Livestock dry off method and device

Information

  • Patent Grant
  • 11864529
  • Patent Number
    11,864,529
  • Date Filed
    Thursday, October 10, 2019
    5 years ago
  • Date Issued
    Tuesday, January 9, 2024
    10 months ago
Abstract
A system and method for automatically drying-off a machine-milked dairy animal by controlling milk production during a gradual drying-off period. During the gradual drying-off period, the dairy animal is not milked out. For each milking during this period, an amount of milk to be removed is determined, which is less than the amount removed at a previous milking. When the amount of milk for the current milking has been removed from the dairy animal, milking is stopped. The start of the gradual drying-off period is calculated from the dry-off date, the desired date of cessation of milking for this lactation, and from a predetermined drying-off period.
Description
FIELD OF THE INVENTION

The present invention generally pertains to a system and method for drying off dairy animals such as cows.


BACKGROUND OF THE INVENTION

It is well known that, in order to maintain milk production over several lactations, dairy animals, for example cows, need to have a dry period, where they produce no milk, between lactations. It has been found that, in cows, an optimum length for this dry period is typically about 60 days before expected calving.


Drying-off a dairy animal typically involves at least one of the following: simply stopping milking the dairy animal on a certain day, or, when an effort is made to relieve stress, including one of the following strategies: increasing the time between milkings prior to the final dry-off, or not fully emptying the udder at each milking during a certain period before the final dry-off. In any of the above cases, the excess milk in the udder will decrease milk production and eventually completely stop milk production. The desired dry period can then commence.


However, in the last decades, genetic improvements in dairy cattle as well as other factors have increased the milk yield of cows and have led to a situation in which, in many cases, cows that are due to be dried-off still produce a considerable amount of milk 60 days before the next calving and the process of dry-off leads to great stress in the dairy animal, which may lead to a number of complications that can occur during the drying-off period:

    • There is, especially at the start of the drying-off period, when the cow's milk production is still high, a significantly increased pressure in the udder from excess milk accumulated during a longer time between milking or from not fully emptying the udder.
    • The increased pressure in the udder can cause discomfort and pain to the dairy animal.
    • The increased pressure in the udder can cause leakage of milk from the teats. Milk leakage increases the probability of infection of the udder.
    • Leakage from the teats can prevent the formation of a protective plug in the teat canal, a normal part of the drying-off process, which itself protects the udder from infection.
    • Proper formation of a teat plug is important for udder health and to improve milk production in a subsequent lactation cycle.


Prophylactic application of antibiotics is often used to prevent infections in the udder, but these are less desirable since they increase the cost of caring for the dairy animal and can increase antibiotic resistance in bacteria. In addition, there is a cost associated with prophylactic application of antibiotics, which includes both the cost of the antibiotics themselves and the manpower cost of applying them.


If there appears to be failure to form a normal teat plug, artificial teat plugs can be applied, again increasing the cost of caring for the dairy animal.


A number of regimens are recommended for drying-off cows.


Oregon State University (http://smallfarms.oregonstate.edu/sfn/sulOdryinglivestock) recommends the following regimen for drying-off dairy animals:

    • Reduce nutrient content of diet for about 2 weeks to reduce milk production (provide plenty of low-calorie feed and plenty of water).
    • After production is less than 201b/day in cows and 3 lb per day in goats, or after 2 weeks, stop milking.
    • Wash with alcohol, apply antibiotic and cover with a teat dip if there is a history of mastitis.


The New Zealand dairy industry organization DairyNZ (https://www.dairvnz.co.nz/animal/cow-health/mastitis/drying-off) recommends drying-off cows as soon as their milk production reaches 5 liters or less per day. The recommended regimen is:

    • Milk out as usual at a last milking.
    • Administer antibiotic dry cow therapy (DCT).
    • Administer Internal Teat Sealants (ITS).
    • Cover the whole surface of the teat with freshly prepared teat disinfectant.
    • For the next 1-2 weeks, cows should be grazed in paddocks that are well away from the milking herd and the milking area, so the cows don't have a stimulus to let down milk
    • Feed a “maintenance” diet for the first 7-14 days after dry off.
    • Cows should be maintained on the “maintenance” daily dry matter (DM) intakes for a maximum of 14 days after dry off. For many low-yielding cows, this period can be shortened to about 7 days, depending on how quickly the swelling in the udders starts to subside. Maintenance is about 8 kg DM/day.


Other dry-off regimens reduce the frequency of milking; the cow is fully milked at each milking, but the frequency of milking is gradually reduced, over a period of about 2 weeks, until the cow is dry. For example, the milking frequency can be reduced from 2-3 per day to 1 per day, then to one every other day, until the cow is dry. In some regimens, antibiotics, teat sealants or both are also used. These regimens require special consideration to prevent treated animals from being milked by mistake and contaminating the entire volume of milk, which can have a severe consequences to the framer.


Automated, computerized systems of managing dairy animal dry-off have been proposed.


WIPO application publication number WO07089184 discloses a dairy farm management support system with an input interface, a rules engine, a decision engine and an output interface for presenting at least one proposed dairy farm decision to a user. The rules engine receives a first set of input parameters, Drand, which reflect a decision basis for a particular type of dairy farm decision. Via the input interface, the rules engine also receives user-generated input data, Decu, which represent a number of manual decisions in respect of the first set of input parameters Drand. In response to the first set of input parameters Drand and the accompanying user-generated input data Decu, the rules engine generates a set of decision rules RDec. Then the decision engine receives dairy farm data (D) reflecting animal parameters of the same type as the first set of input parameters Drand, applies the set of decision rules RDec to the dairy farm data (D) and derives at least one proposed dairy farm decision of the particular type, which is presented via the output interface. Data for each individual animal can be collected, e.g. amount of milk produced and animal condition data. From automatically-generated data and manually-entered data, a set of rules can be generated to inform a user of a regimen to be followed. For example, from the generated rules, a user can be advised on whether or not to start a dry-off regimen.


However, WO07089184 does not disclose any means or method by which a drying-off regimen can be automatically executed, not does it suggest any particular drying-off regimen to be used.


It is therefore a long felt need to provide a means and method which is not difficult to implement and by which a dairy animal can be dried off which minimizes discomfort to the dairy animal, which minimizes leakage of milk from the teats, which minimizes necessity for antibiotics, which limits the need for artificial teat plugs, and which avoids reduction in milk yield during subsequent lactations.


SUMMARY OF THE INVENTION

It is an object of the present invention to disclose an automated system and method for drying-off dairy animals.


