years or more, especially if freeze dried and stored at 2-8 degrees Celsius.


The live attenuated virus can be in the form of an isolate. The isolate may comprise cells, such as mammalian or other types of cells—e.g. Vero cells.


The method of preventing the subject from contracting a viral infection, treating a subject having a viral infection, or reducing the severity of a viral disease, can be carried out in any suitable way.


A ‘SARS-COV-2-like virus’ as used herein refers to a virus closely related to SARS-COV-2. SARS-COV-2 natural variants, SARS COV 1, MERS-COV and other human coronaviruses, especially betacoronaviruses, may be closely related viruses.


A ‘SARS-COV-2-like infection’ as used herein refers to an infection caused by a virus closely related to SARS-COV-2.


A ‘SARS-COV-2-like disease’ as used herein refers to a disease caused by a virus closely related to SARS-COV-2, including betacoronaviruses. Severe acute respiratory syndrome 1 (SARS 1) and Middle-East respiratory syndrome (MERS) are examples of SARS-CoV-2-like diseases.


The vaccine, live attenuated virus, pharmaceutical preparation and immunogenic composition (described hereafter as “the compositions”) can be administered independently, either systemically or locally, by any method standard in the art, for example, subcutaneously, intravenously, parenterally, intraperitoneally, intradermally, intramuscularly, topically, orally or nasally. The compositions are preferably administered subcutaneously.


The compositions can comprise conventional non-toxic, physiologically or pharmaceutically acceptable ingredients or vehicles suitable for the method of administration and are well known to an individual having ordinary skill in this art. If required, the compositions can, for example, comprise an adjuvant. The adjuvant can be, for example, an aluminium salt (e.g. aluminium hydroxide), monophosphoryl lipid A, or emulsion of water and oil (e.g. MF59). In some embodiments, no adjuvant is required. The term “pharmaceutically acceptable carrier” as used herein is intended to include diluents such as saline and aqueous buffer solutions. The compositions can be in aqueous, lyophilized, freeze-dried or frozen form. If freeze-dried, the composition can be reconstituted with diluent.


A variety of devices are known in the art for delivery of the compositions including, but not limited to, syringe and needle injection, bifurcated needle administration, administration by intradermal patches or pumps, intradermal needle-free jet delivery (intradermal etc.), intradermal particle delivery, or aerosol powder delivery.


The compositions can be administered independently one or more times to achieve, maintain or improve upon a desired effect/result. It is well within the skill of an artisan to determine dosage or whether a suitable dosage of the composition comprises a single administered dose or multiple administered doses. An appropriate dosage depends on the subject's health, the induction of immune response and/or prevention of infection caused by the SARS-COV-2, the route of administration and the formulation used. For example, a therapeutically active amount of the compound may vary according to factors such as the disease state, age, sex, and weight of the subject, and the ability of the composition to elicit a desired response in the subject. Dosage regime may be adjusted to provide the optimum therapeutic response. For example, a subject may be administered a ‘booster’ vaccination one, two, three, four or more weeks following the initial administration. For example, a subject may be administered a titre of 104 PFU attenuated virus per dose.


The vector, plasmid or genetic construct can also be prepared in any suitable way. Suitably, the genetic construct is in the form of, or comprises genetic components of, a plasmid, bacteriophage, a cosmid, a yeast or bacterial artificial chromosome as are well understood in the art. Genetic constructs may also be suitable for maintenance and propagation of the nucleic acid in bacteria or other host cells, for manipulation by recombinant DNA technology. For the purposes of protein expression, the genetic construct is an expression construct. Suitably, the expression construct comprises the one or more nucleic acids operably linked to one or more additional sequences, such as heterologous sequences, in an expression vector. An “expression vector” may be either a self-replicating extra-chromosomal vector such as a plasmid, or a vector that integrates into a host genome. By “operably linked” is meant that said additional nucleotide sequence(s) is/are positioned relative to the nucleic acid of the invention preferably to initiate, regulate or otherwise control transcription. Regulatory nucleotide sequences will generally be appropriate for the host cell or tissue where expression is required. Numerous types of appropriate expression vectors and suitable regulatory sequences are known in the art for a variety of host cells. Typically, said one or more regulatory nucleotide sequences may include, but are not limited to, promoter sequences, leader or signal sequences, ribosomal binding sites, transcriptional start and termination sequences, translational start and termination sequences, and enhancer or activator sequences. Constitutive or inducible promoters as known in the art are contemplated by the invention. The expression construct may also include an additional nucleotide sequence encoding a fusion partner (typically provided by the expression vector) so that the recombinant protein of the invention is expressed as a fusion protein. In some embodiments the genetic construct is suitable for virus production and in other embodiments for DNA vaccination of a mammal, such as a human.


The cell (mammalian or other) or isolate comprising the vector, plasmid, genetic construct or virus can be prepared in any suitable way.


Suitable protocols for carrying out one or more of the above-mentioned techniques can be found in “Current Protocols in Molecular Biology”. July 2008, JOHN WILEY AND SONS; D. M. WEIR ANDCC BLACKWELL, “Handbook Of Experimental Immunology”, vol. I-IV. 1986; JOHN E. COLIGAN, ADA M. KRUISBEEK, DAVID H. MARGULIES, ETHAN M. SHEVACH, WARREN STROBER, “Current Protocols in Immunology”, 2001, JOHN WILEY & SONS; “Immunochemical Methods In Cell And Molecular Biology”, 1987, ACADEMIC PRESS; SAMBROOK ET AL., “Molecular Cloning: A Laboratory Manual, 3d cd.,”, 2001, COLD SPRING HARBOR LABORATORY PRESS; “Vaccine Design, Methods and Protocols”, Volume 2, Vaccines for Veterinary Diseases, Sunil Thomas in Methods in Molecular Biology (2016); and, “Vaccine Design, Methods and Protocols”, Volume 1: Vaccines for Human Diseases, Sunil Thomas in Methods in Molecular Biology (2016), the entire contents of which are incorporated herein by way of reference.


Any suitable type of subject can be used. The subject can be any suitable mammal. Mammals include humans, primates, livestock and farm animals (e.g. horses, sheep and pigs), companion animals (e.g. dogs and cats), and laboratory test animals including rats, mice, rabbits, hamsters and ferrets, including transgenic animals (e.g. human ACE2 receptor transgenic mice). The subject can be a bat, pangolin or other wild animal that could be a host for the coronavirus. The subject is preferably human.


‘Nucleic acid’ as used herein includes ‘polynucleotide’, ‘oligonucleotide’, and ‘nucleic acid molecule’, and generally means a polymer of DNA or RNA, which can be single-stranded or double-stranded, synthesized or obtained (e.g. isolated and/or purified) from natural sources, which can contain natural, non-natural or altered nucleotides, and which can contain a natural, non-natural or altered internucleotide linkage, such as a phosphoroamidate linkage or a phosphorothioate linkage, instead of the phosphodiester found between the nucleotides of an unmodified oligonucleotide.


As used herein, context permitting, the term ‘recombinant’ refers to (i) molecules that are constructed outside living cells by joining natural or synthetic nucleic acid segments to nucleic acid molecules that can replicate in a living cell, or (ii) molecules that result from the replication of those described in (i) above. For purposes herein, the replication can be in vitro replication or in vivo replication. As used herein, context permitting, the term ‘recombinant’ refers to the condition of having been genetically modified. That is, a ‘recombinant virus genome’ means that the virus genome has been genetically engineered. In this sense: live attenuated SARS-COV-2 (comprising a partly codon deoptimized SARS-COV-2 genome) can be called recombinant live attenuated SARS-COV-2; SARS-COV-2 can be called recombinant SARS-COV-2; SARS-COV-2 particle can be called recombinant SARS-CoV-2 particle; and SARS-COV-2 nucleic acid can be called recombinant SARS-COV-2 nucleic acid.


The terms ‘isolated’ or ‘purified’ as used herein mean essentially free of association with other biological components/contaminants, e.g. as a naturally occurring protein that has been separated from cellular and other contaminants by the use of antibodies or other methods or as a purification product of a recombinant host cell culture. By ‘substantially the same’ or ‘substantially as shown’, it is meant that it is different yet essentially the same, differing in a minor way to make no significant practical or functional difference.


Amino acids are referred to herein interchangably by their name, IUPAC code or three letter code. See Table 1C.













TABLE 1C









Three




IUPAC
letter



Amino Acid
code
code









Alanine
A
Ala



Cysteine
C
Cys



Aspartic Acid
D
Asp



Glutamic Acid
E
Glu



Phenylalanine
F
Phe



Glycine
G
Gly



Histidine
H
His



Isoleucine
I
Ile



Lysine
K
Lys



Leucine
L
Leu



Methionine
M
Met



Asparagine
N
Asn



Proline
P
Pro



Glutamine
Q
Gln



Arginine
R
Arg



Serine
S
Ser



Threonine
T
Thr



Valine
V
Val



Tryptophan
W
Trp



Tyrosine
Y
Tyr










Preferred embodiments of the invention are defined in the following numbered paragraphs:

    • 1. Live attenuated severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid comprising a partly codon deoptimized SARS-COV-2 genome.
    • 2. A recombinant, isolated or substantially purified nucleic acid comprising a partly codon deoptimized SARS-COV-2 genome or partly codon deoptimized region thereof.
    • 3. A vector (or plasmid or genetic construct) containing the nucleic acid of the second paragraph.
    • 4. A cell or isolate containing the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of the first paragraph, the nucleic acid of the second paragraph, or the vector (or plasmid or genetic construct) of the third paragraph.
    • 5. A vaccine comprising the live attenuated SARS-COV-2, SARS-COV-2, SARS-CoV-2 particle or SARS-COV-2 nucleic acid of the first paragraph, the recombinant, isolated or substantially purified nucleic acid of the second paragraph, the vector (or plasmid or genetic construct) of the third paragraph, or the cell or isolate of the fourth paragraph.
    • 6. A pharmaceutical preparation comprising the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of the first paragraph, the recombinant, isolated or substantially purified nucleic acid of the second paragraph, the vector (or plasmid or genetic construct) of the third paragraph, or the cell or isolate of the fourth paragraph.
    • 7. An immunogenic composition comprising the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of the first paragraph, the recombinant, isolated or substantially purified nucleic acid of the second paragraph, the vector (or plasmid or genetic construct) of the third paragraph, or the cell or isolate of the fourth paragraph.
    • 8. A method of: (1) vaccinating a subject; (2) prophylactically immunizing a subject against SARS-COV-2 or SARS-COV-2-like virus; (3) preventing a subject from contracting a SARS-COV-2 infection naturally or a SARS-COV-2-like infection naturally; (4) reducing the severity of a natural SARS-COV-2 disease or natural SARS-COV-2-like disease in a subject; or (5) treating a subject having a natural SARS-COV-2 infection or natural SARS-CoV-2-like infection, said method comprising the step of administering to the subject: the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of the first paragraph; the recombinant, isolated or substantially purified nucleic acid of the second paragraph; the vector (or plasmid or genetic construct) of the third paragraph; the cell or isolate of the fourth paragraph; the vaccine of the fifth paragraph; the pharmaceutical preparation of the sixth paragraph; or the immunogenic composition of the seventh paragraph.
    • 9. Use of: the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of the first paragraph; the recombinant, isolated or substantially purified nucleic acid of the second paragraph; the vector (or plasmid or genetic construct) of the third paragraph; the cell or isolate of the fourth paragraph; the vaccine of the fifth paragraph; the pharmaceutical preparation of the sixth paragraph; or the immunogenic composition of the seventh paragraph, in the preparation of a medicament for: (1) vaccinating a subject; (2) prophylactically immunizing a subject against SARS-COV-2 or SARS-COV-2-like virus; (3) preventing a subject from contracting a SARS-COV-2 infection naturally or a SARS-COV-2-like infection naturally; (4) reducing the severity of a natural SARS-COV-2 disease or natural SARS-COV-2-like disease in a subject; or (5) treating a subject having a natural SARS-COV-2 infection or natural SARS-COV-2-like infection.
    • 10. Live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-CoV-2 nucleic acid of the first paragraph; a recombinant, isolated or substantially purified nucleic acid of the second paragraph; a vector (or plasmid or genetic construct) of the third paragraph; a cell or isolate of the fourth paragraph; a vaccine of the fifth paragraph; a pharmaceutical preparation of the sixth paragraph; or an immunogenic composition of the seventh paragraph, for use in: (1) vaccinating a subject; (2) prophylactically immunizing a subject against SARS-COV-2 or SARS-COV-2-like virus; (3) preventing a subject from contracting a SARS-COV-2 infection naturally or a SARS-COV-2-like infection naturally; (4) reducing the severity of a natural SARS-COV-2 disease or natural SARS-COV-2-like disease in a subject; or (5) treating a subject having a natural SARS-COV-2 infection or natural SARS-CoV-2-like infection.
    • 11. A method of generating a live attenuated SARS-COV-2 vaccine, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid, or recombinant, isolated or substantially purified nucleic acid comprising a partly codon deoptimized SARS-COV-2 genome or partly codon deoptimized region thereof, comprising the step of partly codon deoptimizing a SARS-COV-2 genome.
    • 12. A method of preparing a vaccine comprising live attenuated SARS-COV-2, said method comprising the steps of: (1) codon deoptimizing a SARS-COV-2 genome to produce a partly codon deoptimized live attenuated SARS-COV-2; and (2) enabling the partly codon deoptimized live attenuated SARS-COV-2 to replicate.
    • 13. A method of preparing a vaccine comprising codon deoptimized SARS-COV-2, said method comprising the steps of: optionally, (1) codon deoptimizing a SARS-COV-2 genome to produce a partly codon deoptimized live attenuated SARS-COV-2; (2) enabling the partly codon deoptimized live attenuated SARS-COV-2 to replicate; and (3) preparing a vaccine dose containing the replicated SARS-COV-2 of step (2).
    • 14. A method of eliciting an immune response in a subject, said method including the step of administering to the subject the live attenuated SARS-COV-2, SARS-COV-2, SARS-CoV-2 particle or SARS-COV-2 nucleic acid of the first paragraph; the recombinant, isolated or substantially purified nucleic acid of the second paragraph; the vector (or plasmid or genetic construct) of the third paragraph; the cell or isolate of the fourth paragraph; the vaccine of the fifth paragraph; the pharmaceutical preparation of the sixth paragraph; or the immunogenic composition of the seventh paragraph, to thereby elicit an immune response.
    • 15. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of changes within the ORF1a region of the virus.
    • 16. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of changes within the ORF1a region of the virus, excluding the 5′ region and/or 3′ region of ORF1a.
    • 17. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of changes within the ORF1a region of the virus, wherein preferably the changes comprise one or more fragments or sub-regions of ORF1a being codon deoptimized.
    • 18. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein at least one codon for an amino acid with high codon degeneracy is changed to a synonymous codon that is used least frequently, moderately, less rarely, or rarely in the genome of Homo sapiens.
    • 19. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein codon deoptimization results in between about 10 and about 1850 codon changes in ORF1a.
    • 20. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein codon deoptimization results in replacement with one or more rare codons, one or more less rare codons, or one or more moderate codons, one or more CpG dinucleotides/elements, one or more UpA dinucleotides/elements, or any combination of these.
    • 21. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein codon deoptimization results in one or more serine codons being changed, one or more proline codons being changed, one or more threonine codons being changed, one or more isoleucine codons being changed, one or more alanine codons being changed, one or more arginine codons being changed, or any combination of these.
    • 22. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein codon deoptimization results in one or more serine codons being changed to the rare TCG codon.
    • 23. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein codon deoptimization results in one or more proline codons being changed to the less rare CCG codon.
    • 24. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein codon deoptimization results in one or more threonine codons being changed to the less rare ACG codon.
    • 25. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein codon deoptimization results in one or more isoleucine codons being changed to the less rare ATA codon.
    • 26. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein codon deoptimization results in one or more alanine codons being changed to the less rare GCG codon.
    • 27. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein codon deoptimization results in one or more arginine codons being changed to the rare CGT codon.
    • 28. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein the partly codon deoptimized SARS-COV-2 genome comprises the deoptimized codons of the clones/vaccine candidates as shown or as substantially shown in any one of SEQ ID NO:39-68, and as shown or as substantially shown in any one of FIGS. 8 to 12 and 22 to 25.
    • 29. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein the partly codon deoptimized SARS-COV-2 genome comprises at least the deoptimized codons of the clones/vaccine candidates as shown or as substantially shown in any one of SEQ ID NO:39-68, and as shown or as substantially shown in any one of FIGS. 8 to 12 and 22 to 25.
    • 30. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein the partly codon deoptimized SARS-COV-2 genome comprises fewer than the deoptimized codons of the clones/vaccine candidates as shown or as substantially shown in any one of SEQ ID NO:39-68, and as shown or as substantially shown in any one of FIGS. 8 to 12 and 22 to 25.
    • 31. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein the partly codon deoptimized SARS-COV-2 genome comprises anywhere between about 10% and about 100% of the deoptimized codons of the clones/vaccine candidates as shown or as substantially shown in any one of SEQ ID NO:39-68, and as shown or as substantially shown in any one of FIGS. 8 to 12 and 22 to 25.
    • 32. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein the partly codon deoptimized SARS-COV-2 genome comprises one or more codon changes as listed in Table 1b or in Table 11.
    • 33. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein the partly codon deoptimized SARS-COV-2 genome comprises the sequence or substantially the same sequence of clone SARS-COV-2-77-1, SARS-COV-2-77-2, SARS-COV-2-77-3, SARS-COV-2-77-4, SARS-COV-2-77-5, SARS-COV-2-77-6, SARS-COV-2-77-7, SARS-COV-2-160-1, SARS-COV-2-160-2, SARS-COV-2-160-3, SARS-COV-2-160-4, SARS-COV-2-160-5, SARS-COV-2-160-6, SARS-COV-2-160-7, SARS-COV-2-4N-1 or SARS-COV-2-7N-1 or any variant thereof (eg. SARS-COV-2-4N-1-Alpha (B1.1.7), SARS-COV-2-4N-1-Beta (B1.351), SARS-COV-2-4N-1-Gamma (P1), SARS-CoV-2-4N-1-Delta, SARS-COV-2-7N-1-Alpha (B1.1.7), SARS-COV-2-7N-1-Beta (B1.351), SARS-COV-2-7N-1-Gamma (P1), or SARS-COV-2-7N-1-Delta).
    • 34. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein the partly codon deoptimized SARS-COV-2 genome comprises the sequence of clone SARS-COV-2-4N-1 or variant thereof or clone SARS-COV-2-7N-1 or variant thereof, or substantially the same sequence as clone SARS-COV-2-4N-1 or variant thereof or clone SARS-COV-2-7N-1 or variant thereof (eg. SARS-COV-2-4N-1-Alpha (B1.1.7), SARS-COV-2-4N-1-Beta (B1.351), SARS-COV-2-4N-1-Gamma (P1), SARS-COV-2-4N-1-Delta, SARS-COV-2-7N-1-Alpha (B1.1.7), SARS-COV-2-7N-1-Beta (B1.351), SARS-COV-2-7N-1-Gamma (P1), or SARS-COV-2-7N-1-Delta).
    • 35. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein the vaccine, the pharmaceutical preparation, or the immunogenic composition comprises freeze-dried/lyophilized infectious virus that can be reconstituted prior to administration.
    • 36. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein the vaccine is administered by subcutaneous injection or inhalation, intranasally or orally.
    • 37. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein the vaccine, the pharmaceutical preparation, or the immunogenic composition comprises a single clone/vaccine candidate having the sequence shown in any one of SEQ ID NOs:39-68.
    • 38. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein the vaccine, the pharmaceutical preparation, or the immunogenic composition comprises a combination of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 or 28 clones/vaccine candidates with sequences shown in any one of SEQ ID NOs:39-68.
    • 39. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein the vaccine, the pharmaceutical preparation, or the immunogenic composition comprises one or more of clones SARS-COV-2-77-1. SARS-COV-2-77-2. SARS-COV-2-77-3, SARS-COV-2-77-4, SARS-COV-2-77-5, SARS-COV-2-77-6, SARS-COV-2-77-7, SARS-COV-2-160-1, SARS-COV-2-160-2, SARS-COV-2-160-3, SARS-COV-2-160-4, SARS-COV-2-160-5, SARS-COV-2-160-6, SARS-COV-2-160-7, SARS-COV-2-4N-1 and SARS-COV-2-7N-1 or any variant thereof (eg. SARS-COV-2-4N-1-Alpha (B1.1.7), SARS-COV-2-4N-1-Beta (B1.351), SARS-COV-2-4N-1-Gamma (P1), SARS-COV-2-4N-1-Delta, SARS-COV-2-7N-1-Alpha (B1.1.7), SARS-COV-2-7N-1-Beta (B1.351), SARS-COV-2-7N-1-Gamma (P1), or SARS-COV-2-7N-1-Delta).
    • 40. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein the vaccine, the pharmaceutical preparation, or the immunogenic composition comprises one or more of clones SARS-COV-2-4N-1 and SARS-COV-2-7N-1 or any variant thereof (eg. SARS-COV-2-4N-1-Alpha (B1.1.7), SARS-COV-2-4N-1-Beta (B1.351), SARS-COV-2-4N-1-Gamma (P1), SARS-COV-2-4N-1-Delta, SARS-COV-2-7N-1-Alpha (B1.1.7), SARS-COV-2-7N-1-Beta (B1.351), SARS-COV-2-7N-1-Gamma (P1), or SARS-COV-2-7N-1-Delta).
    • 41. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein a genomic remainder has the sequence of the Wuhan strain or a natural variant thereof, or a genetically modified variant thereof.
    • 42. The invention as defined in any one or more of the preceding paragraphs, wherein the genomic remainder has the sequence of any one of Alpha, Pango lineage B.1.1.7; Beta, Pango lineages B.1.351, B.1.351.2, B.1.351.3; Gamma, Pango lincages P.1, P.1.1, P.1.2; Delta, Pango lineages B.1.617.2, AY.1, AY.2; Eta, Pango lineage B.1.525; Iota, Pango lineage B.1.526; Kappa, Pango lineage B.1.617.1; Lambda, Pango lineage C.37; and, Pango lineages B.1.427, B.1.429, P.2, P.3, R.1, R.2, B.1.466.2, B.1.621, AV.1, B.1.1.318, B.1.1.519, AT.1, C.36.3, C.36.3.1, B.1.214.2.
    • 43. The invention as defined in any one or more of the preceding paragraphs, wherein the vaccine, the pharmaceutical preparation, or the immunogenic composition comprises one or more of clones SARS-COV-2-4N-1-Alpha (B1.1.7), SARS-COV-2-4N-1-Beta (B1.351), SARS-COV-2-4N-1-Gamma (P1), SARS-COV-2-4N-1-Delta, SARS-COV-2-7N-1-Alpha (B1.1.7), SARS-COV-2-7N-1-Beta (B1.351), SARS-COV-2-7N-1-Gamma (P1), or SARS-COV-2-7N-1-Delta.
    • 44. The invention as defined in any one or more of the preceding paragraphs (context permitting), wherein the envelope structural protein (E protein) is codon deoptimized or further codon deoptimized.


Yet further preferred embodiments of the invention are defined in the following numbered paragraphs:

    • 1. A live attenuated severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid comprising a partly codon deoptimized SARS-COV-2 genome.
    • 2. A recombinant, isolated or substantially purified nucleic acid comprising a partly codon deoptimized SARS-COV-2 genome or partly codon deoptimized region thereof.
    • 3. A vector, plasmid or genetic construct comprising the nucleic acid of paragraph 2.
    • 4. A cell or isolate containing the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of paragraph 1, the nucleic acid of paragraph 2, or the vector, plasmid or genetic construct of paragraph 3.
    • 5. A vaccine comprising the live attenuated SARS-COV-2, SARS-COV-2, SARS-CoV-2 particle or SARS-COV-2 nucleic acid of paragraph 1, the recombinant, isolated or substantially purified nucleic acid of paragraph 2, the vector, plasmid or genetic construct of paragraph 3, or the cell or isolate of paragraph 4.
    • 6. A pharmaceutical preparation comprising the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of paragraph 1, the recombinant, isolated or substantially purified nucleic acid of paragraph 2, the vector, plasmid or genetic construct of paragraph 3, or the cell or isolate of paragraph 4.
    • 7. An immunogenic composition comprising the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of paragraph 1, the recombinant, isolated or substantially purified nucleic acid of paragraph 2, the vector, plasmid or genetic construct of paragraph 3, or the cell or isolate of the paragraph 4.
    • 8. A method of: (1) vaccinating a subject; (2) prophylactically immunizing a subject against SARS-COV-2 or SARS-COV-2-like virus; (3) preventing a subject from contracting a SARS-COV-2 infection naturally or a SARS-COV-2-like infection naturally; (4) reducing the severity of a natural SARS-COV-2 disease or natural SARS-COV-2-like disease in a subject; (5) treating a subject having a natural SARS-COV-2 infection or natural SARS-CoV-2-like infection; or (6) eliciting an immune response in a subject, said method comprising the step of administering to the subject: the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of paragraph 1; the recombinant, isolated or substantially purified nucleic acid of paragraph 2; the vector, plasmid or genetic construct of paragraph 3; the cell or isolate of the paragraph 4; the vaccine of paragraph 5; the pharmaceutical preparation of paragraph 6; or the immunogenic composition of paragraph 7.
    • 9. Use of: the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of paragraph 1; the recombinant, isolated or substantially purified nucleic acid of paragraph 2; the vector, plasmid or genetic construct of paragraph 3; the cell or isolate of paragraph 4; the vaccine of paragraph 5; the pharmaceutical preparation of paragraph 6; or the immunogenic composition of paragraph 7, in the preparation of a medicament for: (1) vaccinating a subject; (2) prophylactically immunizing a subject against SARS-COV-2 or SARS-COV-2-like virus; (3) preventing a subject from contracting a SARS-COV-2 infection naturally or a SARS-COV-2-like infection naturally; (4) reducing the severity of a natural SARS-COV-2 disease or natural SARS-COV-2-like disease in a subject; (5) treating a subject having a natural SARS-COV-2 infection or natural SARS-COV-2-like infection; or (6) eliciting an immune response in a subject.
    • 10. A live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of paragraph 1; a recombinant, isolated or substantially purified nucleic acid of paragraph 2; a vector, plasmid or genetic construct of paragraph 3; a cell or isolate of paragraph 4; a vaccine of paragraph 5; a pharmaceutical preparation of paragraph 6; or an immunogenic composition of paragraph 7, for use in: (1) vaccinating a subject; (2) prophylactically immunizing a subject against SARS-COV-2 or SARS-COV-2-like virus; (3) preventing a subject from contracting a SARS-COV-2 infection naturally or a SARS-COV-2-like infection naturally; (4) reducing the severity of a natural SARS-COV-2 disease or natural SARS-COV-2-like disease in a subject; (5) treating a subject having a natural SARS-COV-2 infection or natural SARS-COV-2-like infection; or (6) eliciting an immune response in a subject.
    • 11. A method of generating a live attenuated SARS-COV-2 vaccine, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid, or recombinant, isolated or substantially purified nucleic acid comprising a partly codon deoptimized SARS-COV-2 genome or partly codon deoptimized region thereof, comprising the step of partly codon deoptimizing a SARS-COV-2 genome.
    • 12. A method of preparing a vaccine comprising live attenuated SARS-COV-2, said method comprising the steps of: (1) codon deoptimizing a SARS-COV-2 genome to produce a partly codon deoptimized live attenuated SARS-COV-2; and (2) enabling the partly codon deoptimized live attenuated SARS-COV-2 to replicate.
    • 13. A method of preparing a vaccine comprising codon deoptimized SARS-COV-2, said method comprising the steps of: optionally, (1) codon deoptimizing a SARS-COV-2 genome to produce a partly codon deoptimized live attenuated SARS-COV-2; (2) enabling the partly codon deoptimized live attenuated SARS-COV-2 to replicate; and (3) preparing a vaccine dose containing the replicated SARS-COV-2 of step (2).
    • 14. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of paragraph 1; the recombinant, isolated or substantially purified nucleic acid of paragraph 2; the vector, plasmid or genetic construct of paragraph 3; the cell or isolate of paragraph 4; the vaccine of paragraph 5; the pharmaceutical preparation of paragraph 6; the immunogenic composition of paragraph 7; the method of paragraph 8; the use of paragraph 9; the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-CoV-2 nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, plasmid or genetic construct, the cell or isolate, the vaccine, the pharmaceutical preparation or the immunogenic composition for use in paragraph 10; the method of paragraph 11; the method of paragraph 12; or, the method of paragraph 13,
    • wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of codon changes within the ORF1a region of SARS-COV-2.
    • 15. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of paragraph 14; the recombinant, isolated or substantially purified nucleic acid of paragraph 14; the vector, plasmid or genetic construct of paragraph 14; the cell or isolate of paragraph 14; the vaccine of paragraph 14; the pharmaceutical preparation of paragraph 14; the immunogenic composition of paragraph 14; the use of paragraph 14; the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, plasmid or genetic construct, the cell or isolate, the vaccine, the pharmaceutical preparation or the immunogenic composition for use in paragraph 14; or, the method of paragraph 14,
    • wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of codon changes within the ORF1a region of SARS-COV-2, excluding the 5′ region of ORF1 and/or excluding the 3′ region of ORF1a corresponding to the ribosomal frameshift region; or
    • wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of codon changes within the ORF1a region of SARS-COV-2 corresponding to between about nucleotide position 1534 and about nucleotide position 8586 of the wild-type Wuhan SARS-CoV-2 genome.
    • 16. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of paragraph 14 or 15; the recombinant, isolated or substantially purified nucleic acid of paragraph 14 or 15; the vector, plasmid or genetic construct of paragraph 14; the cell or isolate of paragraph 14 or 15; the vaccine of paragraph 14 or 15; the pharmaceutical preparation of paragraph 14 or 15; the immunogenic composition of paragraph 14 or 15; the use of paragraph 14 or 15; the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, plasmid or genetic construct, the cell or isolate, the vaccine, the pharmaceutical preparation or the immunogenic composition for use in paragraph 14 or 15; or, the method of paragraph 14 or 15,
    • wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of codon changes within the ORF1a region of SARS-COV-2 corresponding to:
    • (1) between about nucleotide position 1534 and about nucleotide position 4254 of the wild-type Wuhan SARS-COV-2 genome;
    • (2) between about nucleotide position 4254 and about nucleotide position 6982 of the wild-type Wuhan SARS-COV-2 genome;
    • (3) between about nucleotide position 6982 and about nucleotide position 8586 of the wild-type Wuhan SARS-COV-2 genome;
    • (4) between about nucleotide position 8586 and about nucleotide position 11165 of the wild-type Wuhan SARS-COV-2 genome;
    • (5) between about nucleotide position 11165 and about nucleotide position 12718 of the wild-type Wuhan SARS-COV-2 genome; or
    • (6) any combination of (1) to (5).
    • 17. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of any one of paragraphs 14-16; the recombinant, isolated or substantially purified nucleic acid of any one of paragraphs 14-16; the vector, plasmid or genetic construct of any one of paragraphs 14-16; the cell or isolate of any one of paragraphs 14-16; the vaccine of any one of paragraphs 14-16; the pharmaceutical preparation of any one of paragraphs 14-16; the immunogenic composition of any one of paragraphs 14-16; the use of any one of paragraphs 14-16; the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, plasmid or genetic construct, the cell or isolate, the vaccine, the pharmaceutical preparation or the immunogenic composition for use in any one of paragraphs 14-16; or, the method of any one of paragraphs 14-16,
    • wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of between about 10 and about 1850 codon changes within the ORF1a region; or
    • wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of between about 24 and about 546 codon changes within the ORF1a region.
    • 18. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of any one of paragraphs 14-17; the recombinant, isolated or substantially purified nucleic acid of any one of paragraphs 14-17; the vector, plasmid or genetic construct of any one of paragraphs 14-17; the cell or isolate of any one of paragraphs 14-17; the vaccine of any one of paragraphs 14-17; the pharmaceutical preparation of any one of paragraphs 14-17; the immunogenic composition of any one of paragraphs 14-17; the use of any one of paragraphs 14-17; the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, plasmid or genetic construct, the cell or isolate, the vaccine, the pharmaceutical preparation or the immunogenic composition for use in any one of paragraphs 14-17; or, the method of any one of paragraphs 14-17,
    • wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of codon changes to synonymous codons that are used less frequently, moderately, less rarely, and/or rarely in the genome of Homo sapiens; or
    • wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of codon changes to one or more rare codons, one or more less rare codons, one or more moderate codons, one or more codons containing CG (CpG) dinucleotides, one or more codons containing UA (UpA) dinucleotides, or any combination thereof.
    • 19. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of any one of paragraphs 14-18; the recombinant, isolated or substantially purified nucleic acid of any one of paragraphs 14-18; the vector, plasmid or genetic construct of any one of paragraphs 14-18; the cell or isolate of any one of paragraphs 14-18; the vaccine of any one of paragraphs 14-18; the pharmaceutical preparation of any one of paragraphs 14-18; the immunogenic composition of any one of paragraphs 14-18; the use of any one of paragraphs 14-18; the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, plasmid or genetic construct, the cell or isolate, the vaccine, the pharmaceutical preparation or the immunogenic composition for use in any one of paragraphs 14-18; or, the method of any one of paragraphs 14-18,
    • wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of synonymous codon changes whereby one or more Ser codons are changed, one or more Arg codons are changed, one or more Thr codons are changed, one or more Pro codons are changed, one or more Val codons are changed, one or more Leu codons are changed, one or more Ala codons are changed, one or more Ile codons are changed, one or more Cys codons are changed, one or more Gly codons are changed, one or more His codons are changed, one or more Gln codons are changed, one or more Trp codons are changed, one or more Asn codons are changed, one or more Phe codons are changed, one or more Asp codons are changed, one or more Phe codons are changed, one or more Lys codons are changed, one or more Glu codons are changed, or any combination thereof.
    • 20. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of any one of paragraphs 14-19; the recombinant, isolated or substantially purified nucleic acid of any one of paragraphs 14-19; the vector, plasmid or genetic construct of any one of paragraphs 14-19; the cell or isolate of any one of paragraphs 14-19; the vaccine of any one of paragraphs 14-19; the pharmaceutical preparation of any one of paragraphs 14-19; the immunogenic composition of any one of paragraphs 14-19; the use of any one of paragraphs 14-19; the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, plasmid or genetic construct, the cell or isolate, the vaccine, the pharmaceutical preparation or the immunogenic composition for use in any one of paragraphs 14-19; or, the method of any one of paragraphs 14-19,
    • wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of synonymous codon changes whereby:
    • one or more Ser codons are changed to the rare TCG codon;
    • one or more proline codons are changed to the less rare CCG codon;
    • one or more threonine codons are changed to the less rare ACG codon;
    • one or more isoleucine codons are changed to the less rare ATA codon;
    • one or more alanine codons are changed to the less rare GCG codon; and/or
    • one or more arginine codons are changed to the rare CGT codon or less rare CGA codon.
    • 21. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of any one of paragraphs 14-20; the recombinant, isolated or substantially purified nucleic acid of any one of paragraphs 14-20; the vector, plasmid or genetic construct of any one of paragraphs 14-20; the cell or isolate of any one of paragraphs 14-20; the vaccine of any one of paragraphs 14-20; the pharmaceutical preparation of any one of paragraphs 14-20; the immunogenic composition of any one of paragraphs 14-20; the use of any one of paragraphs 14-20; the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, plasmid or genetic construct, the cell or isolate, the vaccine, the pharmaceutical preparation or the immunogenic composition for use in any one of paragraphs 14-20; or, the method of any one of paragraphs 14-20,
    • wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of codon changes within the ORF1a region of SARS-COV-2 comprising:
    • a deoptimized nucleotide sequence as shown or substantially as shown in any one of SEQ ID NO:33-37;
    • a deoptimized nucleotide sequence as shown or substantially as shown in any one of SEQ ID NO:39-68;
    • a deoptimized nucleotide sequence as shown or substantially as shown in any one of FIGS. 22 to 25;
    • a deoptimized nucleotide sequence as shown in any one of SEQ ID NO:33-37 but with up to 10% fewer or up to 10% (including 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10%) more codon changes than shown;
    • a deoptimized nucleotide sequence as shown in any one of SEQ ID NO:39-68 but with up to 10% fewer or up to 10% (including 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10%) more codon changes than shown; or
    • a deoptimized nucleotide sequence as shown in any one of FIGS. 22 to 25 but with up to 10% fewer or up to 10% (including 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10%) more codon changes than shown.
    • 22. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of any one of paragraphs 14-20; the recombinant, isolated or substantially purified nucleic acid of any one of paragraphs 14-20; the vector, plasmid or genetic construct of any one of paragraphs 14-20; the cell or isolate of any one of paragraphs 14-20; the vaccine of any one of paragraphs 14-20; the pharmaceutical preparation of any one of paragraphs 14-20; the immunogenic composition of any one of paragraphs 14-20; the use of any one of paragraphs 14-20; the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, plasmid or genetic construct, the cell or isolate, the vaccine, the pharmaceutical preparation or the immunogenic composition for use in any one of paragraphs 14-20; or, the method of any one of paragraphs 14-20,
    • wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of codon changes as listed in Table 1b, either individually or in combination with each other, or in Table 11, either individually or in combination with each other.
    • 23. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of any one of paragraphs 14-20; the recombinant, isolated or substantially purified nucleic acid of any one of paragraphs 14-20; the vector, plasmid or genetic construct of any one of paragraphs 14-20; the cell or isolate of any one of paragraphs 14-20; the vaccine of any one of paragraphs 14-20; the pharmaceutical preparation of any one of paragraphs 14-20; the immunogenic composition of any one of paragraphs 14-20; the use of any one of paragraphs 14-20; the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, plasmid or genetic construct, the cell or isolate, the vaccine, the pharmaceutical preparation or the immunogenic composition for use in any one of paragraphs 14-20; or, the method of any one of paragraphs 14-20,
    • wherein the partly codon deoptimized SARS-COV-2 genome comprises the nucleotide sequence or substantially the same nucleotide sequence as clone SARS-COV-2-77-1 (or the sequence of SEQ ID NO:39), SARS-COV-2-77-2 (or the sequence of SEQ ID NO:40), SARS-COV-2-77-3 (or the sequence of SEQ ID NO:41), SARS-COV-2-77-4 (or the sequence of SEQ ID NO:42), SARS-COV-2-77-5 (or the sequence of SEQ ID NO:43), SARS-COV-2-77-6 (or the sequence of SEQ ID NO:44), SARS-COV-2-77-7 (or the sequence of SEQ ID NO:45), SARS-COV-2-160-1 (or the sequence of SEQ ID NO:46), SARS-COV-2-160-2 (or the sequence of SEQ ID NO:47), SARS-COV-2-160-3 (or the sequence of SEQ ID NO:48), SARS-COV-2-160-4 (or the sequence of SEQ ID NO:49), SARS-COV-2-160-5 (or the sequence of SEQ ID NO:50), SARS-COV-2-160-6 (or the sequence of SEQ ID NO:51), SARS-COV-2-160-7 (or the sequence of SEQ ID NO:52), SARS-COV-2-4N-1 (or the sequence of SEQ ID NO:53) or SARS-COV-2-7N-1 (or the sequence of SEQ ID NO:60), or any variant thereof (eg. SARS-COV-2-4N-1-Alpha (B1.1.7), SARS-COV-2-4N-1-Beta (B1.351), SARS-CoV-2-4N-1-Gamma (P1), SARS-COV-2-4N-1-Delta, SARS-COV-2-7N-1-Alpha (B1.1.7), SARS-COV-2-7N-1-Beta (B1.351), SARS-COV-2-7N-1-Gamma (P1), or SARS-COV-2-7N-1-Delta).
    • 24. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of any one of paragraphs 14-20; the recombinant, isolated or substantially purified nucleic acid of any one of paragraphs 14-20; the vector, plasmid or genetic construct of any one of paragraphs 14-20; the cell or isolate of any one of paragraphs 14-20; the vaccine of any one of paragraphs 14-20; the pharmaceutical preparation of any one of paragraphs 14-20; the immunogenic composition of any one of paragraphs 14-20; the use of any one of paragraphs 14-20; the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, plasmid or genetic construct, the cell or isolate, the vaccine, the pharmaceutical preparation or the immunogenic composition for use in any one of paragraphs 14-20; or, the method of any one of paragraphs 14-20,
    • wherein the partly codon deoptimized SARS-COV-2 genome comprises the nucleotide sequence of clone SARS-COV-2-7N-1, or substantially the same nucleotide sequence as clone SARS-COV-2-7N-1, or any variant thereof (eg. SARS-COV-2-7N-1-Alpha (B1.1.7), SARS-COV-2-7N-1-Beta (B1.351), SARS-COV-2-7N-1-Gamma (P1), or SARS-CoV-2-7N-1-Delta).
    • 25. A vaccine comprising live attenuated SARS-COV-2, SARS-COV-2, SARS-CoV-2 particle or SARS-COV-2 nucleic acid comprising a partly codon deoptimized SARS-CoV-2 genome, wherein the partly codon deoptimized SARS-COV-2 genome comprises the nucleotide sequence of clone SARS-COV-2-7N-1 or the sequence of SEQ ID NO:60, or substantially the same nucleotide sequence as clone SARS-COV-2-7N-1 or the sequence of SEQ ID NO:60, or any variant thereof (eg. SARS-COV-2-7N-1-Alpha (B1.1.7), SARS-COV-2-7N-1-Beta (B1.351), SARS-COV-2-7N-1-Gamma (P1), or SARS-COV-2-7N-1-Delta).
    • 26. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of any one of paragraphs 14-20; the recombinant, isolated or substantially purified nucleic acid of any one of paragraphs 14-20; the vector, plasmid or genetic construct of any one of paragraphs 14-20; the cell or isolate of any one of paragraphs 14-20; the vaccine of any one of paragraphs 14-20; the pharmaceutical preparation of any one of paragraphs 14-20; the immunogenic composition of any one of paragraphs 14-20; the use of any one of paragraphs 14-20; the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, plasmid or genetic construct, the cell or isolate, the vaccine, the pharmaceutical preparation or the immunogenic composition for use in any one of paragraphs 14-20; or, the method of any one of paragraphs 14-20,
    • wherein a genomic remainder has the sequence of the Wuhan strain or a natural variant thereof, or a genetically modified variant thereof, such as the sequence of any one of Alpha, Pango lineage B.1.1.7; Beta, Pango lineages B.1.351, B.1.351.2, B.1.351.3; Gamma, Pango lineages P.1, P.1.1, P.1.2; Delta, Pango lineages B.1.617.2, AY.1, AY.2; Eta, Pango lineage B.1.525; Iota, Pango lineage B.1.526; Kappa, Pango lineage B.1.617.1; Lambda, Pango lineage C.37; and, Pango lincages B.1.427, B.1.429, P.2, P.3, R.1, R.2, B.1.466.2, B.1.621, AV.1, B.1.1.318, B.1.1.519, AT.1, C.36.3, C.36.3.1, B.1.214.2, or
    • wherein the vaccine, the pharmaceutical preparation, or the immunogenic composition comprises one or more of clones SARS-COV-2-4N-1-Alpha (B1.1.7), SARS-CoV-2-4N-1-Beta (B1.351), SARS-COV-2-4N-1-Gamma (P1), SARS-COV-2-4N-1-Delta, SARS-COV-2-7N-1-Alpha (B1.1.7), SARS-COV-2-7N-1-Beta (B1.351), SARS-COV-2-7N-1-Gamma (P1), or SARS-COV-2-7N-1-Delta.