It is another object of the present invention to disclose a method for automatically drying-off a dairy animal, comprising steps of:

    • for a duration of gestation greater than a predetermined drying-off start time, determining average milk production for said dairy animal;
    • for said average milk production being greater than a predetermined amount of milk:
      • setting a start date for gradual drying-off as a current milking; and,
      • determining, from said start date and a predetermined drying-off period, a dry-off date;
    • wherein said gradual drying-off comprises:
      • for each current milking of said dairy animal on or after said start date:
        • determining an amount of milk to be removed in each milking;
        • machine milking said dairy animal;
        • measuring removal of milk in real time during milking; and,
        • at such time as said milk production is greater than said amount of milk to be removed, stopping said current milking.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of: for said average milk production being less than or equal to said predetermined amount of milk, using abrupt dry-off by discontinuing milking.


It is another object of the present invention to disclose the method as described above, additionally comprising steps of: determining, from a current date and said dry-off date, a number of days until said dry-off date; and determining said amount of milk to be removed from said number of days until said dry-off date and said average milk production.


It is another object of the present invention to disclose the method as described above, wherein said amount of milk to be removed is independent of flow rate of milk from said dairy animal.


It is another object of the present invention to disclose the method as described above, wherein said average milk production is average daily milk production.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of calculating said average milk production from milk production over a time period in a range between two weeks and a time interval from one milking to a next milking, said time interval including a single milking.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of providing a system for milking said dairy animal, said dairy animal uniquely identifiable; said system comprising:

    • a milking controller configured to control said removal of milk from said dairy animal's udder;
    • at least one milk meter in communication with said milking controller, said at least one milk meter configured to measure an amount of said removal of milk; and
    • at least one milking processor, said milking processor configured to determine said amount of milk to be removed by said milking controller; said milking processor further configured to store, for said dairy animal, at least one previous amount of milk removed and to generate, for said dairy animal, said average milk production from said at least one previous amount of milk removed.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of controlling initiation of said removal of milk.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said control of initiation of said removal of milk from a group consisting of: manual control of initiation of said removal of milk, semi-automatic control of initiation of said removal of milk and automatic control of initiation of said removal of milk.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of determining, from at least one other consideration, whether gradual drying-off is indicated.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said at least one other consideration from a group consisting of: a dairy animal's health, feed a dairy animal is being given, a need to transition to another feed, pasture a dairy animal is on, a desire to change pasture, a need for milk, a dairy animal's lactation number and any combination thereof.


It is another object of the present invention to disclose the method as described above, additionally comprising steps of, for said at least one other consideration not indicating gradual drying-off, milking-out at each milking until either said average milk production is less than or equal to said predetermined amount of milk; and for said at least one other consideration indicating gradual drying-off, selecting abrupt dry-off for average milk production being less than or equal to said predetermined amount of milk and selecting gradual drying-off for average milk production being greater than said predetermined amount of milk.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of identifying said dairy animal.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said identifying of said dairy animal from a group consisting of: manual identification, automatic identification and any combination thereof.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of said processor identifying said dairy animal via said automatic identification.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said automatic identification from a group consisting of: providing an automatically-readable identifier in communication with said dairy animal, biometric identification, and any combination thereof.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of providing said automatically-readable identifier in communication with an animal attachment mechanism selected from a group consisting of: an ear tag, a body tag, a head collar, a neck collar, a harness, a bracelet attachable to a leg, an embedment in said animal and any combination thereof.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of providing said animal attachment mechanism comprising said at least one sensor.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said biometric identification from a group consisting of: identifying at least one marking on said animal, identifying a muzzle print image of said animal, identifying an iris pattern of said animal, identifying a retinal vascular pattern of said animal, facial recognition of said animal, recognition of an external physical feature of said animal, identifying an ear vascular pattern of said animal, and any combination thereof.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of said determining of said average milk production being averaging of milk production per milking over a production measurement period.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said production measurement period to be in a range of one day to 2 weeks.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said production measurement period to be 7 days.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said predetermined drying-off start time to be said expected parturition date minus the sum of a predetermined amount of time before expected parturition and said predetermined drying-off period.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said predetermined amount of time before expected parturition to be in a range of 30-90 days before the expected calving for a cow, 20-100 days before lambing for a sheep, 25-70 days before kidding for a goat, and 45-100 days before calving for a buffalo.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said predetermined drying-off period to be in a range of 7 days to 3 weeks.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said predetermined amount of milk to be 10 kg/day.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said amount of milk to be removed to be in a range of 50% to 80% of said average milk production.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said amount of milk to be removed to be 70% of said average milk production.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of determining said amount of milk to be removed either as an amount to be removed from said udder or as an amount to be removed from each milkable quarter.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said dairy animal from a group consisting of: a cow, a sheep, a goat, a buffalo, and a camel.


It is another object of the present invention to disclose a method for automatically drying-off a dairy animal, comprising steps of:

    • for a duration of gestation greater than a drying-off start time, determining average milk production for said dairy animal;
    • for said average milk production being greater than a predetermined amount of milk:
      • determining, from at least one other consideration, whether gradual drying-off is indicated;
        • for at least one other consideration indicating gradual drying-off:
          • selecting a current milking to be a start date for gradual drying-off; and
          • determining, from said start date and a predetermined drying-off period, a dry-off date;
    • wherein said gradual drying-off comprises:
      • for each current milking of said dairy animal on or after said start date;
        • determining an amount of milk to be removed;
        • machine milking said dairy animal;
        • measuring removal of milk in real time during milking; and
        • at such time as said milk production is greater than said amount of milk to be removed, stopping said current milking.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of: for said average milk production being less than or equal to said predetermined amount of milk, using abrupt dry-off by discontinuing milking.


It is another object of the present invention to disclose the method as described above, additionally comprising steps of: determining, from a current date and said dry-off date, a number of days until said dry-off date; and determining said amount of milk to be removed from said number of days until said dry-off date and said average milk production.


It is another object of the present invention to disclose the method as described above, wherein said amount of milk to be removed is independent of flow rate of milk from said dairy animal.


It is another object of the present invention to disclose the method as described above, wherein said average milk production is average daily milk production.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of calculating said average milk production from milk production over a time period in a range between two weeks and a time interval from one milking to a next milking, said time interval including a single milking.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of providing a system for milking said dairy animal, said dairy animal uniquely identifiable; said system comprising:

    • a milking controller configured to control said removal of milk from said dairy animal's udder;
    • at least one milk meter in communication with said milking controller, said at least one milk meter configured to measure an amount of said removal of milk; and
    • at least one milking processor, said milking processor configured to determine said amount of milk to be removed by said milking controller; said milking processor further configured to store, for said dairy animal, at least one previous amount of milk removed and to generate, for said dairy animal, said average milk production from said at least one previous amount of milk removed.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of controlling initiation of said removal of milk.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said control of initiation of said removal of milk to be either manual control of initiation of said removal of milk or automatic control of initiation of said removal of milk.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said at least one other consideration from a group consisting of: a dairy animal's health, feed a dairy animal is being given, a need to transition to another feed, pasture a dairy animal is on, a desire to change pasture, a need for milk, a dairy animal's lactation number and any combination thereof.


It is another object of the present invention to disclose the method as described above, additionally comprising steps of, for said at least one other consideration not indicating gradual drying-off, milking-out at each milking until either said average milk production is less than or equal to said predetermined amount of milk; and for said at least one other consideration indicating gradual drying-off, selecting abrupt dry-off for average milk production being less than or equal to said predetermined amount of milk and selecting gradual drying-off for average milk production being greater than said predetermined amount of milk.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of identifying said dairy animal.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said identifying of said dairy animal from a group consisting of: manual identification, automatic identification and any combination thereof.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of said processor identifying said dairy animal via said automatic identification.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said automatic identification from a group consisting of: providing an automatically-readable identifier in communication with said dairy animal, biometric identification, and any combination thereof.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of providing said automatically-readable identifier in communication with an animal attachment mechanism selected from a group consisting of: an ear tag, a body tag, a head collar, a neck collar, a harness, a bracelet attachable to a leg, an embedment in said animal and any combination thereof.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of providing said animal attachment mechanism comprising said at least one sensor.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said biometric identification from a group consisting of: identifying at least one marking on said animal, identifying a muzzle print image of said animal, identifying an iris pattern of said animal, identifying a retinal vascular pattern of said animal, facial recognition of said animal, recognition of an external physical feature of said animal, identifying an ear vascular pattern of said animal, and any combination thereof.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of said determining of said average milk production being averaging of milk production per milking over a production measurement period.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said production measurement period to be in a range of one day to 2 weeks.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said production measurement period to be 7 days.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said predetermined drying-off start time to be said expected parturition date minus the sum of a predetermined amount of time before expected parturition and said predetermined drying-off period.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said predetermined amount of time before expected parturition to be in a range of 30-90 days before calving for a cow, 20-100 days before lambing for a sheep, 25-70 days before kidding for a goat, and 45-100 days before calving for a buffalo.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said predetermined drying-off period to be in a range of 7 days to 3 weeks.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said predetermined amount of milk to be 10 kg/day.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said amount of milk to be removed to be in a range of 50% to 80% of said average milk production.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said amount of milk to be removed to be 70% of said average milk production.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of determining said amount of milk to be removed either as an amount to be removed from said udder or as an amount to be removed from each milkable quarter.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said dairy animal from a group consisting of: a cow, a sheep, a goat, a buffalo, and a camel.


It is another object of the present invention to disclose a method for automatically drying-off a dairy animal, comprising steps of:

    • for a duration of gestation greater than a predetermined drying-off start time, determining average milking duration for said dairy animal;
    • for said average milking duration being greater than a predetermined milking duration:
      • setting a start date for gradual drying-off as a current milking; and,
      • determining, from said start date and a predetermined drying-off period, a dry-off date;
    • wherein said gradual drying-off comprises:
      • for each current milking of said dairy animal on or after said start date:
        • determining a milking duration;
        • machine milking said dairy animal;
        • measuring a time spent milking in real time during milking; and,
        • at such time as said time spent milking is greater than said milking duration, stopping said current milking.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of: for said average milking duration being less than or equal to said predetermined milking time, using abrupt dry-off by discontinuing milking.


It is another object of the present invention to disclose the method as described above, additionally comprising steps of: determining said milking duration from a current date and said dry-off date, a number of days until said dry-off date; and determining said milking duration from said number of days until said dry-off date and said average milking duration.


It is another object of the present invention to disclose the method as described above, wherein said milking duration is independent of flow rate of milk from said dairy animal.


It is another object of the present invention to disclose the method as described above, wherein said average milking duration is average daily milking duration.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of calculating said average milking duration from milking duration over a time period in a range between two weeks and a time interval from one milking to a next milking, said time interval including a single milking.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of providing a system for milking said dairy animal, said dairy animal uniquely identifiable; said system comprising:

    • a milking controller configured to control said removal of milk from said dairy animal's udder;
    • at least one milk meter in communication with said milking controller, said at least one milk meter configured to measure an amount of said removal of milk; and
    • at least one milking processor, said milking processor configured to determine said amount of milk to be removed by said milking controller; said milking processor further configured to store, for said dairy animal, at least one previous amount of milk removed and to generate, for said dairy animal, said average milk production from said at least one previous amount of milk removed.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of controlling initiation of said removal of milk.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said control of initiation of said removal of milk from a group consisting of: manual control of initiation of said removal of milk, semi-automatic control of initiation of said removal of milk and automatic control of initiation of said removal of milk.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of determining, from at least one other consideration, whether gradual drying-off is indicated.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said at least one other consideration from a group consisting of: a dairy animal's health, feed a dairy animal is being given, a need to transition to another feed, pasture a dairy animal is on, a desire to change pasture, a need for milk, a dairy animal's lactation number and any combination thereof.


v additionally comprising steps of, for said at least one other consideration not indicating gradual drying-off, milking-out at each milking until either said average milking duration is less than or equal to said predetermined amount of milk; and for said at least one other consideration indicating gradual drying-off, selecting abrupt dry-off for average milking duration being less than or equal to said predetermined milking time and selecting gradual drying-off for average milking duration being greater than said predetermined milking time.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of identifying said dairy animal.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said identifying of said dairy animal from a group consisting of: manual identification, automatic identification and any combination thereof.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of said processor identifying said dairy animal via said automatic identification.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said automatic identification from a group consisting of: providing an automatically-readable identifier in communication with said dairy animal, biometric identification, and any combination thereof.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of providing said automatically-readable identifier in communication with an animal attachment mechanism selected from a group consisting of: an ear tag, a body tag, a head collar, a neck collar, a harness, a bracelet attachable to a leg, an embedment in said animal and any combination thereof.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of providing said animal attachment mechanism comprising said at least one sensor.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said biometric identification from a group consisting of: identifying at least one marking on said animal, identifying a muzzle print image of said animal, identifying an iris pattern of said animal, identifying a retinal vascular pattern of said animal, facial recognition of said animal, recognition of an external physical feature of said animal, identifying an ear vascular pattern of said animal, and any combination thereof.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of said determining of said average milking duration being averaging of milking duration per milking over a duration measurement period.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said duration measurement period to be in a range of one day to 2 weeks.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said duration measurement period to be 7 days.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said predetermined drying-off start time to be said expected parturition date minus the sum of a predetermined amount of time before expected parturition and said predetermined drying-off period.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said predetermined amount of time before expected parturition to be in a range of 30-90 days before calving for a cow, 20-100 days before lambing for a sheep, 25-70 days before kidding for a goat, and 45-100 days before calving for a buffalo.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said predetermined drying-off period to be in a range of 7 days to 3 weeks.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said predetermined amount of milk to be 10 kg/day.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said milking duration to be in a range of 50% to 80% of said average milking duration.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said milking duration to be 70% of said average milking duration.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of determining said milking duration either as a milking duration for said udder or as a milking duration for each milkable quarter.