Any of the features described herein can be combined in any combination with any one or more of the other features described herein within the scope of the invention.


EXAMPLES
Example 1—Construction of First-Generation Codon-Deoptimized SARS-COV-2 Vaccines

The experimental steps described in Examples 1-5 are summarised in the flowchart of FIG. 7.


We are using codon deoptimization technology to make multiple mutations in the non-structural proteins (ORF1a region, N-terminal part of replicase) of SARS-COV-2, representing the virus isolate from Wuhan. See FIG. 1.


The ORF1a region was chosen because its deoptimization automatically results in the reduction of ORF1b expression as well while at the same time there is no change in the ratio of ORF1a/ORF1b products.


Regions required for known RNA based replication and expression (e.g. packaging, frame shift) are protected or excluded from deoptimization as this may hamper vital functions of the virus. Proteins expressed via subgenomic RNAs were considered as bad targets for deoptimization due to possible misfolding of protein (e.g. Spike-protein) and possibility of compensation of translation defect by increase of corresponding subgenomic RNA synthesis. The packaging signal of coronaviruses is outside ORF1a (in the 3′ of ORF1b), so it is not affected by this approach. The region encoding major antigens and structural protein has a complex expression pattern, which is a characteristic of the order Nidovirales. Codon deoptimization in this region is a possibility, but is not the first option as this region may not tolerate such modifications.


We are using a compact strategy (deoptimized codons in regions close to each other and not scattered over a large region) as this is technically the most straightforward approach.


We have designed clones/vaccine candidates to allow for substitution of the Spike-protein region, which is the main viral antigen. For design of deoptimized fragments, we know from our previous experience with Zika virus (Mutso M, Saul S, Rausalu K, et al. Reverse genetic system, genetically stable reporter viruses and packaged subgenomic replicon based on a Brazilian Zika virus isolate. J Gen Virol. 2017; 98(11):2712-2724. doi: 10.1099/jgv.0.000938) that deoptimization of 35% of the viral genome resulted in severely attenuated virus. Based on this experience, for SARS-COV-2 the deoptimized region should be approximately 12 kbp. We have prepared clones/vaccine candidates with deoptimized regions of about 2, 4, 6, 8 and 12 kb regions in length.


In contrast to an optimization process, which can be done using free software or online tools, there is no publicly available program for CD. Therefore, it was done manually. Every codon in ORF1a was analyzed in terms of its usage frequency in Homo sapiens. If the codon was frequent it was manually changed to a synonymous but the less used one. For instance, amino acid Leucine (Leu) can be encoded by six different codons with the following frequencies: UUA—15%, UUG—12%, CUU—12%, CUC—10%, CUA—5%, and CUG —46%. If the Leu codon in the original sequence was represented by highly abundant CUG (46%), it was changed to rare CUA (5%). Some codons were left unchanged: Methionine (Met) and Tryptophan (Trp) as both of them are encoded by only one codon; and, Asparagine (Asn) and Aspartic acid (Asn) as their codons are used at almost the same frequency.


The positions of nucleotides changed due to the deoptimization of ORF1a are seen in SEQ ID NOS: 1-31 as well as in the FIGS. 8-12.


Example 2—Generation of First Generation SARS-COV-2 Constructs

See FIGS. 1-4, FIG. 3 in particular. The cDNA encoding the virus genome was split into 5 fragments: 1 (shown as 1L and 1R), 2, 3, 4 and 5. The fragments were obtained from GenScript, and are flanked by unique restriction sites: SanD1 (position 1524), PacI (position 8586), Mlu1 (position 13956), Bsu36I (position 18176) and BamHI (position 25313) which allowed ordered assembly of a full construct using the two methods described below in Example 3.


The ORF1a region was selected for codon deoptimization, but excluding the 5′ and 3′ regions (ribosomal frameshift region). Fragment 2 and the 5′ region of fragment 3 were codon deoptimized. See FIG. 3. Combined, the length of the deoptimized region is 11,186 bp/nucleotides long.


As it is not known how much deoptimization the virus can tolerate and how much is necessary for attenuation, the ORF1a region was split into 5 sub-fragments. Deoptimized and wild-type/non-deoptimized sub-fragments alike can be directionally joined/assembled in different combinations using enzymes SmaII (position 4254), AvrII (position 6982), PacI (position 8586), SphI (position 11165) and PshAI (position 12718) cleavage sites. See FIGS. 3 and 4. From five wildtype (‘W’) and five deoptimized (‘D’) sub-fragments, one can generate 31 different combinations (in addition to wild-type) from sub-fragments 2A, 2B, 2C, 3A and 3B. The 31 recombinant clones/vaccine candidates that were generated are described below. ‘D’ denotes deoptimized, and ‘W’ denotes wildtype and therefore not deoptimized.

    • Clone pCCI-4K-SARS-COV-2-DDDDD. All five sub-fragments (2A, 2B, 2C, 3A, 3B) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-DDDDW. The first four sub-fragments (2A, 2B, 2C, 3A) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-DDDWD. Sub-fragments one, two, three, and five (2A, 2B, 2C. 3B) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-DDDWW. The first three sub-fragments (2A, 2B, 2C) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-DDWDD. Sub-fragments one, two, four, and five (2A, 2B, 3A, 3B) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-DDWDW. Sub-fragments one, two, and four (2A, 2B, 3A) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-DDWWD, Sub-fragments one, two, and five (2A, 2B, 3B) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-DDWWW. The first two sub-fragments (2A, 2B) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-DWDDD. The first, third, fourth, and fifth sub-fragments (2A, 2C, 3A, 3B) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-DWDDW. The first, third, and fourth sub-fragments (2A, 2C, 3A) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-DWDWD. The first, third, and fifth sub-fragments (2A, 2C, 3B) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-DWDWW. The first and third sub-fragments (2A, 2C) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-DWWDD. The first, fourth, and fifth sub-fragments (2A, 3A, 3B) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-DWWDW. The first and fourth sub-fragments (2A, 3A) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-DWWWD. The first and fifth sub-fragments (2A, 3B) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-DWWWW. The first sub-fragment (2A) was deoptimized.
    • Clone pCCI-4K-SARS-COV-2-WDDDW. The second, third, and fourth sub-fragments (2B, 2C, 3A) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-WDDWD. The second, third, and fifth sub-fragments (2B, 2C, 3B) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-WDDWW. The second and third sub-fragments (2B, 2C) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-WDWDD. The second, fourth, and fifth sub-fragments (2B, 3A, 3B) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-WDWDW. The second and fourth sub-fragments (2B, 3A) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-WDWWD. The second and fifth sub-fragments (2B, 3B) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-WDWWW. The second sub-fragment (2B) was deoptimized.
    • Clone pCCI-4K-SARS-COV-2-WWDDD. The last three sub-fragments (2C, 3A, 3B) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-WWDDW. The third and fourth sub-fragments (2C, 3A) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-WWDWD. The third and fifth sub-fragments (2C, 3B) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-WWDWW. The third sub-fragment (2C) was deoptimized.
    • Clone pCCI-4K-SARS-COV-2-WWWDD. The last two sub-fragments (3A, 3B) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2-WWWDW. The fourth sub-fragment (3A) was deoptimized.
    • Clone pCCI-4K-SARS-COV-2-WWWWD. The last sub-fragment (3B) was deoptimized.
    • Clone pCCI-4K-SARS-COV-2-WDDDD. The last four sub-fragments (2B, 2C, 3A, 3B) were deoptimized.
    • Clone pCCI-4K-SARS-COV-2. No sub-fragment was deoptimized.


Example 3—Transfection Strategy for Obtaining Infectious First Generation Virus or Vaccine Candidates

See FIG. 2. Five fragments of the SARS-COV-2 genome (containing the 5 sub-fragments of ORF1a) were either (1) ligated within a bacterial artificial chromosome (BAC) vector pCC1-4K to form a genetic construct and expressed to obtain infectious virus or vaccine candidates, or (2) five fragments of the SARS-COV-2 genome (containing the 5 sub-fragments) were ligated together without cloning and expressed to obtain infectious virus or vaccine candidates. For (1), cytomegalovirus (CMV) promoter was placed at the 5′ end of SARS-COV-2 clone and hepatitis delta virus ribozyme (HDV Rz) and simian virus 40 terminator (SV40 p(A)) were placed at the 3′ end. These elements are needed for transcription in transfected cells and to rescue infectious virus and vaccine candidates from cDNA plasmid.


That is, we are using two ways to generate infectious virus or vaccine candidates: i) assemble all 5 sub-fragments into a single clone/genetic construct/vector (containing all fragments of the SARS-COV-2 genome) and use it for transfection (this is the preferred option); or, ii) ligate all 5 sub-fragments into a single clone (containing all fragments of the SARS-CoV-2 genome) and use the ligated product for transfection without cloning (this is the backup option). For option i) a full-length infectious clone of SARS-COV-2 was assembled in a bacterial artificial chromosome as previously described for SARS-COV-1 (Enjuanes L, Zuñiga S, Castaño-Rodriguez C, Gutierrez-Alvarez J, Canton J, Sola I. Molecular Basis of Coronavirus Virulence and Vaccine Development. Adv Virus Res. 2016; 96:245-286. doi: 10.1016/bs.aivir.2016.08.003) and for Zika virus (Mutso M. Saul S, Rausalu K. et al. Reverse genetic system, genetically stable reporter viruses and packaged subgenomic replicon based on a Brazilian Zika virus isolate. J Gen Virol. 2017; 98(11):2712-2724. doi: 10.1099/jgv.0.000938). For option ii) a split system as described by Scobey and colleagues (Scobey T, Yount B L, Sims A C, et al. Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc Natl Acad Sci USA. 2013; 110(40): 16157-16162. doi: 10.1073/pnas. 1311542110) was used.


Minimising the passaging (viral production in cells) of mutant virus will reduce the chances of reversions. Genetic stability testing can be carried out, for example, by testing the phenotype of the mutant virus after 10 rounds of passage in vitro. Sequencing also will demonstrate the base changes in the virus genome over this time. We have inserted multiple mutations into the vaccine candidate, which means that the chance of complete reversion is negligible.


Example 4—Test results

The deoptimized SARS-COV-2 infectious first generation vaccine candidate clones of the earlier Example were respectively transfected into BHK21 cells using lipofectamine LTX according to manufacturer's instructions. The BHK21 cells were cultured overnight at 37° C. with 5% CO2 for 1 hour and then transferred to Vero E6 cells. However, no viruses could be rescued from any of the deoptimized infectious clones, suggesting the infectious clones were over deoptimized. For this reason, further vaccine CD candidates were constructed.


Example 5—Further Construction of Second Generation SARS-COV-2 Vaccine Candidates Using Codon-Deoptimized Technology

The experimental results of Example 4 showed that the virus cannot tolerate a certain degree or type of deoptimization. In view of the failure of these first generation candidates, further second generation clones/vaccine candidates were constructed and tested using four different CD strategies. See FIGS. 13-16. The positions of nucleotides changed due to the deoptimization of ORF1a are seen in SEQ ID NOS:39-68 as well as in FIGS. 22 to 25.


The experimental steps described in the following Examples are summarised in the flowchart of FIG. 16.


Example 6—Generation of Second Generation SARS-COV-2 Constructs

See FIGS. 13 to 15. The cDNA encoding the virus genome was split into 3 fragments: 1, 2 and 3. The fragments were obtained from GenScript, and are flanked by unique restriction sites: SanDI (position 1534), SmaI (position 4254), AvrII (position 6982) and PacI (position 8586) which allowed ordered assembly of a full construct using the two methods described below.


The ORF1a region was selected for codon deoptimization, but excluding the 5′ and 3′ regions (ribosomal frameshift region).


Deoptimized and wild-type/non-deoptimized fragments alike can be directionally joined/assembled in different combinations using enzymes SmaI (position 4254) and AvrII (position 6982) cleavage sites. See FIGS. 14 and 15. From three wildtype (‘W’) and three deoptimized (‘D’) fragments, one can generate 7 different combinations (in addition to wild-type).


Strategy 1—Generation of Construct SARS-COV-2-77

This deoptimization strategy was used to bring in the rarest codon in Homo species, and increase the CpG element that was shown to be an important immunoregulator for RNA virus immune response.


About half of the serine amino acids present in the deoptimization region were targeted to replace with the rare serine codon TCG. 77 (of 160) codons of serine were selected to be deoptimized to TCG. TCG codons have a CpG element that is known to be an important immunoregulator for RNA virus immune response. Thus, the deoptimization of serine to TCG also increased the frequency of the CpG element in the fragment.


This resulted in the generation of 7 recombinant clones/vaccine candidates:

    • Clone SARS-COV-2-77-1 (‘77-1’): Variation 1: deoptimization between AvrII to PacI.
    • Clone SARS-COV-2-77-2 (‘77-2’): Variation 2: deoptimization between SmaI to AvrII.
    • Clone SARS-COV-2-77-3 (‘77-3’): Variation 3: deoptimization between SanDI to SmaI.
    • Clone SARS-COV-2-77-4 (‘77-4’): Variation 4: deoptimization between SanDI to AvrII.
    • Clone SARS-COV-2-77-5 (‘77-5’): Variation 5: deoptimization between SanDI to SmaI and AvrII to PacI.
    • Clone SARS-COV-2-77-6 (‘77-6’): Variation 6: deoptimization between SmaI to PacI.
    • Clone SARS-COV-2-77-7 (‘77-7’): Variation 7: deoptimization between SanDI to PacI.
    • Tentatively the best vaccine candidate using this strategy is SARS-COV-2-77-7 (‘77-7’) (SEQ ID NO:45). Fragments 1, 2 and 3 of SARS-COV-2-77-7 have been deoptimized.


Strategy 2—Generation of Construct SARS-COV-2-160

This deoptimization strategy was used to bring in the rarest codon in Homo species, and increase the CpG element that was shown to be an important immunoregulator for RNA virus immune response.


All of the serine amino acids present in the deoptimization region were targeted to replace with the rare codon TCG. 160 codons of serine were selected to be deoptimized to TCG.


This resulted in the generation of 7 recombinant clones/vaccine candidates:

    • SARS-COV-2-160-1 (‘160-1’): Variation 1: deoptimization between AvrII to PacI.
    • SARS-COV-2-160-2 (‘160-2’): Variation 2: deoptimization between SmaI to AvrII.
    • SARS-COV-2-160-3 (‘160-3’): Variation 3: deoptimization between SanDI to SmaI.
    • SARS-COV-2-160-4 (‘160-4’): Variation 4: deoptimization between SanDI to AvrII.
    • SARS-COV-2-160-5 (‘160-5’): Variation 5: deoptimization between SanDI to SmaI and AvrII to PacI.
    • SARS-COV-2-160-6 (‘160-6’): Variation 6: deoptimization between SmaI to PacI.
    • SARS-COV-2-160-7 (‘160-7’): Variation 7: deoptimization between SanDI to PacI.
    • Tentatively the best vaccine candidate using this strategy is SARS-COV-2-160-7 (‘160-7’) (SEQ ID NO:52). SARS-COV-2-160-7 has CD in fragments 1, 2 and 3.


Strategy 3—Generation of Construct SARS-COV-2-4N

This deoptimization strategy was used to bring in the less rare codons in Homo species, and increase the CpG element that was shown to be important immunoregulators for RNA virus immune response.


The amino acids isoleucine, proline, threonine and alanine present in the deoptimization region were targeted to replace with less rare codons. 81 codons for proline were selected to be deoptimized to CCG. 186 codons for threonine were selected to be deoptimized to ACG. 82 codons for isoleucine were selected to be deoptimized to ATA. 147 codons for alanine were selected to be deoptimized to GCG.


If all 3 fragments were deoptimized there would be a total of 496 codon changes. This resulted in the generation of 7 recombinant clones/vaccine candidates:

    • SARS-COV-2-4N-1 (‘4N-1’): Variation 1: deoptimization between AvrII to PacI.
    • SARS-COV-2-4N-2 (‘4N-2’): Variation 2: deoptimization between SmaI to AvrII.
    • SARS-COV-2-4N-3 (‘4N-3’): Variation 3: deoptimization between SanDI to SmaI.
    • SARS-COV-2-4N-4 (‘4N-4’): Variation 4: deoptimization between SanDI to AvrII.
    • SARS-COV-2-4N-5 (‘4N-5’): Variation 5: deoptimization between SanDI to SmaI and AvrII to PacI.
    • SARS-COV-2-4N-6 (‘4N-6’): Variation 6: deoptimization between SmaI to PacI.
    • SARS-COV-2-4N-7 (‘4N-7’): Variation 7: deoptimization between SanDI to PacI.


However, only one candidate could be rescued using this strategy, being SARS-CoV-2-4N-1 (‘4N-1’) (SEQ ID NO:53) The remaining 6 were dead clones. Only fragment 3 of SARS-COV-2-4N-1 has been deoptimized, there were 97 codon changes.


Strategy 4—Generation of Construct SARS-COV-2-7N

This deoptimization strategy was used to selectively bring in less rare codons in Homo species, and increase the CpG element that was shown to be an important immunoregulator for RNA virus immune response.


The amino acids isoleucine, proline, threonine, alanine, arginine, glycine and glutamine present in the deoptimization region were targeted to replace with moderate codons. 82 codons for proline were selected to be deoptimized to CCG. 178 codons for threonine were selected to be deoptimized to ACG. 44 codons for isoleucine were selected to be deoptimized to ATA. 147 codons for alanine were selected to be deoptimized to GCG. 40 codons of arginine were selected to be deoptimized to CGT. 41 codons of glycine were selected to be deoptimized to GGT. 14 codons of glutamine were selected to be deoptimized to CAA.


If all 3 fragments were deoptimized there would be a total of 546 codon changes. This resulted in the generation of 7 recombinant clones/vaccine candidates:

    • SARS-COV-2-7N-1 (‘7N-1’): Variation 1: deoptimization between AvrII to PacI.
    • SARS-COV-2-7N-2 (‘7N-2’): Variation 2: deoptimization between SmaI to AvrII.
    • SARS-COV-2-7N-3 (‘7N-3’): Variation 3: deoptimization between SanDI to SmaI.
    • SARS-COV-2-7N-4 (‘7N-4’): Variation 4: deoptimization between SanDI to AvrII.
    • SARS-COV-2-7N-5 (‘7N-5’): Variation 5: deoptimization between SanDI to SmaI and AvrII to PacI.
    • SARS-COV-2-7N-6 (‘7N-6’): Variation 6: deoptimization between SmaI to PacI.
    • SARS-COV-2-7N-7 (‘7N-7’): Variation 7: deoptimization between SanDI to PacI.


However, only one candidate could be rescued using this strategy, being SARS-CoV-2-7N-1 (‘7N-1’) (SEQ ID NO:60). The remaining 6 were dead clones. Only fragment 3 of SARS-COV-2-7N-1 has been deoptimized; there being 97 codon changes.


Summary of CD Ranges:





    • SARS-COV-2-77 group: minimum codon replacement: SARS-COV-2-77-3 (deoptimization in fragment 1) has 24 Ser codon replacements; maximum codon replacement: SARS-COV-2-77-7 (deoptimization in fragment 1+2+3) has 77 Ser codon replacements.

    • SARS-COV-2-160 group: minimum codon replacement: SARS-COV-2-160-3 (deoptimization in fragment 1) has 48 Ser codon replacements; maximum codon replacement: SARS-COV-2-160-7 (deoptimization in fragment 1+2+3) has 160 Ser codon replacements.

    • SARS-COV-2-4N group: minimum codon replacement: SARS-COV-2-4N-1 (deoptimization in fragment 3) has 97 codon replacements; maximum codon replacement: SARS-COV-2-4N-7 (deoptimization in fragment 1+2+3) has 496 codon replacements.

    • SARS-COV-2-7N group: minimum codon replacement: SARS-COV-2-7N-1 (deoptimization in fragment 3) has 97 codon replacements; maximum codon replacement: SARS-COV-2-7N-7 (deoptimization in fragment 1+2+3) has 546 codon replacements.





The clones were prepared as generally depicted in FIGS. 13 to 15. Three fragments of the SARS-COV-2 genome were ligated within a bacterial artificial chromosome (BAC) vector pCC1-4K to create a genetic construct and expressed to obtain infectious virus or vaccine candidates. A cytomegalovirus (CMV) promoter was placed at the 5′ end of SARS-CoV-2 clone and hepatitis delta virus ribozyme (HDV Rz) and simian virus 40 terminator (SV40 p(A)) were placed at the 3′ end. These elements are needed for transcription in transfected cells and to rescue infectious virus and vaccine candidates from cDNA plasmid.


The full-length infectious clone of SARS-COV-2 was assembled in a bacterial artificial chromosome as previously described for SARS-COV-1 (Enjuanes L, Zuñiga S. Castaño-Rodriguez C, Gutierrez-Alvarez J, Canton J, Sola I. Molecular Basis of Coronavirus Virulence and Vaccine Development. Adv Virus Res. 2016; 96:245-286. doi: 10.1016/bs.aivir.2016.08.003) and for Zika virus (Mutso M, Saul S, Rausalu K, et al. Reverse genetic system, genetically stable reporter viruses and packaged subgenomic replicon based on a Brazilian Zika virus isolate. J Gen Virol. 2017; 98(11):2712-2724. doi: 10.1099/jgv.0.000938). Alternatively, a split system as described by Scobey and colleagues (Scobey T. Yount B L, Sims A C, et al. Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc Natl Acad Sci USA. 2013; 110(40): 16157-16162. doi: 10.1073/pnas.1311542110) was used.


Example 7—Transformation and Purification of Second Generation SARS-COV-2 Infectious Clones

This Example describes the transformation and purification of SARS-COV-2 infectious clones from EPI300 bacterial cells (TransforMax™ EPI300™ E. coli).


Part I: SARS-COV-2 Plasmid Transformation

Prepare 250 μl of SOC medium without antibiotic for each transformation to be performed. Maintain the medium at room temperature. Pre-chill 1.5 ml tubes on ice/at 4° C. and heat a water bath to 42° C. Thaw TransforMax EPI300 Chemically Competent E. coli cells on ice. Mix by gentle tapping. Use the cells immediately. Transfer 1-5 μl of DNA and 50 μl of cells to a pre-chilled 1.5 ml tube and incubate on ice for 30 minutes. Transfer the tubes to the water bath at 42° C. and heat shock for 30 seconds. Transfer the cells back to ice and cool for 2 minutes. Add 250 μl of SOC medium to each tube. Allow cells to recover by incubating at 37° C. for 60 minutes in a shaking incubator at 220-230 rpm. Plate the cells on LB agar plate with 12.5 μg/ml chloramphenicol and culture overnight at 37° C. Pick single E. coli colony from the plate and culture in LB medium with 12.5 μg/ml chloramphenicol overnight at 37° C. in a shaking incubator at 220-230 rpm. Preserve the transformed E. coli culture by mixing with sterile glycerol to obtain a final concentration of 20% glycerol. Store glycerol stocks at −80° C.


Part II: Purification of SARS-COV-2 Infectious Clone

Inoculate 0.5 ml of E. coli stock in 250 ml SOY medium and culture overnight at 37° C. in a shaking incubator at 220-230 rpm. Add 750 ml of fresh SOY medium with 12.5 μg/ml chloramphenicol and 1 ml of the Copy Control Induction Solution. Incubate the culture at 37° C. in a shaking incubator with vigorous shaking for 5 hours. Collect cells by centrifugation at 2000 g for 10 min at 4° C. Resuspend the cells in 100 ml Resuspension Buffer RES-EF. Add 100 ml Lysis Buffer LYS-EF, mix carefully by inverting the tube for 4-5 times, incubate for 5 min at room temperature. Add 100 ml Neutralization Buffer NEU-EF, mix thoroughly by inverting the tube for 4-5 times. Centrifuge at 5000 g for 5 min at 4° C. to pellet cell debris. Filter the supernatant through 70 μm mesh cell strainer. Add 300 ml isopropanol to the filtered supernatant and mix well. Centrifuge at 6000 g for 15 min at 4° C. Discard the supernatant. Treat the white pellet as bacterial pellet and follow purification method according the instructions of NucleoBond Xtra Midi EF, Midi kit for endotoxin-free plasmid DNA.


Twenty-eight recombinant clones/vaccine candidates were constructed (SEQ ID NOs:39-66) and 16 recombinant clones/vaccine candidates were rescued. These were: SARS-COV-2-77-1. SARS-COV-2-77-2, SARS-COV-2-77-3, SARS-COV-2-77-4, SARS-COV-2-77-5, SARS-COV-2-77-6, SARS-COV-2-77-7 (‘Vaccine 77-7’), SARS-COV-2-160-1, SARS-COV-2-160-2, SARS-COV-2-160-3. SARS-COV-2-160-4 (‘Vaccine 160-4’), SARS-COV-2-160-5, SARS-COV-2-160-6, SARS-COV-2-160-7 (‘Vaccine 160-7’), SARS-COV-2-4N-1 (‘Vaccine 4N-1’) and SARS-COV-2-7N-1 (‘Vaccine 7N-1’).


Example 8—Generation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) from Full Length DNA Infectious Second Generation Clones

The Example describes the generation of passage 0 (zero) SARS-COV-2 stocks from a full-length DNA infectious clone as described in Example 7.


Day 1—Plating Cells

Seed BHK cells in a T25 flask(s) at ˜1.5-2×106 cells in DMEM growth medium (DMEM+5% FCS) and incubate overnight at 37° C. with 5% CO2.


Day 2—Transfection

Measure the concentration of the DNA infectious clone plasmid on a Nanodrop spectrophotometer instrument. Approximately 10 μg of DNA is sufficient to perform the transfection. Set up tubes with 5-10 ml of F10SC disinfectant for liquid waste and pipette tip decontamination. In a sterile 1.5 ml tube dilute 20 μl Lipofectamine LTX Reagent in 500 μl Opti-MEM medium. In a separate sterile 1.5 ml tube dilute 10 μl PLUS Reagent in 500 μl Opti-MEM medium. Add 10 μg DNA into the tube with diluted PLUS reagent and mix gently. Add the diluted Lipofectamine LTX to the tube with diluted PLUS reagent/DNA and mix gently. Incubate for 20 minutes at room temperature. After incubation, remove the media from the BHK flask(s). Add the Lipofectamine LTX/PLUS reagent/DNA mixture drop-wise to the flask of BHK cells (˜1 ml). Add 4 ml DMEM transfection medium (DMEM+1% FCS) to the flask(s) and mix gently. Incubate the flask(s) at 37° C. with 5% CO2 for 24 hours. Seed Vero E6 cells in a T25 flask(s) at ˜1.5-2×106 cells in DMEM growth medium (DMEM+5% FCS) and incubate overnight at 37° C. with 5% CO2.


Day 3 Onwards—Propagation & Harvest of Passage 0 Virus

Discard the media from the Vero E6 cells. Flush/scrape the transfected BHK cells from the flask and directly transfer the cell/media suspension into the flask of Vero E6 cells. Incubate the Vero E6/BHK cells at 37° C. with 5% CO2. Monitor the cells for cytopathic effect (CPE) daily. Once sufficient signs of CPE are evident (for wild type virus this is usually between 48-72 hours post-transfer of BHK cells onto Vero E6 cells) freeze the flask(s) for 1 hr-overnight. Thaw frozen cell culture flask(s) and collect the thawed cell suspension(s) into a 15 ml tube(s). Centrifuge cell suspension(s) at ˜2000 g for 5 min to pellet the cell debris. Collect clarified supernatant(s) and filter through a 0.22 μm syringe filters and aliquot into sterile 2 mL screw-cap cryo tubes. Transfer viral aliquot cryo tubes into 5 ml tubes (samples are now double contained). Store virus aliquots at −80° C. until ready to perform SARS-COV-2 plaque assay.


Propagation of Passage 1+ Virus

Thaw an aliquot of passage 0 virus. Remove the media from a T75 flask(s) of Vero E6 cells with ˜7-8×106 cells and wash once with sterile PBS. Infect Vero E6 cells with passage 0 virus at MOI 0.1-1 diluted in 3-5 ml serum free DMEM. Incubate Vero E6 flask at 37° C. with 5% CO2 for 1 hour with periodic rocking to ensure the cells are in contact with the infection mixture. After 1 hour top up the Vero E6 flask with 3-5 ml DMEM+2% FCS and incubate at 37° C. with 5% CO2. Monitor the cells for cytopathic effect (CPE) daily. Once sufficient signs of CPE are evident freeze the flask(s) for 1 hr-overnight. Thaw frozen cell culture flask(s) and collect the thawed cell suspension(s) into a 15 ml tube(s). Centrifuge cell suspension(s) at ˜2000 g for 5 min to pellet the cell debris. Collect clarified supernatant(s) and filter through a 0.22 μm syringe filters and aliquot into sterile 2 mL screw-cap cryo tubes. Transfer viral aliquot cryo tubes into 5 ml tubes (samples are now double contained). Store virus aliquots at −80° C. until ready to perform SARS-COV-2 plaque assay.