It is another object of the present invention to disclose the method as described above, additionally comprising a step of selecting said dairy animal from a group consisting of: a cow, a sheep, a goat, a buffalo, and a camel.


It is another object of the present invention to disclose a drying-off system for automatically drying-off a dairy animal, said drying-off system comprising a processor comprising instructions configured to:

    • for a duration of gestation greater than a predetermined drying-off start time, determine average milk production for said dairy animal;
    • for said average milk production being greater than a predetermined amount of milk:
      • set a start date for gradual drying-off as a current milking; and,
      • determine, from said start date and a predetermined drying-off period, a dry-off date;
    • wherein instructions for gradual drying-off are configured to:
      • for each current milking of said dairy animal on or after said start date:
        • determine an amount of milk to be removed;
        • machine milk said dairy animal;
        • measure removal of milk in real time during milking; and
        • at such time as said milk production is greater than said amount of milk to be removed, stop said current milking.


It is another object of the present invention to disclose the drying-off system as described above, additionally comprising instructions configured to, for said average milk production being less than or equal to said predetermined amount of milk, institute abrupt dry-off by discontinuing milking.


It is another object of the present invention to disclose the drying-off system as described above, additionally comprising instructions configured to determine, from a current date and said dry-off date, a number of days until said dry-off date; and to determine said amount of milk to be removed from said number of days until said dry-off date and said average milk production.


It is another object of the present invention to disclose the drying-off system as described above, wherein said amount of milk to be removed is independent of flow rate of milk from said dairy animal.


It is another object of the present invention to disclose the drying-off system as described above, wherein said average milk production is average daily milk production.


It is another object of the present invention to disclose the drying-off system as described above, wherein said average milk production is calculable from milk production over a time period in a range between two weeks and a time interval from one milking to a next milking, said time interval including a single milking.


It is another object of the present invention to disclose the drying-off system as described above, additionally comprising a milking system for milking said dairy animal, said dairy animal uniquely identifiable; said milking system comprising:

    • a milking controller configured to control said removal of milk from said dairy animal's udder;
    • at least one milk meter in communication with said milking controller, said at least one milk meter configured to measure an amount of said removal of milk; and
    • at least one milking processor, said milking processor configured to determine said amount of milk to be removed by said milking controller; said milking processor further configured to store, for said dairy animal, at least one previous amount of milk removed and to generate, for said dairy animal, said average milk production from said at least one previous amount of milk removed.


It is another object of the present invention to disclose the drying-off system as described above, wherein said milking controller is additionally configured to control initiation of said removal of milk.


It is another object of the present invention to disclose the drying-off system as described above, wherein said control of initiation of said removal of milk is selected from a group consisting of: manual control of initiation of said removal of milk, semi-automatic control of initiation of said removal of milk and automatic control of initiation of said removal of milk.


It is another object of the present invention to disclose the drying-off system as described above, wherein said processor additionally comprises instructions configured to determine, from at least one other consideration, whether gradual drying-off is indicated.


It is another object of the present invention to disclose the drying-off system as described above, wherein said at least one other consideration is selected from a group consisting of: a dairy animal's health, feed a dairy animal is being given, a need to transition to another feed, pasture a dairy animal is on, a desire to change pasture, a need for milk, a dairy animal's lactation number and any combination thereof.


It is another object of the present invention to disclose the drying-off system as described above, wherein, for said at least one other consideration not indicating gradual drying-off, said processor additionally comprises instructions configured to milk-out at each milking until either said average milk production is less than or equal to said predetermined amount of milk; and for said at least one other consideration indicating gradual drying-off, abrupt dry-off being selected for average milk production being less than or equal to said predetermined amount of milk and gradual drying-off being selected for average milk production being greater than said predetermined amount of milk.


It is another object of the present invention to disclose the drying-off system as described above, wherein said dairy animal is identifiable.


It is another object of the present invention to disclose the drying-off system as described above, wherein identifying of said dairy animal is selected from a group consisting of: manual identification, automatic identification and any combination thereof.


It is another object of the present invention to disclose the drying-off system as described above, wherein said processor additionally comprises instructions configured to identify said dairy animal via said automatic identification.


It is another object of the present invention to disclose the drying-off system as described above, wherein said automatic identification is selected from a group consisting of: an automatically-readable identifier in communication with said dairy animal, biometric identification, and any combination thereof.


It is another object of the present invention to disclose the drying-off system as described above, wherein said automatically-readable identifier is in communication with an animal attachment mechanism selected from a group consisting of: an ear tag, a body tag, a head collar, a neck collar, a harness, a bracelet attachable to a leg, an embedment in said animal and any combination thereof.


It is another object of the present invention to disclose the drying-off system as described above, wherein said an animal attachment mechanism comprises said at least one sensor.


It is another object of the present invention to disclose the drying-off system as described above, wherein said biometric identification is selected from a group consisting of: identifying at least one marking on said animal, identifying a muzzle print image of said animal, identifying an iris pattern of said animal, identifying a retinal vascular pattern of said animal, facial recognition of said animal, recognition of an external physical feature of said animal, identifying an ear vascular pattern of said animal, and any combination thereof.


It is another object of the present invention to disclose the drying-off system as described above, wherein said average milk production is determinable from an average of milk production per milking over a production measurement period.


It is another object of the present invention to disclose the drying-off system as described above, wherein, said production measurement period is in a range of one day to 2 weeks.


It is another object of the present invention to disclose the drying-off system as described above, wherein said production measurement period is 7 days.


It is another object of the present invention to disclose the drying-off system as described above, wherein said predetermined drying-off start time is said expected parturition date minus the sum of a predetermined amount of time before expected parturition and said predetermined drying-off period.