Results
Growth of Clones

As shown in FIG. 17, SARS-COV-2 and SARS-COV-2-160-7 both grew to a similar titer (at approx. 7.5×105 PFU/ml) at day 1 (24h) post infection, which were significantly higher than the titers of SARS-COV-2-4N-1 (approx. 6×104 PFU/ml) and SARS-COV-2-7N-1 (approx. 1×104 PFU/ml).


At day 2 (48h) post infection, SARS-COV-2, SARS-COV-2-160-7 and SARS-COV-2-4N-1 all grew to approx. 1×106 PFU/ml, while SARS-COV-2-7N-1 reached approx. 6× 104 PFU/ml.


At day 3 (72h) post infection, all the four strains showed reduced titer compared to day 2 post infection, which may be due to the excessive cell death.


CPE Day 1 Post Infection

Mock: no sign of CPE (FIG. 18A); SARS-COV-2: early sign of CPE (FIG. 18B); SARS-COV-2-160-7: early sign of CPE (FIG. 18C); SARS-COV-2-4N-1: no sign of CPE (FIG. 18D); and SARS-COV-2-7N-1: no sign of CPE (FIG. 18E).


CPE Day 2 Post Infection

Mock: no sign of CPE (FIG. 19A); SARS-COV-2: 80-90% CPE (FIG. 19B); SARS-COV-2-160-7: 80-90% CPE (FIG. 19C); SARS-COV-2-4N-1-7 Day 2 post infection: 5-10% CPE (FIG. 19D); and SARS-COV-2-7N-1-7 Day 2 post infection: 5-10% CPE (FIG. 19E).


CPE Day 3 Post Infection

Mock: no sign of CPE (FIG. 20A); SARS-COV-2: 95% CPE (FIG. 20B); SARS-COV-2-160-7: 85-90% CPE (FIG. 20C); SARS-COV-2-4N-1: 75-85% CPE (FIG. 20D); and SARS-COV-2-7N-1: 70-80% CPE (FIG. 20E).


All clones based on SARS-COV-2-77 showed CPE in Vero E6 cells, but growth curve kinetic studies were not undertaken.


Example 9—Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) Plaque Assay

This Example describes determining the viral titre of SARS-COV-2 samples using the plaque assay technique.


Day 1—Plating Cells

Seed Vero E6 cells in 12-well tissue culture plate(s) at ˜2×105 cells per well in DMEM growth medium (DMEM+5% FCS) and incubate overnight at 37° C. with 5% CO2 in PC2.


Day 2—Virus Dilution & Inoculation

Thaw virus sample(s) and make 10-fold serial dilutions of sample(s) using DMEM dilution/infection medium (DMEM serum free) in a sterile 96-well U-bottom plate(s). Prepare enough diluted virus to do each dilution in duplicate. Remove the media from the cell culture wells and wash cells once with sterile PBS. Remove the PBS from the cells and inoculate the appropriate wells with 200 μl of diluted viral solutions. Incubate the plate(s) at 37° C. 5% CO2 for 1 hour with periodic rocking to ensure the cells are in contact with the infection mixture. During the incubation period prepare Avicel overlay by mixing 2.4% Avicel RC-581 with 2× overlay medium (2× DMEM+2% FCS) at a 1:1 ratio. Final concentration=1.2% Avicel+DMEM+1% FCS. After 1 hr incubation remove the viral inocula from the wells using a pipette then discard the liquid waste into the tube with F10SC. Overlay cells with 1 mL of 1.2% Avicel overlay mixture. Incubate cells for 72 hours at 37° C., 5% CO2.


Day 5—Fixing & Staining

Fix plates by working with one plate at a time, manually remove the 1.2% Avicel overlay from monolayers using a pipette then discard the waste into the tube with F10SC. Immediately rinse plates with PBS. Repeat this rinse one to two more times if a lot of residual Avicel is still present. Immediately fix and stain the cells with 0.1% Crystal Violet: 3.7% Formaldehyde (CV:FA) for at least 30 minutes at room temperature. Following staining and fixation, remove stain solution from the wells and rinse any remaining CV:FA with water. Allow plates to air dry in a BSL2 cabinet. Count the number of plaques in the wells and then calculate the number of plaque forming units per ml (pfu/ml) using the following formula:







pfu

/
ml

=

N
/

(

D
×
V

)








    • N=number of plaques counted

    • D=dilution factor (e.g. 0.0001 for 1×10−4)

    • V=volume of diluted virus in ml added to well (e.g. 0.2 ml)





Results

SARS-COV-2 formed plaques of a similar size with a round shape. Compared to the de-optimized strains/candidates, the plaques are bigger and have clearer boundaries (FIG. 21A).


SARS-COV-2-160-7 formed plaques of two sizes. Approximately 85% of the plaques are small plaques that have blur boundaries and irregular shapes. Approximately 15% of the plaques are bigger and similar to the WT strains (FIG. 21B).


SARS-COV-2-4N-1 had plaques of similar sizes in irregular shapes. When compared to the WT stain, the plaques are much smaller and have blurred boundaries (FIG. 21C).


SARS-COV-2-7N-1 had plaques of similar sizes in irregular shapes. When compared to the WT stain, the plaques are much smaller and have blurred boundaries and are similar in phenotypes to SARS-COV-2-4N-1 (FIG. 21D).


Example 10—Testing Second Generation Vaccine Candidate Safety, for Cell and Tissue Damage and Reactive Inflammation in Hamsters

We tested the safety of the vaccine candidates in a hamster model. Hamsters were infected intranasally with 105 PFU of vaccine candidates and wild-type SARS-COV-2. Lung pathology was assessed in infected hamsters, for cell and tissue damage and reactive inflammation. See FIG. 26A-D and Table 2 below. A 5-step grading system of minimum, mild, moderate, marked and severe was used to rank microscopic findings for comparison among groups.











TABLE 2









Day/Incident (No. of


Group

animals showing lesions)












Day
Group
3
5
7
14















Cell and tissue damage







Necrosis of BEC
Wildtype
4
3
0
0



 77-7
4
4
2
0



4N-1
3
2
0
0



7N-1
0
3
0
0



160-4 
0
1
0
0



160-7 
1
0
0
0



Uninfected
0
0
0
0


Cellular debris in bronchi
Wildtype
4
4
2
0



 77-7
4
2
2
0



4N-1
3
2
0
0



7N-1
0
0
0
0



160-4 
0
0
1
0



160-7 
1
0
0
0



Uninfected
0
0
0
0


Diffuse alveolar damage
Wildtype
3
4
4
3



 77-7
1
4
4
3



4N-1
2
4
4
3



7N-1
0
2
4
4



160-4 
1
2
3
4



160-7 
4
3
4
1



Uninfected
0
0
0
0


Necrosis of AEC
Wildtype
3
4
0
1



 77-7
1
4
4
0



4N-1
2
4
4
1



7N-1
0
3
3
2



160-4 
2
3
3
3



160-7 
4
3
4
0



Uninfected
0
0
0
0


Cellular debris in alveoli
Wildtype
3
4
4
2



 77-7
1
4
4
1



4N-1
2
4
4
1



7N-1
0
3
4
2



160-4 
3
3
4
3



160-7 
4
3
4
1



Uninfected
0
0
0
0


Alveolar emphysema
Wildtype
3
4
4
2



 77-7
1
4
4
1



4N-1
2
3
3
0



7N-1
0
2
2
0



160-4 
1
1
0
0



160-7 
3
2
0
0



Uninfected
0
0
0
0


Reactive inflammatory patterns


Necrosuppurative bronchitis
Wildtype
0
1
0
0



 77-7
2
0
0
0



4N-1
1
0
0
0



7N-1
0
0
0
0



160-4 
0
0
0
0



160-7 
0
0
0
0



Uninfected
0
0
0
0


Bronchointerstitial pneumonia
Wildtype
0
1
0
0



 77-7
0
0
0
0



4N-1
1
0
0
0



7N-1
0
0
0
0



160-4 
0
0
0
0



160-7 
0
0
0
0



Uninfected
0
0
0
0


Intraalveolar neutrophils and
Wildtype
3
4
4
3


macrophages



 77-7
1
4
4
2



4N-1
3
4
4
1



7N-1
0
3
4
2



160-4 
3
3
4
4



160-7 
4
3
4
1



Uninfected
0
0
0
0


Lymphocytes
Wildtype
4
4
4
3



 77-7
4
4
4
1



4N-1
4
4
4
0



7N-1
2
4
4
2



160-4 
4
4
4
4



160-7 
4
4
4
2



Uninfected
0
0
0
0


Polymorphonuclear granulocytes
Wildtype
4
4
4
2


(neutrophils, heterophils)



 77-7
4
4
4
1



4N-1
4
4
4
0



7N-1
2
4
4
2



160-4 
4
4
4
4



160-7 
4
4
4
2



Uninfected
0
0
0
0


Monocytes, macrophages
Wildtype
3
4
4
3



 77-7
4
4
4
4



4N-1
3
4
4
3



7N-1
0
3
4
4



160-4 
1
4
4
4



160-7 
4
3
4
2



Uninfected
0
0
0
0


Perivascular lymphocytic cuffing
Wildtype
4
4
4
3



 77-7
4
4
4
0



4N-1
3
4
4
0



7N-1
0
4
4
2



160-4 
3
4
4
4



160-7 
4
4
4
3



Uninfected
0
0
0
0


Activation of mesothelial cells
Wildtype
0
0
0
0



 77-7
0
1
0
0



4N-1
0
0
0
0



7N-1
0
0
0
0



160-4 
1
1
0
0



160-7 
1
0
0
0



Uninfected
0
0
0
0





Key: n = 4 on each day except n = 2 for uninfected






A discussion of the results follows.


Wild-Type SARS-COV-2





    • Day 3: Clear evidence of tissue damage and reactive inflammatory cells.

    • Day 5: Clear evidence of tissue damage and reactive inflammatory cells.

    • Day 7: Clear evidence of tissue damage and reactive inflammatory cells.

    • Day 14: Evidence of tissue damage and reactive inflammatory cells but reduced in intensity compared to earlier time points.





Vaccine Candidates





    • Day 3: Clear evidence of tissue damage and reactive inflammatory cells in the lungs of hamsters infected with candidates 77-7, 4N-1, 160-4 and 160-7. Minimal damage with candidates 7N-1 but not as prominent.

    • Day 5: Substantial tissue damage and reactive inflammatory cell infiltration, with candidate 7N-1 significantly lower than candidates 77-7, 4N-1, 160-4 and 160-7.

    • Day 7: Clear evidence of tissue damage with candidates 77-7, 4N-1 and 160-4. Candidate 160-7 showed considerably reduced tissue damage and candidate 7N-1 showed negligible tissue damage.

    • Day 14: Tissue damage and reactive inflammatory cells were reduced in intensity compared to earlier time points. Candidate 7N-1 showed negligible tissue damage.





Example 11—Testing Vaccine Safety: Distribution of Lesions, Bronchial and Peribronchial Distribution of Inflammatory Cells

We tested the safety of the vaccine in a hamster model. Hamsters were infected intranasally with 105 PFU of vaccine candidates and wild-type SARS-COV-2. Lung pathology was assessed in infected hamsters, for distribution of lesions, bronchial and peribronchial distribution of inflammatory cells. See FIG. 27A-D and Table 3 below. A 5-step grading system of minimum, mild, moderate, marked and severe was used to rank microscopic findings for comparison among groups.











TABLE 3









Day/Incident (No. of


Group

animals showing lesions)












Day
Group
3
5
7
14















Overall severity







% of lung area affected
Wildtype
10
55
55
19


Mean
 77-7
4.50
28.75
28.75
4.50



4N-1
15.50
17.50
31.25
3.00



7N-1
0.50
3.50
4.75
3.25



160-4 
4.75
17.00
14.00
10.25



160-7 
14.75
14.00
21.75
1.25



Uninfected
0.00
0.00
0.00
0.00


Distribution of lesions


Bronchial and peribronchial
Wildtype
4
4
4
3



 77-7
4
4
4
4



4N-1
4
4
2
3



7N-1
2
4
1
4



160-4 
3
4
3
4



160-7 
4
4
2
1



Uninfected
0
0
0
0


Patchy throughout the lungs
Wildtype
3
4
4
3



 77-7
1
4
4
3



4N-1
2
4
4
1



7N-1
0
3
4
2



160-4 
1
3
4
4



160-7 
4
3
4
1



Uninfected
0
0
0
0





Key: n = 4 on each day except n = 2 for uninfected






A discussion of the results follows.


Wild-Type SARS-COV-2

At days 3, 5, 7 and 14 there was marked bronchial and peribronchial distribution of inflammatory cells, with a slight reduction in the extent and intensity of inflammation at day 14 compared to the earlier time points. At days 3, 5 and 7 there was a patchy distribution of inflammatory cells throughout the lungs.


Vaccine Candidates





    • Day 3: pronounced following infection with vaccine candidates 77-7 and 4N-1. Bronchial and peribronchial distribution of inflammatory cells was not as intense with vaccine candidates 7N-1. 160-4 and 160-7, with candidate 7N-1 similar to that in uninfected hamsters.

    • Day 5: Intense bronchial and peribronchial distribution of inflammatory cells with candidates 77-7 and 4N-1, substantially less in the lungs of hamsters infected with candidates 7N-1, 160-4 and 160-7.

    • Day 7: Intensity greatest for candidates 77-7 and 4N-1, with candidate 160-4 showing less intense distribution of inflammatory cells. Distribution of inflammatory cells was lowest for candidates 7N-1 and 160-7.

    • Day 14: Distribution of inflammatory cells was less than at earlier time points, with candidate 7N-1 showing particularly low levels of inflammatory cells.





Histopathological changes were observed in wildtype SARS-COV-2-infected groups on 3 day post infection (dpi) and time-dependent increase in severity of % lungs affected was observed on 5 dpi and 7 dpi. However, there was decrease in severity on 14 dpi. The % lungs affected was higher in wildtype SARS-COV-2-infected groups (55%) on 7 dpi which was well correlated with the distribution of lesions, cellular and tissue damage, circular changes, vascular lesions and reactive inflammatory patterns. Minimal to mild patchy lesions around bronchial and peribronchial were recorded in lungs of all SARS-COV-2-infected animals.


Histopathological changes were observed in all SARS-COV-2-infected groups on 3 dpi and time-dependent increase in severity of % lungs affected was observed on 5 dpi and 7 dpi. However, there was decrease in severity in all the groups on 14 dpi except marginal decrease in candidate 160-4. The % lungs affected was higher in candidate 4N-1 (31.25%) followed candidates 77-7 (28.75%), 160-7 (21.75%), 160-4 (14.00%) and 7N-1 (4.75%) on 7 dpi which was well correlated with the distribution of lesions, cellular and tissue damage, circular changes, vascular lesions and reactive inflammatory patterns. Minimal to mild patchy lesions around bronchial and peribronchial were recorded in lungs of all SARS-COV-2-infected animals.


Example 12—Testing Vaccine Safety, for Circulatory and Vascular Lesions, Including Perivascular Edema, Desquamation of Endothelial Cells and Endothelialitis

We tested the safety of the vaccine candidates in a hamster model. Hamsters were infected intranasally with 105 PFU of vaccine candidates and wild-type SARS-COV-2. Lung pathology was assessed in infected hamsters, for circulatory and vascular lesions, including perivascular edema, desquamation of endothelial cells and endothelialitis. See FIG. 28A-D and Table 4 below. A 5-step grading system of minimum, mild, moderate, marked and severe was used to rank microscopic findings for comparison among groups.









TABLE 4







Group









Day

Day/Incident (No. of


Circulatory changes and

animals showing lesions)












vascular lesions
Group
3
5
7
14















Alveolar hemorrhage
Wildtype
3
4
4
2



 77-7
1
4
3
1



4N-1
2
4
3
0



7N-1
0
3
3
2



160-4 
0
2
1
0



160-7 
3
3
2
0



Uninfected
0
0
0
0


Alveolar edema
Wildtype
3
4
4
2



 77-7
1
4
3
0



4N-1
2
4
1
0



7N-1
0
3
1
0



160-4 
0
2
1
0



160-7 
2
0
1
0



Uninfected
0
0
0
0


Perivascular/interstitial edema
Wildtype
3
4
4
2



 77-7
3
4
4
1



4N-1
2
3
4
0



7N-1
0
2
3
2



160-4 
1
1
4
0



160-7 
4
1
4
0



Uninfected
0
0
0
0


Vascular endothelialitis
Wildtype
4
4
0
0



 77-7
4
3
1
0



4N-1
3
4
2
0



7N-1
0
4
0
0



160-4 
2
4
1
0



160-7 
3
2
0
0



Uninfected
0
0
0
0


Necrosis and desquamation of
Wildtype
4
2
0
0


vascular endothelial cells



 77-7
4
0
0
0



4N-1
2
1
0
0



7N-1
0
0
0
0



160-4 
1
0
0
0



160-7 
1
0
0
0



Uninfected
0
0
0
0





Key: n = 4 on each day except n = 2 for uninfected






A discussion of the results follows.


Wild-Type SARS-COV-2

Vascular lesions were prominent at day 3, day 5 and day 7 but had improved markedly by day 14. Circulatory changes and vascular lesions characterized by alveolar haemorrhage, alveolar edema, perivascular/interstitial edema, vascular endothelialitis and necrosis and desquamation of vascular endothelial cells were recorded in SARS-COV-2-infected lungs of all wild-type SARS-COV-2 animals and the severity of lesions was mild to marked.


Vaccine Candidates





    • Day 3: Some perivascular edema, desquamation of endothelial cells and endothelialitis were observed in hamsters infected with candidates 77-7, 4N-1, 160-4 and 160-7. These pathologies were not present in the 7N-1 group.

    • Day 5: Perivascular edema, desquamation of endothelial cells and endothelialitis were prominent in hamsters infected with candidates 77-7, 4N-1 and 160-4, and less intense with candidates 7N-1 and 160-7.

    • Day 7: Perivascular edema, desquamation of endothelial cells and endothelialitis were prominent in hamsters infected with candidates 77-7,4N- and 160-4, and less intense with candidates 7N-1 and 160-7.

    • Day 14: Perivascular edema, desquamation of endothelial cells and endothelialitis were reduced in all groups compared to earlier time points. Candidates 77-7, 4N-1 and 160-4 still showed some vascular lesions. Vascular lesions were not seen with candidate 7N-1 and were minimal in the 160-7 group.