It is another object of the present invention to disclose the drying-off system as described above, wherein said predetermined amount of time before expected parturition is in a range of 30-90 days before calving for a cow, 20-100 days before lambing for a sheep, 25-70 days before kidding for a goat, and 45-100 days before calving for a buffalo.


It is another object of the present invention to disclose the drying-off system as described above, wherein said predetermined drying-off period is in a range of 7 days to 3 weeks.


It is another object of the present invention to disclose the drying-off system as described above, wherein said predetermined amount of milk is 10 kg/day.


It is another object of the present invention to disclose the drying-off system as described above, wherein said amount of milk to be removed is in a range of 50% to 80% of said average milk production.


It is another object of the present invention to disclose the drying-off system as described above, wherein said amount of milk to be removed is 70% of said average milk production.


It is another object of the present invention to disclose the drying-off system as described above, wherein said amount of milk to be removed is determined individually as an amount of milk production for each of said at least one quarter.


It is another object of the present invention to disclose the drying-off system as described above, wherein said dairy animal is selected from a group consisting of: a cow, a sheep, a goat, a buffalo, and a camel.


It is another object of the present invention to disclose a drying-off system for automatically drying-off a dairy animal, said drying-off system comprising a processor comprising instructions configured to:

    • for a duration of gestation greater than a predetermined drying-off start time, determine average milk production for said dairy animal;
    • for said average milk production being greater than a predetermined amount of milk:
      • determine, from at least one other consideration, whether gradual drying-off is indicated;
      • for said at least one other consideration indicating gradual drying-off:
      • select a current milking to be a start date for gradual drying-off; and
      • determine, from said start date and a predetermined drying-off period, a dry-off date for said gradual drying-off;
    • wherein instructions for said gradual drying-off comprise:
      • for each current milking of said dairy animal on or after said start date;
        • determine an amount of milk to be removed;
        • initiate machine milking of said dairy animal;
        • measure removal of milk in real time during milking; and
        • at such time as said milk production is greater than said amount of milk to be removed, stop said current milking.


It is another object of the present invention to disclose the drying-off system as described above, additionally comprising instructions configured to, for said average milk production being less than or equal to said predetermined amount of milk, institute abrupt dry-off by discontinuing milking.


It is another object of the present invention to disclose the drying-off system as described above, additionally comprising instructions configured to determine, from a current date and said dry-off date, a number of days until said dry-off date; and determine said amount of milk to be removed from said number of days until said dry-off date and said average milk production.


It is another object of the present invention to disclose the drying-off system as described above, wherein said amount of milk to be removed is independent of flow rate of milk from said dairy animal.


It is another object of the present invention to disclose the drying-off system as described above, wherein said average milk production is average daily milk production.


It is another object of the present invention to disclose the drying-off system as described above, wherein said average milk production is calculable from milk production over a time period in a range between two weeks and a time interval from one milking to a next milking, said time interval including a single milking.


It is another object of the present invention to disclose the drying-off system as described above, additionally comprising a milking system for milking said dairy animal, said dairy animal uniquely identifiable; said milking system comprising:

    • a milking controller configured to control said removal of milk from said dairy animal's udder;
    • at least one milk meter in communication with said milking controller, said at least one milk meter configured to measure an amount of said removal of milk; and
    • at least one milking processor, said milking processor configured to determine said amount of milk to be removed by said milking controller; said milking processor further configured to store, for said dairy animal, at least one previous amount of milk removed and to generate, for said dairy animal, said average milk production from said at least one previous amount of milk removed.


It is another object of the present invention to disclose the drying-off system as described above, wherein said milking controller is additionally configured to control initiation of said removal of milk.


It is another object of the present invention to disclose the drying-off system as described above, wherein said control of initiation of said removal of milk is selected from a group consisting of: manual control of initiation of said removal of milk, semi-automatic control of initiation of said removal of milk and automatic control of initiation of said removal of milk.


It is another object of the present invention to disclose the drying-off system as described above, wherein said at least one other consideration is selected from a group consisting of: a dairy animal's health, feed a dairy animal is being given, a need to transition to another feed, pasture a dairy animal is on, a desire to change pasture, a need for milk, a dairy animal's lactation number and any combination thereof.


It is another object of the present invention to disclose the drying-off system as described above, wherein, for said at least one other consideration not indicating gradual drying-off, said processor additionally comprises instructions configured to milk-out at each milking until either said average milk production is less than or equal to said predetermined amount of milk; and for said at least one other consideration indicating gradual drying-off, abrupt dry-off being selected for average milk production being less than or equal to said predetermined amount of milk and gradual drying-off being selected for average milk production being greater than said predetermined amount of milk.


It is another object of the present invention to disclose the drying-off system as described above, wherein said dairy animal is identifiable.


It is another object of the present invention to disclose the drying-off system as described above, wherein said identification of said dairy animal is selected from a group consisting of: manual identification, automatic identification and any combination thereof.


It is another object of the present invention to disclose the drying-off system as described above, wherein said processor additionally comprises instructions configured to identify said dairy animal via said automatic identification.


It is another object of the present invention to disclose the drying-off system as described above, wherein said automatic identification is selected from a group consisting of: an automatically-readable identifier in communication with said dairy animal, biometric identification, and any combination thereof.


It is another object of the present invention to disclose the drying-off system as described above, wherein said automatically-readable identifier is in communication with an animal attachment mechanism selected from a group consisting of: an ear tag, a body tag, a head collar, a neck collar, a harness, a bracelet attachable to a leg, an embedment in said animal and any combination thereof.


It is another object of the present invention to disclose the drying-off system as described above, wherein said an animal attachment mechanism comprises said at least one sensor.


It is another object of the present invention to disclose the drying-off system as described above, wherein said biometric identification is selected from a group consisting of: identifying at least one marking on said animal, identifying a muzzle print image of said animal, identifying an iris pattern of said animal, identifying a retinal vascular pattern of said animal, facial recognition of said animal, recognition of an external physical feature of said animal, identifying an ear vascular pattern of said animal, and any combination thereof.


It is another object of the present invention to disclose the drying-off system as described above, wherein said average milk production is determinable from an average of milk production per milking over a production measurement period.


It is another object of the present invention to disclose the drying-off system as described above, wherein, said production measurement period is in a range of one day to 2 weeks.


It is another object of the present invention to disclose the drying-off system as described above, wherein said production measurement period is 7 days.


It is another object of the present invention to disclose the drying-off system as described above, wherein said predetermined drying-off start time is said expected parturition date minus the sum of a predetermined amount of time before expected parturition and said predetermined drying-off period.


It is another object of the present invention to disclose the drying-off system as described above, wherein said predetermined amount of time before expected parturition is in a range of 30-90 days before calving for a cow, 20-100 days before lambing for a sheep, 25-70 days before kidding for a goat, and 45-100 days before calving for a buffalo.


It is another object of the present invention to disclose the drying-off system as described above, wherein said predetermined drying-off period is in a range of 7 days to 3 weeks.


It is another object of the present invention to disclose the drying-off system as described above, wherein said predetermined amount of milk is 10 kg/day.


It is another object of the present invention to disclose the drying-off system as described above, wherein said amount of milk to be removed is in a range of 50% to 80% of said average milk production.


It is another object of the present invention to disclose the drying-off system as described above, wherein said amount of milk to be removed is 70% of said average milk production.


It is another object of the present invention to disclose the drying-off system as described above, wherein said amount of milk to be removed is determined individually as an amount of milk production for each of said at least one quarter.


It is another object of the present invention to disclose the drying-off system as described above, wherein said dairy animal is selected from a group consisting of: a cow, a sheep, a goat, a buffalo, and a camel.


It is another object of the present invention to disclose a drying-off system for automatically drying-off a dairy animal, said drying-off system comprising a processor comprising instructions configured to:

    • for a duration of gestation greater than a predetermined drying-off start time, determine average milking duration for said dairy animal;
    • for said average milking duration being greater than a predetermined milking duration:
      • set a start date for gradual drying-off as a current milking; and,
      • determine, from said start date and a predetermined drying-off period, a dry-off date;
    • wherein instructions for gradual drying-off are configured to:
      • for each current milking of said dairy animal on or after said start date:
        • determine a milking duration;
        • machine milk said dairy animal;
        • measure a time spent milking in real time during milking; and
        • at such time as said time spent milking is greater than said milking duration, stop said current milking.


It is another object of the present invention to disclose the drying-off system as described above, additionally comprising instructions configured to, for said average milking duration being less than or equal to said predetermined milking time, institute abrupt dry-off by discontinuing milking.


It is another object of the present invention to disclose the drying-off system as described above, additionally comprising instructions configured to determine, from a current date and said dry-off date, a number of days until said dry-off date; and to determine said milking duration from said number of days until said dry-off date and said average milking duration.


It is another object of the present invention to disclose the drying-off system as described above, wherein milking duration is independent of flow rate of milk from said dairy animal.


It is another object of the present invention to disclose the drying-off system as described above, wherein said average milking duration is average daily milking duration.


It is another object of the present invention to disclose the drying-off system as described above, wherein said average milking duration is calculable from milking duration over a time period in a range between two weeks and a time interval from one milking to a next milking, said time interval including a single milking.


It is another object of the present invention to disclose the drying-off system as described above, additionally comprising a milking system for milking said dairy animal, said dairy animal uniquely identifiable; said milking system comprising:

    • a milking controller configured to control said removal of milk from said dairy animal's udder;
    • at least one timer, said at least one timer configured to measure time spent milking; and
    • at least one milking processor, said milking processor configured to determine said amount of milk to be removed by said milking controller; said milking processor further configured to store, for said dairy animal, at least one previous milking duration and to generate, for said dairy animal, said average milking duration from said at least one previous milking duration.


It is another object of the present invention to disclose the drying-off system as described above, wherein said milking controller is additionally configured to control initiation of said removal of milk.


It is another object of the present invention to disclose the drying-off system as described above, wherein said control of initiation of said removal of milk is selected from a group consisting of: manual control of initiation of said removal of milk, semi-automatic control of initiation of said removal of milk and automatic control of initiation of said removal of milk.


It is another object of the present invention to disclose the drying-off system as described above, wherein said processor additionally comprises instructions configured to determine, from at least one other consideration, whether gradual drying-off is indicated.


It is another object of the present invention to disclose the drying-off system as described above, wherein said at least one other consideration is selected from a group consisting of: a dairy animal's health, feed a dairy animal is being given, a need to transition to another feed, pasture a dairy animal is on, a desire to change pasture, a need for milk, a dairy animal's lactation number and any combination thereof.


It is another object of the present invention to disclose the drying-off system as described above, wherein, for said at least one other consideration not indicating gradual drying-off, said processor additionally comprises instructions configured to milk-out at each milking until either said average milking duration is less than or equal to said predetermined milking time; and for said at least one other consideration indicating gradual drying-off, abrupt dry-off being selected for average milking duration being less than or equal to said predetermined milking time and gradual drying-off being selected for average milking duration being greater than said predetermined milking time.


It is another object of the present invention to disclose the drying-off system as described above, wherein said dairy animal is identifiable.


It is another object of the present invention to disclose the drying-off system as described above, wherein identifying of said dairy animal is selected from a group consisting of: manual identification, automatic identification and any combination thereof.


It is another object of the present invention to disclose the drying-off system as described above, wherein said processor additionally comprises instructions configured to identify said dairy animal via said automatic identification.


It is another object of the present invention to disclose the drying-off system as described above, wherein said automatic identification is selected from a group consisting of: an automatically-readable identifier in communication with said dairy animal, biometric identification, and any combination thereof.


It is another object of the present invention to disclose the drying-off system as described above, wherein said automatically-readable identifier is in communication with an animal attachment mechanism selected from a group consisting of: an ear tag, a body tag, a head collar, a neck collar, a harness, a bracelet attachable to a leg, an embedment in said animal and any combination thereof.


It is another object of the present invention to disclose the drying-off system as described above, wherein said an animal attachment mechanism comprises said at least one sensor.


It is another object of the present invention to disclose the drying-off system as described above, wherein said biometric identification is selected from a group consisting of: identifying at least one marking on said animal, identifying a muzzle print image of said animal, identifying an iris pattern of said animal, identifying a retinal vascular pattern of said animal, facial recognition of said animal, recognition of an external physical feature of said animal, identifying an ear vascular pattern of said animal, and any combination thereof.


It is another object of the present invention to disclose the drying-off system as described above, wherein said average milking duration is determinable from an average of milking duration per milking over a duration measurement period.


It is another object of the present invention to disclose the drying-off system as described above, wherein, said duration measurement period is in a range of one day to 2 weeks.


It is another object of the present invention to disclose the drying-off system as described above, wherein said duration measurement period is 7 days.


It is another object of the present invention to disclose the drying-off system as described above, wherein said predetermined drying-off start time is said expected parturition date minus the sum of a predetermined amount of time before expected parturition and said predetermined drying-off period.