Overall conclusion: Circulatory changes and vascular lesions characterized by alveolar haemorrhage, alveolar edema, perivascular/interstitial edema, vascular endothelialitis and necrosis and desquamation of vascular endothelial cells were recorded in lungs of all vaccine-infected animals. The severity of lesions was minimal to mild in candidates 77-7, 4N-1 and 160-4 and minimal in candidates 7N-1 and 160-7.


Example 13—Testing Second Generation Vaccine Safety, for Regeneration and Repair

We tested the safety of the vaccine in a hamster model. Hamsters were infected intranasally with 105 PFU of vaccine candidates and wild-type SARS-COV-2. Lung pathology was assessed in infected hamsters, for regeneration and repair. See FIG. 29A-D and Table 5 below. A 5-step grading system of minimum, mild, moderate, marked and severe was used to rank microscopic findings for comparison among groups.











TABLE 5







Group

Day/Incident (No. of


Day

animals showing lesions)












Regeneration and repair
Group
3
5
7
14















Hyperplasia of BEC
Wildtype
0
4
4
1



 77-7
0
3
0
0



4N-1
1
2
0
0



7N-1
0
0
0
0



160-4 
0
0
0
0



160-7 
1
0
0
0



Uninfected
0
0
0
0


Hyperplasia of AEC-II
Wildtype
0
3
4
3



 77-7
0
1
4
4



4N-1
0
2
4
3



7N-1
0
0
2
2



160-4 
0
0
3
1



160-7 
1
1
1
1



Uninfected
0
0
0
0


Multinucleated or otherwise
Wildtype
0
0
0
0


atypical epithelial cells



 77-7
0
0
0
0



4N-1
0
0
0
0



7N-1
0
0
0
0



160-4 
0
0
0
0



160-7 
0
0
0
0



Uninfected
0
0
0
0


Pleural fibroblastic
Wildtype
0
0
0
1


proliferation/fibrosis



 77-7
0
0
0
0



4N-1
0
0
0
0



7N-1
0
0
0
0



160-4 
0
0
0
0



160-7 
0
0
0
0



Uninfected
0
0
0
0





Key: n = 4 on each day except n = 2 for uninfected






A discussion of the results follows.


Wild-Type SARS-COV-2

Minimal hyperplasia of alveolar epithelial cells was observed at day 3. There was significant hyperplasia of alveolar epithelial cells at day 5 and day 7, with a slight reduction of hyperplasia at day 14. Taken together, these results provide clear indication of the virulence of wild-type SARS-COV-2 in the hamster model, with massive lung pathology.


Vaccine Candidates





    • Day 3: Hyperplasia of alveolar epithelial cells was prominent in candidate 4N-1, and present at reduced levels with candidates 77-7, 160-4 and 160-7. It was not present in candidate 7N-1.

    • Day 5: Hyperplasia of alveolar epithelial cells was prominent in candidate 4N-1, and present at reduced levels in candidate 160-7, followed by candidate 77-7 and candidate 160-4. Hyperplasia was minimal in candidate 7N-1.

    • Day 7: Hyperplasia of alveolar epithelial cells was prominent in 77-7, 4N-1, 160-4 and 160-7 groups and minimal in candidate 7N-1.

    • Day 14: Hyperplasia of alveolar epithelial cells was reduced in all groups compared to earlier time points, with 7N-1 showing best lung integrity of all groups.





Regeneration and repair characterized by hyperplasia of BEC, hyperplasia of AEC-II, multinucleated or otherwise atypical epithelial cells and pleural fibroblastic proliferation/fibrosis was recorded from day 5 in wildtype SARS-COV-2. No histopathological changes were observed in uninfected group.


Regeneration and repair characterized by hyperplasia of BEC, hyperplasia of AEC-II, multinucleated or otherwise atypical epithelial cells and pleural fibroblastic proliferation/fibrosis was recorded from day 3 dpi in candidates 4N-1 and 160-7; day 5 in 77-7 and day 7 in 7N-1 and 160-4. No histopathological changes were observed in uninfected group.


Example 14—Challenge Experiment, Showing the Efficacy of Vaccine Candidate 7N-1 in Mice

To test the efficacy of candidate 7N-1 as a COVID-19 vaccine, we established a challenge experiment using the following immunisation groups: 103 PFU 7N-1 intranasal (7N-1 IN); 105 PFU 7N-1 subcutaneous (7N-1 SC); 103 PFU wild-type mouse-adapted SARS-COV-2 (SARS-COV-2 MA10) intranasal (WT nCOV); and unimmunised (PBS treated). HFH4-hACE2 mice were used in this study. HFH4-hACE2 mice expressed high levels of hACE2 in the lung, but varying expression levels in other tissues. See FIG. 30.


In the first 7 days post-immunisation: (i) we did not see any disease in mice given 103 PFU 7N-1 intranasal; 105 PFU 7N-1 subcutaneous; and unimmunised (PBS treated); (ii) severe disease and death was observed in 1 mouse given 103 PFU wild-type mouse-adapted SARS-COV-2 (SARS-COV-2 MA10) intranasal.


Three weeks later, the mice were challenged with 105 PFU intranasal wild-type mouse-adapted SARS-COV-2 (SARS-COV-2 MA10) and monitored over a 12-day period. 7N-1 vaccination provided strong protection from SARS-COV-2 challenge, with 100% survival in the intranasal group (green line—triangle symbol) and 65% survival in the subcutaneous group (red line—square symbol). Two mice in the 7N-1 subcutaneous vaccinated group die, although later than the unimmunised group. Death in this group is likely related to the reduced receptor expression in the periphery. All unimmunised mice died from challenge with SARS-COV-2 MA10 (blue line—PBS). Immunisation with wild-type mouse-adapted SARS-COV-2 (SARS-CoV-2 MA10—inverted triangle symbol) provided partial protection (25% survival).


Summary





    • 7N-1 (n=4 mice) provided full protection from rechallenge mortality when given intranasal route in HFH4-hACE2 mice.

    • 7N-1 (n=5 mice) provided partial protection from subcutaneous route, which is probably related to the reduced receptor expression in the periphery. Death occurred later than the unvaccinated group.

    • Wild type virus (n=3 mice) intranasal resulted in 1 death during the primary infection, and an additional death following rechallenge.

    • PBS prime (n=5) showed full mortality upon wild type rechallenge.





Example 15—Preclinical Immunogenicity Data in Animal Models

Hamsters were immunised intranasally with 105 PFU with 7N-1, 4N-1, 77-7, 160-4 or 160-7 vaccine candidates. The mean neutralizing antibody titers (PRNT100) at day 14 following immunization were determined and are shown in Table 6. Vaccine candidates 7N1, 160/7 and 160/4 were all highly immunogenic in the hamster model of infection, inducing a strong neutralizing antibody response.












TABLE 6









Average plaque count of Virus control- 138.8




Values represents the end point serum



dilution where 100% neutralization is observed












Animal-1
Animal-2
Animal-3
Animal-4















160-7 
640
640
1280
1280


160-4 
40
40
1280
80


 77-7
80
80
40
160


4N-1
40
40
40
40


7N-1
40
40
640
640
















TABLE 7







Average plaque count of virus control-202.2


Values represent the end point serum dilution where 100%, 90% & 50% neutralization is observed














160-7(100%)
160-7(90%)
160-7(50%)
7N-1 (100%)
7N-1 (90%)
7N-1 (50%)

















Animal-1
<40


160
320
>1280


Animal-2
80
640
>1280
80
640
>1280


Animal-3
40
640
>1280
<40




Animal-4
40
320
>1280
<40




Animal-5
40
320
>1280
80
160
>1280


Animal-6
40
320
>1280
80
320
>1280


Animal-7
80
640
>1280
80
160
>1280


Animal-8
40
320
>1280
80
160
>1280


Animal-9
<40


80
160
>1280


Animal-10
<40

640
40
160
>1280


Animal-11
40
320
>1280
<40

40


Animal-12
40
320
>1280
160
640
>1280


Animal-13
80
320
>1280
160
640
>1280


Animal-14
40
320
>1280
80
160
>1280


Animal-15
40
320
>1280
40
160
>1280


Animal-16
80
640
>1280
320
640
>1280









The two candidates 7N-1 and 160-7 were highly immunogenic in the hamster model of infection, inducing a strong neutralizing antibody response. Hamsters were immunised subcutaneously with 104 PFU 7N-1 or 160-7 vaccine candidates. At day 14 following immunization, blood was collected to determine neutralization titres. Mean PRNT50 was 1280 for both vaccine candidates and mean PRNT90 was 640 for 7N-1 and 640 for 160-7. Sec Table 7. Based on its high level of attenuation and safety in the mouse and hamster infection models, we selected 7N1 as our lead candidate for further analysis.


Hamsters were given single dose of 104 PFU of live attenuated virus candidates 160-7 or 7N-1 subcutaneously. Neutralizing antibody titres were determined on day 14 after immunisation with live attenuated virus. The results are shown in FIG. 31. At 14 days post-vaccination, vaccinated hamsters showed very strong antibody neutralization in the blood. At 100% of neutralization, titres for 7N-1 100% were significantly higher that for 160-7. At 50% and 90% of neutralization, there was no significant difference in neutralization titres between 7N-1 and 160-7.


Example 16—Vaccine Plaque Size after Multiple In Vitro Passage

Vaccine candidates 7N-1, 77-7, 4N-1, 160-4 and 160-7 were passaged 4 times in Vero GMP cells at multiplicity of infection of 0.01 PFU/cell. Each dot represents one plaque. Vaccine candidates 4N-1 (FIG. 32E) and 7N-1 (FIG. 32F) have a small plaque phenotype compared to wildtype SARS-COV-2 (FIG. 32A) and the other vaccine candidates 77-7 (FIG. 32C), 160-4 (FIG. 32D) and 160-7 (FIG. 32B). Plaque size between wildtype SARS-COV-2 (FIG. 32A) and vaccine candidates 77-7 (FIG. 32C), 160-4 (FIG. 32D) and 160-7 (FIG. 32B) were similar.


Small plaques demonstrate a reduced ability of the vaccine to spread from the initial site of infection. This serves as useful marker of vaccine attenuation. To determine the phenotypic stability of vaccine attenuation extended in vitro passage of vaccine candidates and wildtype SARS-COV-2 was performed four times in Vero GMP cells. The plaque size of 4N-1 (FIG. 32E) and 7N-1 (FIG. 32F) remained smaller than wildtype SARS-COV-2 (FIG. 32A) after four passages. 4N-1 (FIG. 32E) and the lead vaccine candidate 7N-1 (FIG. 32F) did not revert to a wildtype plaque phenotype (FIG. 32A).


Example 17—Vaccine Candidate 7N-1

The live attenuated SARS-COV-2 (COVID 19) vaccine described herein is based on codon de-optimization technology, which is a promising approach for achieving an enhanced safety profile (cannot revert to virulent strain), and is designed as a prophylactic, active, single dose immunization against coronavirus in humans. The vaccine should provide long-lasting protection, probably with single dose administration, and an anticipated safety profile similar to licensed vaccines for active immunization.


Live attenuated vaccines are well-known to induce a very strong immune response and to elicit both cell-mediated and humoral immune responses. To overcome the risk of reversion associated with ‘live attenuated’ vaccines we have developed the ‘live attenuated SARS-COV-2’ vaccine using codon de-optimisation technology. Using this approach, the whole virus (Wuhan isolate) is synthetically created by varying its nucleotide sequences (codons) such that all the structural proteins that generate immune response remain unaltered, while the number of non-structural proteins required for replication are altered thereby attenuating the virus. While live attenuated vaccines are well known to induce a strong immune response there is also a risk of reversion of mutation, generally this risk exists when the attenuated virus has a limited number of mutations. To address this risk, we have created a large number of mutations, thereby virtually eliminating this risk.


We first generated a synthetic SARS-COV-2 infectious clone based on the Wuhan strain. Next, we designed and constructed attenuated COVID-19 vaccine candidates using codon de-optimisation. For our leading vaccine candidate 7N-1, we introduced a large number of silent mutations (a total of 97 codon changes in the non-structural proteins 3 [nsP3] and 4 [nsP4]) in the replicative genes, but not in the structural proteins of the virus. There is essentially no risk of reversion to virulence due to the large number of substitutions in the gene sequences. The lead candidate, 7N-1, is highly attenuated, replicating to very low levels in mammalian cells and exhibiting a classic ‘small plaque phenotype’ indicative of a high level of attenuation (see FIGS. 33-7N-1 is labelled ‘LAV’). Small plaques demonstrate a reduced ability of the vaccine to spread from the initial site of infection. This serves as useful marker of vaccine attenuation. The attenuated ‘small plaque’ phenotype is maintained through extended tissue culture passage (see FIG. 32F), providing a strong indication that the virus is stable and will not revert to virulence.


Safety Data in Mice

Mice infected with live attenuated vaccine 7N-1 show no signs of disease. Infection of mice with wildtype SARS-COV-2 results in substantial weight loss and disease followed by death by 7-8 days post-infection. To determine vaccine safety human ACE2 (hACE-2) transgenic mice were infected intranasally with high dose (105 PFU) 7N-1 and monitored over a 10-day period. The mice exhibited no weight loss or any other disease signs. In contrast, mice infected with 105 PFU wild-type SARS-COV-2 suffered substantial weight loss and died within 8 days (see FIG. 34). In contrast, mice inoculated with vaccine 7N-1 survived (see FIG. 34—labelled ‘LAV’). Thus, the vaccine is highly attenuated in mice and is safe.


Vaccinated mice show no signs of disease after challenge with wildtype SARS-CoV-2. To test whether the vaccine protects against lethal infection with wildtype SARS-COV-2, hACE-2 transgenic mice were immunised with 103 PFU 7N-1 intranasally followed by challenge three weeks later with 105 PFU wild-type SARS-COV-2 intranasally. Infection of unimmunised mice with wild-type SARS-COV-2 resulted in 100% mortality within seven days. In contrast, immunised mice were completely protected, with no mortality (see FIG. 35). The data demonstrate the protective effects of candidate 7N-1 vaccine against a lethal challenge with wild-type SARS-COV-2.


Safety Data in Hamsters

Hamsters infected with live attenuated vaccine show no signs of disease. To further evaluate vaccine safety, hamsters were infected intranasally with a high dose (105 PFU) of vaccine candidate 7N-1 or wild-type SARS-COV-2. At days 3, 5, 7 and 14 post-infection, groups of hamsters were sacrificed for histological evaluation of lung pathology. Lung tissue sections were evaluated in a blinded fashion by experienced histopathologists at Vimta Labs Ltd (Hyderabad). Hamsters given candidate 7N-1 showed minimal lung pathology, with pathology readout scores of 3-4.5% on days 5 and 7 (days when peak inflammation is expected) while uninfected hamsters scored 0%. See Table 8 below for scores from individual animal.










TABLE 8







Group
Vaccine 7N-1











Day
Day 3
Day 5
Day 7
Day 14























Animal No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16


























Overall severity


















% of lung area affected
1
0
0
1
5
3
5
1
15
2
1
1
1
2
5
5











Mean
0.5
3.5
4.75
3.25























Distribution of lesions


















Bronchial and
1
0
0
1
1
2
1
1
1
0
0
0
1
2
1
1


peribronchial


Patchy throughout the
0
0
0
0
2
0
1
1
2
1
2
1
0
0
2
2


lungs


Cell and tissue damage


Necrosis of BEC
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0


Cellular debris in bronchi
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


Diffuse alveolar damage
0
0
0
0
1
0
1
0
2
1
1
1
1
2
2
2


Necrosis of AEC
0
0
0
0
1
0
1
1
1
0
1
1
0
0
1
1


Cellular debris in alveoli
0
0
0
0
1
0
1
1
2
1
1
1
0
0
1
1


Alveolar emphysema
0
0
0
0
1
0
1
0
1
0
1
0
0
0
0
0


Circulatory changes and


vascular lesions


Alveolar hemorrhage
0
0
0
0
1
0
1
1
1
1
1
0
0
0
1
1


Alveolar edema
0
0
0
0
1
0
1
1
0
0
1
0
0
0
0
0


Perivascular/interstitial
0
0
0
0
1
0
1
0
1
0
1
1
0
0
1
1


edema


Vascular endothelialitis
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0


Necrosis and
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


desquamation of vascular


endothelial cells


Reactive inflammatory


patterns


Necrosuppurative
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


bronchitis


Bronchointerstitial
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


pneumonia


Interstitial pneumonia
0
0
0
0
1
0
0
0
1
0
1
1
0
0
0
0


Intraalveolar neutrophils
0
0
0
0
2
0
2
1
2
1
1
1
0
0
2
2


and macrophages


Lymphocytes
1
0
0
1
1
1
1
1
2
1
1
1
0
0
2
2


Polymorphonuclear
1
0
0
1
1
1
1
1
1
1
1
1
0
0
1
1


granulocytes (neutrophils,


heterophils)


Monocytes, macrophages
0
0
0
0
2
0
1
1
1
1
1
1
1
1
2
2


Perivascular lymphocytic
0
0
0
0
1
1
1
1
2
2
1
1
0
0
2
2


cuffing


Activation of mesothelial
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


cells


Regeneration and repair


Hyperplasia of BEC
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


Hyperplasia of AEC-II
0
0
0
0
0
0
0
0
0
1
1
0
1
1
0
0


Multinucleated or
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


otherwise atypical


epithelial cells


Pleural fibroblastic
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


proliferation/fibrosis









In contrast, hamsters infected with wild-type SARS-COV-2 had pathology scores greater than 50% at the same time points. See Table 9 below for scores from individual animals.