It is another object of the present invention to disclose the drying-off system as described above, wherein said predetermined amount of time before expected parturition is in a range of 30-90 days before calving for a cow, 20-100 days before lambing for a sheep, 25-70 days before kidding for a goat, and 45-100 days before calving for a buffalo.


It is another object of the present invention to disclose the drying-off system as described above, wherein said predetermined drying-off period is in a range of 7 days to 3 weeks.


It is another object of the present invention to disclose the drying-off system as described above, wherein said predetermined amount of milk is 10 kg/day.


It is another object of the present invention to disclose the drying-off system as described above, wherein said milking duration is in a range of 50% to 80% of said average milking duration.


It is another object of the present invention to disclose the drying-off system as described above, wherein said milking duration is 70% of said average milking duration.


It is another object of the present invention to disclose the drying-off system as described above, wherein said milking duration is determined individually as a milking duration for each of said at least one quarter.


It is another object of the present invention to disclose the drying-off system as described above, wherein said dairy animal is selected from a group consisting of: a cow, a sheep, a goat, a buffalo, and a camel.





BRIEF DESCRIPTION OF THE FIGURES

In order to better understand the invention and its implementation in practice, a plurality of embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawings, wherein



FIG. 1 schematically illustrates amount of milk typically produced by a dairy cow during a lactation;



FIG. 2 schematically illustrates amount of milk produced per day during a drying-off period according to two different dry-off regimens;



FIG. 3 illustrates an embodiment of a determination of a dry-off method;



FIG. 4 illustrates an embodiment of a determination of a milking amount during a gradual drying-off;



FIG. 5 illustrates an embodiment of a determination of a dry-off method; and



FIG. 6 illustrates an embodiment of a determination of a milking duration during a gradual drying-off.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following description is provided, alongside all chapters of the present invention, so as to enable any person skilled in the art to make use of said invention and sets forth the best modes contemplated by the inventor of carrying out this invention. Various modifications, however, will remain apparent to those skilled in the art, since the generic principles of the present invention have been defined specifically to provide an automated means and method for drying-off dairy animals.


The term ‘dairy animal’ hereinafter refers to an animal such as a cow, a sheep, a goat, a pig, a buffalo, and a camel.


The term ‘quarter’ hereinafter refers to the portion of the udder of a dairy animal connected to a single teat. The milk produced by a given quarter is normally removed from the dairy animal via the single, connected teat. For non-limiting example, cows typically have four quarters (and four teats), while goats and sheep have two quarters and two teats.


Dairy animals require a dry period between lactations to maintain optimum milk production during lactation.


The goals of an ideal dry-off period include keeping the dairy animals healthy, minimizing the dairy animals' discomfort during dry-off, preferably entirely avoiding pain, maintaining the dairy animals' daily routine, and conserving money.


Maintaining the dairy animals' daily routine includes keeping the dairy animals resting and feeding as normally as possible, which minimizes stress in the dairy animals. Minimizing stress will reduce the probability of illness, including mastitis, and can also reduce the probability of fighting between animals, thereby reducing the possibility of injury.


Money can be conserved by minimizing the length of the dry-off period. The higher-protein diet fed to lactating animals is significantly more expensive than the lower-protein maintenance diet used for dry animals. Typically, for dairy cows, transition to a maintenance diet occurs when milk production is below about 5 liters per day. Therefore, the sooner after start of dry-off that that animal transitions to low production, the sooner the dairy animal can be placed on a maintenance diet, thereby reducing the cost of her feed.


However, it should be noted that, during dry-off and during the dry period, there is considerable fetal growth, so that, prepartum, there are high nutritional demands on the dairy animal. In dairy cows, the maximum length of this high nutritional demand period is about 3 weeks prepartum.


During the drying-off period, there is mammary tissue remodeling to prepare for the dry period and, near the end of the dry period, there is mammary tissue remodeling to prepare for next lactation.


The entire period from start of dry-off until the next calving can be very physiologically demanding for high-yielding dairy cows.


The goal of dry dairy animal management from an udder health perspective is for the dairy animal to start the new lactation with healthy, uninfected mammary glands.


As shown in FIG. 1, during a lactation cycle, milk production increases to a peak and then spontaneously decreases, ceasing at dry-off. Peak milk production in dairy cows typically occurs after approximately 60-70 days in milk After peak milk production, a spontaneous decrease in milk production begins. Gradual mammary gland involution occurs early in lactation and results in the slow decline of milk production observed in the natural lactation cycle.


Naturally-occurring mammary gland involution (dry-off) is accompanied by metabolic and immunological adaptations to prevent intramammary infection during this time.


A complete transition from a lactating to a non-lactating state is not done on the day of start of dry-off—in a modern dairy cow, a complete transition can take as long as 3-4 weeks after an abrupt cessation of lactation.



FIG. 1 further shows how daily milk production in dairy cows has changed over the past four decades. In 1975, a typical high-producing dairy cow would produce (1010) about 25 kg of milk per day at peak production, decreasing to about 10 kg/day at dry-off (1015), with dry-off typically occurring approximately 320 days after the start of milk production.


In contrast, in 2012, a typical high-producing dairy cow would produce (1020) about 45 kg of milk per day at peak production. Approximately 320 days after the start of milk production (1115), when dry-off typically occurred in 1975, the 2012 dairy cow was still producing 25 kg/day or more of milk, about the same amount as her 1975 counterpart produced at peak production. More than 25 kg of milk per day at approximately day 320 of milk production is not untypical of bovine somatotrophin (BST)-treated cows. Production of approximately 10 kg/day, when dry-off is typically instituted, will typically occur, in the 2012 cow, approximately 720 days (1025) after the start of milk production. This prolonged high production requires modern cows to undergo a forced dry off, also referred to as acute involution.


However, current management regimes for dairy animals were established decades ago and are therefore outdated for production levels typical of modern dairy animals. For example, for cows, current management regimes are intended for animals with milk production levels typical of the 1975 cow, not the modern cow with much elevated milk production levels.


Before widespread adoption of blanket antibiotic therapy and teat sealant therapy during dry-off, dry-off was achieved by reducing milking frequency and providing a lower energy diet. Blanket antibiotic therapy is used mainly for contagious pathogens and teat sealant therapy is used mainly for environmental pathogens, especially when keratin plug formation is ineffective or doesn't happen in time. Incorporation of these therapies led to a move towards a recommended protocol of abrupt dry-off. However, abrupt dry-off can be very stressful for high-producing dairy animals and, in addition, there is increasing demand to minimize antibiotic use, both from consumers and from medical professionals who want to minimize the risk of generating antibiotic-resistant pathogens.