TABLE 9







Group
Wildtype Wuhan SARS-CoV-2











Day
Day 3
Day 5
Day 7
Day 14























Animal No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15


























Overall severity


















% of lung area
1
52
5
10
50
40
80
50
80
50
50
40
20
1
35
0


affected











Mean
10
55
55
19























Distribution of


















lesions


Bronchial and
1
2
2
2
2
2
3
3
2
2
2
2
1
1
2
0


peribronchial


Patchy throughout the
0
2
1
1
3
3
4
3
3
3
3
3
2
1
3
0


lungs


Cell and tissue


damage


Necrosis of BEC
1
2
1
2
1
1
2
0
0
0
0
0
0
0
0
0


Cellular debris in
1
1
1
1
1
1
2
1
1
0
1
0
0
0
0
0


bronchi


Diffuse alveolar
0
2
1
1
3
3
4
3
3
3
3
3
2
1
3
0


damage


Necrosis of AEC
0
2
1
1
1
1
2
2
0
0
0
0
2
0
0
0


Cellular debris in
0
2
1
1
3
3
3
2
2
2
2
2
2
0
1
0


alveoli


Alveolar emphysema
0
2
1
1
1
1
3
2
1
1
1
3
2
0
1
0


Circulatory changes


and vascular lesions


Alveolar hemorrhage
0
2
1
1
2
2
3
2
1
1
1
2
1
0
1
0


Alveolar edema
0
1
1
1
1
3
3
2
1
1
1
1
1
0
1
0


Perivascular/interstitial
0
1
1
1
2
2
3
2
2
2
2
2
1
0
1
0


edema


Vascular
2
2
1
2
2
3
2
2
0
0
0
0
0
0
0
0


endothelialitis


Necrosis and
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0


desquamation of


vascular endothelial


cells


Reactive inflammatory


patterns


Necrosuppurative
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0


bronchitis


Bronchointerstitial
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0


pneumonia


Interstitial pneumonia
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


Intraalveolar
0
2
1
2
2
2
3
2
2
2
2
2
2
1
1
0


neutrophils and


macrophages


Lymphocytes
1
2
1
2
2
2
2
2
2
2
2
2
2
1
1
0


Polymorphonuclear
1
2
1
2
1
1
2
1
1
1
1
1
1
0
1
0


granulocytes


(neutrophils,


heterophils)


Monocytes,
0
2
1
2
3
3
3
3
3
3
3
3
2
1
1
0


macrophages


Perivascular
1
2
1
1
2
2
2
2
2
2
2
2
1
1
1
0


lymphocytic cuffing


Activation of
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


mesothelial cells


Regeneration and


repair


Hyperplasia of BEC
0
0
0
0
3
1
3
2
2
2
2
2
0
0
3
0


Hyperplasia of
0
0
0
0
1
0
1
1
3
3
3
3
2
2
3
0


AEC0II


Multinucleated or
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


otherwise atypical


epithelial cells


Pleural fibroblastic
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0


proliferation/fibrosis









For all the specific pathology readouts, such as cellular infiltration, tissue damage and epithelial hyperplasia, the scores for candidate 7N-1 were dramatically lower than for wild-type virus. Histopathological changes were observed in wildtype SARS-COV-2-infected groups with increase in severity of % lungs affected was observed on 7-day post infection (see FIG. 36). The % lungs affected was lower in 7N-1 on Day 7 post infection (see FIG. 36). The results clearly demonstrate the safety of the vaccine in the hamster model. Hamster and human ACE2 are nearly identical, with only four amino acid differences, suggesting that these results are likely to provide a good model for human infection and vaccination with 7N-1.


Candidate 7N-1 Vaccine Induces Strong Neutralizing Antibodies in Hamsters.

The route of live attenuated vaccine immunisation in humans is subcutaneous. Therefore, we determined the immunogenicity of the vaccine in hamsters when given subcutaneously. To assess immunogenicity, hamsters were immunised subcutaneously with 104 PFU candidate 7N-1. Serum samples were collected two weeks later to measure PRNT50 (50% of virus neutralized), PRNT90 (90% of virus neutralized) and PRNT100 (100% of virus neutralized) neutralising antibody titers (see Table 7 of an earlier Example). The neutralising antibody titers elicited by immunisation with candidate 7N-1 were very high, demonstrating the vaccine's strong immunogenicity.


Example 18—Rational Design of Vaccine Candidates

We designed, constructed and tested various attenuated COVID-19 vaccine candidates using codon de-optimisation (CD) of the ORF1a region of the genome, from SanD11534 to PacI8586, which we call the deoptimised region—‘DO region’. Various combinations of CD fragments 1-3 were used to generate the candidates: Fragment 1: SanD11534 to SmaI4254; Fragment 2: SmaI4254 to AvrII6982; and, Fragment 3:AvrII6982 to PacI8586. Fragment 3 is the shortest fragment. The numbers 1534, 8586 etc. indicate the genomic positions of the Wuhan strain. The codon changes per fragment and for the DO region are summarised in Table 10 below.













TABLE 10





Group
Fragment 1
Fragment 2
Fragment 3
Entire DO region







77
Ser: 24
Ser: 28
Ser: 25
Ser: 24, Ser: 28, Ser: 25,


group



total 77







77 group - Targeting most rare codon: 50% serine


(did not target Arg): 77-1 (fragment 3), 77-2


(fragment 2), 77-3 (fragment 1), 77-4 (fragments 1&2),


77-5 (fragments 1&3), 77-6 (fragments


2&3), 77-7 (fragments 1-3).


All vaccine candidates were rescued.











160
Ser: 48
Ser: 59
Ser: 53
Ser: 48, Ser: 59, Ser: 53,


group



total 160







160 group - Targeting most rare codon: 100% serine


(did not target Arg): 160-1 (fragment 3), 160-2


(fragment 2), 160-3 (fragment 1), 160-4 (fragments 1&2),


160-5 (fragments 1&3), 160-6 (fragments


2&3), 160-7 (fragments 1-3).


All vaccine candidates were rescued.











4N
I: 39, P: 32, T: 67,
I: 24, P: 39,
I: 19, P: 10, T: 34,
I: 82, P: 81, T: 186, A: 147,


group
A: 62
T: 85, A: 51
A: 34
total 496







4N group - Targeting second rare codon: IPTA (did not


target Leu, Val): 4N-1 (fragment 3) was


rescued. The following were not rescued/were dead


clones: 4N-2 (fragment 2), 4N-3 (fragment 1),


4N-4 (fragments 1&2), 4N-5 (fragments 1&3),


4N-6 (fragments 2&3), 4N-7 (fragments 1-3).











7N
I: 40, P: 33, T: 68,
I: 4, P: 39, T: 77,
I: 0, P: 10, T: 33,
I: 44, P: 82, T: 178, A: 147,


group
A: 62, R: 11, G: 21,
A: 51, R: 18,
A: 34, R: 11, G: 8,
R: 40, G: 41, Q: 14,



Q: 9
G: 12, Q: 4
Q: 1
total 546







7N group - Targeting most rare codon (ARG), second


rare codon (Pro, Thr, Ala; did not target Leu,


Val) and not rare codons (Gly, Gln): 7N-1


(fragment 3) was rescued. The following were not


rescued/were dead clones: 7N-2 (fragment 2), 7N-3


(fragment 1), 7N-4 (fragments 1&2), 7N-5


(fragments 1&3), 7N-6 (fragments 2&3), 7N-7 (fragments 1-3).









For the entire SanD11534 to PacI8586 genomic DO region. Table 11 below covers all of the amino acids (‘Aa’) throughout the entire DO region. Note, this table is looking at the entire DO region; all the numbers are for codons, rather than nucleotides.















TABLE 11













Column #7







Column #6
Aa number







Number of
of other



Column #2


Column #5
rare codons
codons



Rare codon
Column #3
Column #4
Number of
for each
(maximum


Column #1
for amino
Codon
Frequency of
amino acids
amino acid
codon


Amino
acid (target
fraction in
codon in
in DO
in the DO
change


acid
codon)
humans
humans (%)
region
region
number)





Ser
TCG
0.05

4.4 (1st group)

162
2
160


Arg
CGT
0.08
4.54 (1st group)
54
11
43


Thr
ACG
0.11
6.14 (2nd group)
193
6
187


Pro
CCG
0.11
 6.9 (2nd group)
85
3
82


Val
GTA
0.12
 7.1 (2nd group)
200
35
165


Leu
CTA
0.07
 7.2 (2nd group)
224
25
199


Ala
GCG
0.11
 7.4 (2nd group)
156
9
147


Ile
ATA
0.17
 7.5 (2nd group)
128
41
87


Cys
TGT
0.46
10.6 (3rd group)
60
54
6


Gly
GGT
0.16
10.8 (3rd group)
128
87
41


His
CAT
0.42
10.9 (3rd group)
37
24
13


Tyr
TAT
0.44
12.2 (3rd group)
102
59
43


Gln
CAA
0.27
12.3 (3rd group)
81
53
28


Trp
TGG
1
13.2 (3rd group)
24
24
0


Asn
AAT
0.47

17 (4th group)

134
96
38


Phe
TTT
0.46
17.6 (4th group)
98
76
22


Asp
GAT
0.46
21.8 (4th group)
114
75
39


Met
ATG
1

22 (4th group)

44
44
0


Lys
AAA
0.43
24.4 (4th group)
176
120
56


Glu
GAA
0.42

29 (4th group)

153
112
41






















Column #13




Column #9

Column #11
Column #12
Predicted



Column #8
Minimum
Column #10
Maximum
Predicted
useful



Minimum
Aa codon
Maximum
Aa codon
useful number
percentage



Aa codon
change
Aa codon
change
of Aa codon
of Aa codon



change
percentage
change
percentage
changes
changes



number in
in our
number in
in our
in the DO
in the DO



our design
design
our design
design
region
region







24
15%
160
100%
 0 to 160
0-100%



11
26%
40
 93%
0 to 43
0-100%



33
18%
186
 99%
 0 to 187
0-100%



10
12%
82
100%
0 to 82
0-100%



/
/
/
/
 0 to 165
0-100%



/
/
/
/
 0 to 199
0-100%



34
23%
147
100%
 0 to 147
0-100%



0
 0%
82
 94%
0 to 87
0-100%



/
/
/
/
0 to 6 
0-100%



8
20%
41
100%
0 to 41
0-100%



/
/
/
/
0 to 13
0-100%



/
/
/
/
0 to 43
0-100%



1
 4%
14
 50%
0 to 28
0-100%



/
/
/
/
0
0%, no need



/
/
/
/
0 to 38
0-100%



/
/
/
/
0 to 22
0-100%



/
/
/
/
0 to 39
0-100%



/
/
/
/
0
0%, no need



/
/
/
/
0 to 56
0-100%



/
/
/
/
0 to 41
0-100%







Column #3: Codon fraction in certain Aa. For example, Ser has 6 synonymous codons: AGT, AGC, TCG, TCA, TCT, TCC. The number of TCG in all the 6 Ser codons is 5%. This number is a reflection of rarity of the codon within one particular Aa.



Column #4: Codon frequency in human genome. This is different from Column #3 which is the fraction of the codon. Codon frequency is not only a reflection of the rarity of the codon, but also the rarity of the Aa. We hypothesise that the codon frequency is more suitable than codon fraction, as we want to slow down viral translation.



Column #5: The Aa number in the entire DO region. It is also the total codon number for certain Aa. For instance, there are 162 Ser in our DO region (SanD11534 to PacI8586). There are total 162 Ser codons.



Column #6: The number of rare codons for each Aa in the DO region. For instance, TCG is the rare codon of Ser. There are 2 Ser rare codons (TCG) in our DO region, which means we cannot change these 2 codons.



Column #7: The maximum mutation number that we can make for each Aa in the DO region. 162 − 2 = 160, we can change/deoptimize at most 160 Ser codons to its rare codon (TCG).



Column #8: In all our DO region designs, there is one having the least numbers of changes of a certain Aa. In the case of Ser, 77-3 targeting sub-fragment 1 is the design having least mutations of Ser (24). In other words, in our designs targeting Ser, we used at least 24 changes. Therefore, the number could be considered the minimum number of codon changes supported by our experiment.



Column #9: The percentage of the change number (Column #8) in the maximum change we could make (Column #7). 24/160 = 15%, we changed at least 15% of Ser in our designs.



Column #10: In all our designs, there is one having the most numbers of changes of an Aa. In the case of Ser, 160-7 targeting the entire region is the design having most mutations of Ser (160). In other words, in our designs targeting Ser, we used at most 160 changes. Therefore, the number could be considered the maximum number of codon changes supported by our experiment.



Column #11: The percentage of the change number (Column #10) in the maximum change we could make (Column #7). 160/160 = 100%, we changed at most 100% of Ser in our designs.



Column #12 and #13 are our estimation of the Aa changes (by number and percentage) which should result in potentially rescuable and efficacious vaccine candidates/clones.






Although we do not have experimental data for each and every amino acid change in Table 11, it is reasonable to expect that the stated percentage and number of codon changes within the DO region will result in potentially rescuable and efficacious vaccine candidates/clones. Codon frequency can be divided into 4 groups: under 5% (1st group), 5-10% (2nd group), 10-15% (3rd group), over 15% (4th group). See the group numbering in Column #4. We have experimental data representing codon changes for the first 3 groups, and the percentage of the codon change in our designs is quite wide (see Column #9 and #11). However, we do not have experimental data for the 4th group (frequency over 15%), but we believe that the number and percentage of codon changes is reasonable and should result in potentially rescuable and efficacious vaccine candidates/clones. Our reasons are: Ser and Arg are representative for the Aa that have rare codons (frequency under 5%); Thr, Pro, Ala and Ile are representative for the Aa that have less rare codons (frequency 5-10%); and, Gly and Gln are representative for the Aa that don't have rare codons (frequency 10-15%). We do not have experimental data to support the coverage of the Aa with codon frequency over 15%. Asn, Phe, Asp, Lys and Glu. We probably do not need to cover those Aa, as the frequency of these Aa is very high (we want to de-optimize, not optimize). Met and Trp have only one synonymous codon and cannot be changed.


Example 19—Mouse Model Testing of Vaccine Candidates

Further testing of vaccine candidates can be carried out as depicted in FIG. 6. Live attenuated SARS-COV-2 vaccine candidates can be tested in a mouse model of SARS-CoV infection using human ACE2 receptor transgenic mice. Antibody and cellular responses can be determined in immunised mice. Mice can be followed for a period of 2 weeks after immunisation. Body weight can be observed for 7 days. Virus load in the lung and nasal turbinate can be measured on day 2 and day 4 post-immunisation. Anti-SARS-COV-2 specific antibody levels (total IgG, IgM) and neutralisation titres can also be measured in the sera on various days post-immunisation. T cell immune responses can be examined on day 7 and day 14 post-immunisation. We can also evaluate vaccine efficacy by a challenge with a wild type SARS-COV-2. Immunised mice can be challenged 4 weeks after immunisation. Body weight can be observed in all groups. Challenged mice can be followed for a period of 2 weeks post-challenge. Viral titres can be measured in the lung and nasal turbinate on day 2 and day 4 post-post-challenge. Antibody titres (IgG, IgM) and neutralisation titres can be measured in the sera on specific days post-challenge. Histological analysis of lung tissue can be performed on day 2 and day 4 post-post-challenge. T cell responses can be examined at specific on day 7 and day 14 post-challenge.


Example 20—Macaque Model Testing of Vaccine Candidates

Live attenuated SARS-COV-2 vaccine candidates can be further tested in the NHP model of SARS-COV 2 infection. Antibody and cellular responses can be determined in immunised macaque. Viremia in the sera, lung and/or nasal/oral secretions can be measured. Anti-SARS-COV-2 specific antibody levels, neutralisation titres and cellular immune response can be measured post-immunisation. We can also evaluate vaccine efficacy by a challenge with a wild type SARS-COV-2. Immunised macaque can be challenged several weeks after immunisation. Clinical symptoms can be observed in all groups. Viral titres can be measured in the sera, lung and/or nasal/oral secretions post-challenge. Antibody titres, neutralisation titres and cellular immune response can be measured post-challenge. Histological analysis of lung tissue can be performed post-challenge.


Total of five groups (each group can have five animals each). Total animals: 25.

    • Group 1 (N=5) Dose strength 1 Challenge on week 4 or week 9.
    • Group 2 (N=5) Dose strength 1, Booster on week 8, Challenge on week 9/10.
    • Group 3 (N=5) Dose strength 2 Challenge on Week 4 or week 9.
    • Group 4 (N=5) Dose strength 2, Booster on week 8, Challenge on week 9/10.
    • Group 5 (N=5) Challenge on week 4 or week 9.


The Nab titer (neutralizing antibodies) and the S-specific binding antibodies can be evaluated before challenge to determine vaccination efficacy. If it is too early to challenge at week 4 as the immune response after vaccination may be slow/delayed, challenge in week 9 can be undertaken.


Various viral and immune parameters can be measured as described in FIG. 5.


Example 21—Evaluation of Safety and Efficacy of Vaccine Candidate 7N-1 Against SARS-COV-2 in Cynomolgus Macaques

This Example briefly describes a study for evaluating the safety, the degree of immune response and the efficacy of vaccine candidate 7N-1 in the cynomolgus non-human primate (NHP) model after one or two immunizations.


Protocol

The protocol is summarised in Table 12 below.














TABLE 12










Route,





Vaccine
volume,
Immunization
Challenge,













Groups
n=
Species
(dose)
site
schedule
route, volume

















1
Vaccinated
5
Cynomolgus
7N-1 (104
s.c., 0.5
1 immunization
SARS-CoV-2



(prime

macaques
PFU)
mL,
at w 0
P1 variant



only)



right thigh

i.n. (0.25 mL


2
Vaccinated
5

7N-1 (104

2 immunizations
per nostril) +



(prime +


PFU)

at w 0 and w 4
i.t. (4.5 mL) at



boost)





week 8 post


3
Control
5

DPBS

2 DPBS placebo
first








shot at w 0 and
immunization








w 4





Experimental groups. (s.c: subcutaneous; i.n.: intranasal; i.t.: intratracheal)






As described in Table 12, fifteen cynomolgus macaques are included in this study and divided into 3 groups. Animals of groups 1 and 2 will be immunized with the 7N-1 vaccine (104 PFU) by subcutaneous (s.c.) route. Animals from group 1 (n=5) will receive only one dose of the vaccine on day 0 and a placebo dose on week 4. The animals of group 2 (n=5) will be immunized both on day 0 while animals in group 2 will receive a prime and a boost on days 0 and 28 (4 weeks). Animals of control group (n=5) will receive the vehicle as placebo by s.c. route on day 0 and day 28.


All animals will then be exposed at week 8 post first immunization to SARS-COV-2 P1 variant (Brazilian strain) by intranasal (i.n.) and intratracheal (i.t.) routes simultaneously, with a 1.105 TCID50 challenge dose. Animals will be euthanized at day 14 post challenge. Samples will be collected and analyzed.


Vaccine

The 7N-1 vaccine is a highly-purified, whole virus, SARS-COV-2 vaccine produced on Vero cells and attenuated by codon de-optimisation technology to make multiple mutations in the non-structural proteins of SARS-COV-2.


The composition of the vaccine (0.5 mL) is shown in Table 13.












TABLE 13







Attenuated Wuhan
Antigen



SARS-CoV-2
Units/dose):
















Active substance









104 PFU







Excipients and buffer components





Dulbecco's Phosphate Buffered Saline (DPBS)/Tris Buffered Saline.


DPBS composition: 200 mg/L KCl (2.68 mM), 200 mg/L KH2PO4 (1.47 mM), 8000 mg/L NaCl (136.9 mM), 2160 mg/L Na2HPO4*7H2O (8.06 mM); Tris buffered saline: 20 mM Tris, 100 mM NaCl, pH 7.5.






SARS-COV-2 Virus

SARS-COV-2 P1 variant virus doses will be purchased from BEI Resources Repository (National Instituted of Health, USA).

    • Strain: SARS-COV-2, hCoV-19/Japan/TY7-503/2021 (P1)
    • Passage: 2
    • Sequence: Compared to the initial isolate, the following mutations are present: Spike D138Y, Spike D614G, Spike E484K, Spike H655Y, Spike K417T, Spike L18F, Spike N501Y, Spike P26S, Spike R190S, Spike T20N, Spike T1027I, Spike V1176F, N (Nucleocapsid protein) G204R, N P80R, N R203K, NSP3 (Non-structural protein 3) S253P, NSP8 (Non-structural protein 8) E92K, NSP3 K977Q, NSP3 S370L, NSP6 (Non-structural protein 6) F108del, NSP6 F184V, NSP6 G107del, NSP6 S106del, NSP12 (Non-structural protein 12) P323L, NSP13 (Non-structural protein 13) E341D, NSP6 (Non-structural protein 6) F184V. The full sequence was published and can be found online (SAMN18527803).
    • Titer: 4.42. 106 TCID50/mL
    • Volume/aliquot: 1 mL
    • produced on Calu-3 cells


Preparation of the Vaccine

The vaccine will be provided in two formulations—liquid form and freeze-dried form. For the liquid form, the vaccine will be provided in vials containing 1 mL of attenuated SARS-COV-2 strain 7N-1. For the freeze-dried form, the vaccine will be provided in vials containing lyophilized powder of attenuated SARS-COV-2 strain 7N-1. The vaccine will be stored in a freezer at −80° C. SARS-Cov-2 virus strain 7N-1 (1×105 PFU/ml/Vial). Freeze dried SARS-Cov-2 virus strain 7N-1 (1×105 PFU/Vial).


Example 22—Protocol for Rescue of SARS-COV-2 Virus from Full Length Constructs

This Example describes a protocol for successfully transfecting vaccine constructs, being an alternative to the method described in Example 8. We are able to rescue candidate viruses by directly transfecting Vero GMP cells without the need to use BHK cells.


1. Application

To rescue a recombinant SARS COV-2 virus from a full-length DNA infectious clone(s).


2. Materials Required

Nuclease free tips, Nuclease free tubes, Cell culture incubator, Nanodrop instrument, Microfuge, 12 well tissue culture plate, Light microscope, Sterile 1.5 mL Eppendorf tubes, SARS-COV-2 infectious clone plasmid(s), Vero-GMP cells, HEK-293 TT cells, BHK-21 cells, Vero E6 cells, Lipofectamine 2000 reagent (Thermo Fisher Scientific-11668019), Polyethyleneimine MAX (Polysciences Inc, 24765), Opti-MEM medium, HMEM, DMEM growth medium, and Fetal bovine serum.


3. Procedure
Day 0—Plating Cells

Seed the cells at a recommended seed rate following Table 14 below.













TABLE 14







Cells
Seeding density
Medium used









Vero-GMP
2 × 105 cells per/ml
HMEM with 10% FBS



Vero-E6
3 × 105 cells per/ml
HMEM with 10% FBS



BHK-21
3 × 105 cells per/ml
HMEM with 10% FBS



HEK-293
4 × 105 cells per/ml
DMEM with 10% FBS










Incubate the plates at 37° C. with 5% CO2 overnight or until the monolayer reaches to 70-80% confluency.


Day 1—Transfection

Prepare the transfection reagent and the DNA as provided in Table 15 below.












TABLE 15









Vial A












Volume
Vial B














Volume of
(Lipofectamine
Volume of
Volume of



Plate
OptiMEM
or PEI MAX)
OptiMEM
(DNA)
Ratio





12 well
100 μl
6 μl
100 μl
2 μg
1:3









Wait for 5 minutes at room temperature.


Mix the transfection reagent (Vial A) and DNA (Vial B) and incubate at room temperature for 20 minutes.


Transfer the lipofectamine/PEI MAX and DNA complex into the cells.


Gently mix and incubate the plates at 37° C. at 5% CO2 up to 72-96 hours and observe the plates for every 12-24 hours.


After incubation, harvest the contents of the wells in to 15 ml centrifuge tube.


Freeze the tubes in −80° C. and quickly thaw the tubes in a 25° C. water bath. Repeat this step twice and clarify the sample by centrifugation at 1500 rpm for 10 minutes and store at −80° C. until further process.


Day 5—Day 7-Passage of the Rescued Clone (Blind Passage-I)
Day 5—Seeding Plates

Seed Vero-GMP cells at 3×105 cells per/ml in a 12 well plate and incubate the plates at 37° C. at 5% CO2.


Day 6—Day 9—Propagation and Harvest

Infect the Vero-GMP monolayer (1 ml/well in 12 well plate) with the clarified transfected supernatant.


Incubate the plates at 37° C. at 5% CO2 overnight (˜16 hours).


After incubation, replace the medium with fresh HMEM supplemented with 1% FBS and continue incubating the plates at 37° C. at 5% CO2 for 60 hours.


After incubation, harvest the virus (supernatant and cells) and store at −80° C. until further process.


Propagation of the rescued virus (Blind passage-II)


If required (if the CPE is not evident), repeat the passage once again in Vero-GMP cells as described above before further scale up.


Titrate the virus following standard protocol.


Scale up the virus as required at a preferred MOI.


Example 23—Vaccine Candidate 7N-1 Provides Full Protection from Rechallenge Mortality when Given Via Intranasal Route in HFH4-hACE2 Mice

To test the efficacy of candidate 7N-1 as a COVID-19 vaccine, we established a challenge experiment using the following immunisation groups: 103 PFU 7N-1 intranasal; 105 PFU 7N-1 subcutaneous; 103 PFU wild-type mouse-adapted SARS-COV-2 (SARS-COV-2 MA10) intranasal; and unimmunised (PBS treated). See FIG. 37A-F.


HFH4-hACE2 mice were used in this study. Three weeks later, the mice were challenged with 105 PFU intranasal wild-type mouse-adapted SARS-COV-2 (SARS-COV-2 MA10) and monitored over a 7-day period. All mice in the unvaccinated group were moribund by day 7 post-infection and were euthanised. Mice given 7N-1 vaccination showed strong protection from SARS-COV-2 challenge, with 100% survival in the intranasal group and 80% survival in the subcutaneous group (death in mice given 7N-1 subcutaneous is likely related to the reduced receptor expression in the periphery). Immunisation with wild-type mouse-adapted SARS-COV-2 (SARS-COV-2 MA10) provided partial protection.


Example 24—Form of the Vaccine and Immunisation Protocol

Live attenuated SARS-COV-2 vaccine/vaccine dose can comprise freeze-dried/lyophilized infectious virus as produced in the earlier Examples. The freeze-dried/lyophilized infectious virus can be reconstituted and administered by subcutaneous injection, inhalation or oral route. In preferred embodiments, the vaccine is administered by subcutaneous injection, intranasally or orally. The vaccine can be used for prophylactic, active, single-dose immunization against SARS-COV-2 in humans. A subject may be administered, for example, a titre of approximately 104 PFU attenuated virus per vaccine dose.


There are a number of key features of the codon-deoptimized SARS-COV-2 vaccine that make it very attractive as a commercial candidate.

    • 1) There are no licensed vaccines available for SARS-COV-2.
    • 2) The vaccine is a live attenuated vaccine, which generally delivers more potent immunity and longer protection from infection than other vaccine formulations such as subunit vaccines. It has also no adverse effect due to anti-vector immunity that will likely be problem for adenovirus-based vaccines, especially if annual re-vaccination is needed.
    • 2) The vaccine is expected to replicate to very low levels in mammalian cells but still induces potent immunity.
    • 3) We have achieved attenuation of the vaccine through targeted mutation of the region encoding for non-structural proteins (ORF1a region). We have introduced a number of silent mutations, which are expected to interfere with replication of the vaccine construct but have no effect on the structure of encoded proteins. By engineering multiple mutations into the vaccine, there is essentially no chance that the vaccine will revert to virulence. This is a crucial aspect of our vaccine design since safety of live attenuated vaccines is the major concern in bringing these types of vaccine to market. In contrast, vaccines based on a single attenuating mutation are highly susceptible to reversion and have considerable safety issues.
    • 4) The vaccine is expected to provide cross-protection against other coronaviruses e.g. SARS-COV-1 and MERS-COV.
    • 5) Other vaccine formulations are currently under development in other labs around the world (e.g. subunit vaccine, inactivate whole virus vaccine, recombinant virus vaccine, various RNA and DNA vaccines). Our approach involves the application of codon deoptimization technology to ORF1a to develop an attenuated vaccine.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention.


In the present specification and claims (if any), the word ‘comprising’ and its derivatives including ‘comprises’ and ‘comprise’ include each of the stated integers but does not exclude the inclusion of one or more further integers.


The reference to any prior art in this specification is not, and should not be taken as an acknowledgement or any form of suggestion that the prior art forms part of the common general knowledge.

Claims
  • 1. A live attenuated-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid comprising a partly codon deoptimized SARS-COV-2 genome.
  • 2. A recombinant, isolated or substantially purified nucleic acid comprising a partly codon deoptimized SARS-COV-2 genome or partly codon deoptimized region thereof.
  • 3. A vector, plasmid or genetic construct comprising the nucleic acid of claim 2.
  • 4. A cell or isolate containing the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle, or SARS-COV-2 nucleic acid of claim 1.
  • 5. An immunogenic composition, pharmaceutical preparation or vaccine comprising the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of claim 1.
  • 6. (canceled)
  • 7. (canceled)
  • 8. A method of: (1) vaccinating a subject; (2) prophylactically immunizing a subject against SARS-COV-2 or SARS-COV-2-like virus; (3) preventing a subject from contracting a SARS-COV-2 infection naturally or a SARS-COV-2-like infection naturally; (4) reducing the severity of a natural SARS-COV-2 disease or natural SARS-COV-2-like disease in a subject; (5) treating a subject having a natural SARS-CoV-2 infection or natural SARS-COV-2-like infection; or (6) eliciting an immune response in a subject, said method comprising the step of administering to the subject: a live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-CoV-2 nucleic acid comprising a partly codon deoptimized SARS-COV-2 genome; a recombinant, isolated or substantially purified nucleic acid comprising a partly codon deoptimized SARS-COV-2 genome or partly codon deoptimized region thereof; a vector, plasmid or genetic construct comprising the recombinant, isolated or substantially purified nucleic acid; a cell or isolate containing the live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid; or the immunogenic composition, pharmaceutical preparation or vaccine of claim 5.
  • 9. (canceled)
  • 10. (canceled)
  • 11. A method of generating a live attenuated SARS-COV-2 vaccine, SARS-CoV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid, or recombinant, isolated or substantially purified nucleic acid comprising a partly codon deoptimized SARS-COV-2 genome or partly codon deoptimized region thereof, comprising the step of partly codon deoptimizing a SARS-COV-2 genome.
  • 12. The method of claim 11, further comprising the step of enabling the partly codon deoptimized live attenuated SARS-COV-2 to replicate.
  • 13. The method of claim 12, further comprising the step of preparing a vaccine dose containing the replicated SARS-COV-2.
  • 14. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of claim 1, wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of codon changes within the ORF1a region of SARS-COV-2.
  • 15. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of claim 14, wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of codon changes within the ORF1a region of SARS-COV-2, excluding the 5′ region of ORF1 and/or excluding the 3′ region of ORF1a corresponding to the ribosomal frameshift region; orwherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of codon changes within the ORF1a region of SARS-COV-2 corresponding to between about nucleotide position 1534 and about nucleotide position 8586 of the wild-type Wuhan SARS-COV-2 genome.
  • 16. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of claim 14, wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of codon changes within the ORF1a region of SARS-COV-2 corresponding to:(1) between about nucleotide position 1534 and about nucleotide position 4254 of the wild-type Wuhan SARS-COV-2 genome;(2) between about nucleotide position 4254 and about nucleotide position 6982 of the wild-type Wuhan SARS-COV-2 genome;(3) between about nucleotide position 6982 and about nucleotide position 8586 of the wild-type Wuhan SARS-COV-2 genome;(4) between about nucleotide position 8586 and about nucleotide position 11165 of the wild-type Wuhan SARS-COV-2 genome;(5) between about nucleotide position 11165 and about nucleotide position 12718 of the wild-type Wuhan SARS-COV-2 genome; or(6) any combination of (1) to (5).
  • 17. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of claim 14, wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of between about 10 and about 1850 codon changes within the ORF1a region; orwherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of between about 24 and about 546 codon changes within the ORF1a region.
  • 18. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of claim 14, wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of codon changes to synonymous codons that are used less frequently, moderately, less rarely, and/or rarely in the genome of Homo sapiens; orwherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of
  • 19. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of claim 14, wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of synonymous codon changes whereby one or more Ser codons are changed, one or more Arg codons are changed, one or more Thr codons are changed, one or more Pro codons are changed, one or more Val codons are changed, one or more Leu codons are changed, one or more Ala codons are changed, one or more Ile codons are changed, one or more Cys codons are changed, one or more Gly codons are changed, one or more His codons are changed, one or more Gln codons are changed, one or more Trp codons are changed, one or more Asn codons are changed, one or more Phe codons are changed, one or more Asp codons are changed, one or more Phe codons are changed, one or more Lys codons are changed, one or more Glu codons are changed, or any combination thereof.
  • 20. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of claim 14, wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of synonymous codon changes whereby:one or more Ser codons are changed to the rare TCG codon;one or more proline codons are changed to the less rare CCG codon;one or more threonine codons are changed to the less rare ACG codon;one or more isoleucine codons are changed to the less rare ATA codon;one or more alanine codons are changed to the less rare GCG codon; and/orone or more arginine codons are changed to the rare CGT codon or less rare CGA codon.
  • 21. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of claim 14, wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of codon changes within the ORF1a region of SARS-COV-2 comprising:a deoptimized nucleotide sequence as shown or substantially as shown in any one of SEQ ID NO:33-37;a deoptimized nucleotide sequence as shown or substantially as shown in any one of SEQ ID NO:39-68;a deoptimized nucleotide sequence as shown or substantially as shown in any one ofFIGS. 22 to 25;a deoptimized nucleotide sequence as shown in any one of SEQ ID NO:33-37 but with up to 10% fewer or up to 10% more codon changes than shown;a deoptimized nucleotide sequence as shown in any one of SEQ ID NO:39-68 but with up to 10% fewer or up to 10% more codon changes than shown; ora deoptimized nucleotide sequence as shown in any one of FIGS. 22 to 25 but with up to 10% fewer or up to 10% more codon changes than shown.
  • 22. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of claim 14, wherein the partly codon deoptimized SARS-COV-2 genome comprises or consists of codon changes as listed in Table 1b, either individually or in combination with each other, or in Table 11, either individually or in combination with each other.
  • 23. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of claim 14, wherein the partly codon deoptimized SARS-COV-2 genome comprises the nucleotide sequence or substantially the same nucleotide sequence as clone SARS-COV-2-77-1, SARS-COV-2-77-2, SARS-COV-2-77-3, SARS-COV-2-77-4, SARS-COV-2-77-5, SARS-COV-2-77-6, SARS-COV-2-77-7, SARS-COV-2-160-1, SARS-COV-2-160-2, SARS-COV-2-160-3, SARS-COV-2-160-4, SARS-COV-2-160-5, SARS-COV-2-160-6, SARS-COV-2-160-7, SARS-COV-2-4N-1 or SARS-COV-2-7N-1, or any variant thereof such as SARS-COV-2-4N-1-Alpha (B1.1.7), SARS-COV-2-4N-1-Beta (B1.351), SARS-CoV-2-4N-1-Gamma (P1), SARS-COV-2-4N-1-Delta, SARS-COV-2-7N-1-Alpha (B1.1.7), SARS-COV-2-7N-1-Beta (B1.351), SARS-COV-2-7N-1-Gamma (P1), or SARS-COV-2-7N-1-Delta.
  • 24. The live attenuated SARS-COV-2, SARS-COV-2, SARS-COV-2 particle or SARS-COV-2 nucleic acid of claim 14, wherein the partly codon deoptimized SARS-COV-2 genome comprises the nucleotide sequence of clone SARS-COV-2-7N-1, or substantially the same nucleotide sequence as clone SARS-COV-2-7N-1, or any variant thereof such as SARS-COV-2-7N-1-Alpha (B1.1.7), SARS-COV-2-7N-1-Beta (B1.351), SARS-COV-2-7N-1-Gamma (P1), or SARS-COV-2-7N-1-Delta.
  • 25. A vaccine comprising live attenuated SARS-COV-2, SARS-COV-2, SARS-CoV-2 particle or SARS-COV-2 nucleic acid comprising a partly codon deoptimized SARS-COV-2 genome, wherein the partly codon deoptimized SARS-COV-2 genome comprises the nucleotide sequence of clone SARS-COV-2-7N-1 or the sequence of SEQ ID NO:60, or substantially the same nucleotide sequence as clone SARS-COV-2-7N-1 or the sequence of SEQ ID NO:60, or any variant thereof such as SARS-COV-2-7N-1-Alpha (B1.1.7), SARS-COV-2-7N-1-Beta (B1.351), SARS-COV-2-7N-1-Gamma (P1), or SARS-COV-2-7N-1-Delta.
Priority Claims (2)
Number Date Country Kind
202041030397 Jul 2020 IN national
202041056151 Dec 2020 IN national
PCT Information
Filing Document Filing Date Country Kind
PCT/AU2021/050763 7/16/2021 WO