It is well known that the high-risk periods for new intermammary infections (IMI) are the transition periods, (1) when a mammary gland moves from a lactating to a non-lactating state and (2) when a mammary gland moves from a non-lactating to a lactating state. IMIs acquired during the transition periods can persist into the lactating period. For example, over 50% of environmental mastitis cases that occur during the first 100 days in milk were acquired during the previous transition periods.


Within the transition periods, the highest susceptibility times are: immediately after cessation of milking, when the protective barriers have not yet been established, and during colostrogenesis (the 7 days before calving), when the protective barriers established during the dry period wane.


In contrast, during the completely dry period, where the mammary gland is fully involuted, new IMIs are unlikely to develop.


Dairy animals with high production at the beginning of the dry-off period are at considerably increased risk, compared to dairy animals with lower production, of acquiring new IMI during the high-risk periods. Reasons include:

    • The longer time until complete milk resorption and complete mammary gland involution.
    • Milk leakage and failure to establish a keratin plug in the teat canal, so that the teat canal remains open to invading bacteria.
    • A slower build-up of local immune defenses inside the mammary gland, so that it takes longer to reach adequate concentrations of and activity of leukocytes, lactoferrin and immunoglobulins, leading to delayed protective effects from the immune defenses.
    • Forced dry off causes a general inflammatory response in the udder, which resembles necrosis during wounding and weakens the natural defense mechanisms.


There are important connections between milk yield at dry-off and the dry-off method and both mammary health and milk yield during the next lactation cycle.


Some of the conditions associated with dry-off and their associated effects are listed in Table 1. These conditions are given for cows, but many, if not all, apply to other high-yielding dairy animals.










TABLE 1





Condition
Resulting Risks and Effects







High yield at start
The risk of a new IMI in the dry period doubles for every 12 liter


of dry-off
increase in yield at start of dry off.



If milk production on the day prior to the start of dry off was greater



than 21 kg, the quarters are 1.8 times less likely to close.



Increased yield at dry-off is a significant risk factor for infection with



environmental pathogens at calving: For every 5-kg increase in milk



yield at start of dry-off above 12.5 kg, the probability of the cow



having mixed environmental intermammary infections at calving is



increased by 77%.


Delayed teat canal
Cows dried off while producing more than 21 kg/d are 1.8 times more


closure
likely to experience delayed teat canal closure. In high-producing



cows, 50% of teat canals are still open 10 days after the start of dry



off.



97% of clinical mastitis that occurs during the dry period happens in



quarters without a keratin plug.


Poor keratin plug
Quarters that form a keratin plug early in the dry-off period have a


or no keratin plug
lower probability of having a new IMI during the dry period than



quarters that did not form a keratin plug early.


Milk leakage
Cows leaking milk following the start of dry-off, which occurs with a



higher frequency in higher-yielding cows, were 4 times more likely to



develop clinical mastitis during the dry period than cows that did not



leak.


Abrupt dry-off
Even when accompanied by antibiotics and teat sealants, this puts the



health of high-yielding cows at risk.



In one study, 75% of abruptly dried-off high-producing cows (average



24 kg/d at dry-off) still leak milk even when external and internal teat



sealants are used.



Increasing yield at dry-off is a significant risk factor for infection with



environmental pathogens at calving, even in cows receiving antibiotic



dry treatment.


Increasing demand
A need to find ways to improve udder health around dry-off while


to eliminate
reducing reliance on blanket antibiotic therapy during drying-off and


widespread
for dry cows.


antibiotic use


Dry-off period is
There is a need to minimize additional stress wherever possible.


extremely stressful
Regardless of the dry-off method, additional stress is generated during


to cows
drying-off and during the dry period by social factors such as changing



a cow's social group from a lactating-cow group to a dry-cow group



and by changing the cow's rations from a high-protein lactating diet to



a lower-protein dry-cow diet.









It should be noted that leakage is most probable, not at the start of dry-off, but 1-2 days later. This occurs because, in the bovine mammary gland, milk flows from primary ducts into cisterns. The cisterns have a high storage capacity, only reaching full capacity after about 40 hours. Therefore, leakage may be delayed for 1-2 days after the start of dry-off, when the cisterns get over-full and udder pressures peak.


The dry-off method of the present invention minimizes stress on the dairy animal by providing a more natural drying-off which enables the dairy animal to remain with her social group during drying-off and which, by decreasing the maximum pressure inside the udder during drying-off, minimizes the chance of leakage, increases the probability of formation of a natural teat plug and decreases the probability of intermammary infections.


In the dry-off method of the present invention, yield and milk flow are monitored so that:

    • A decision can be made automatically whether the dairy animal needs a gradual cessation or whether abrupt dry-off can be used.
    • Milk production can be monitored to ensure success of gradual cessation, by ensuring that the decrease in milk production follows a desired milk production drop curve.
    • In embodiments where the dairy animals carry an advanced animal identification tag comprising at least one sensor in communication with at least one sensor processor, the at least one sensor and the at least one processor can be configured to determine a health index for the dairy animal, so that the dairy animal's health and wellbeing during the process can be monitored.



FIG. 2 schematically illustrates a comparison of abrupt dry-off (1500, solid line) with the method of increasing the interval between milkings (1600, dash-dotted line) and the method of the present invention (1700). In all methods, there is a dry-off date (1830), the date of a final milking, which is typically about 180 days after insemination or about 60 days before the expected date of calving for a cow.


Ranges of dry-off dates are typically in a range of 55-65 days before calving for a cow, 30-90 days before lambing for a sheep, 40-60 days before kidding for a goat, and 60-90 days before calving for a buffalo. They can be in a range of 30-90 days before calving for a cow, 20-100 days before lambing for a sheep, 25-70 days before kidding for a goat, and 45-100 days before calving for a buffalo. No milking is done after the dry-off date.


In abrupt dry-off (1500), the dairy animal is milked normally until the dry-off date (1830) and may be producing a considerable quantity of milk at the time of start of dry-off (1510). In this illustrative example, the exemplary cow is producing more than 25 liters per day on the dry-off date (1830). After the start of dry-off (1840), although milking has been stopped, milk production by the dairy animal has not; the dairy animal can continue to produce milk for many days thereafter.


In a typical increasing-interval method (1600, dot-dashed line) in the prior art, there is a time interval, the drying-off period (1800), typically about 10 days to 2 weeks before the dry-off date (1830), with a minimum of about 5 days and a maximum of about 3 weeks. During the drying-off period (1800), the time interval between milkings is increased, although the dairy animal is milked-out normally at each milking. During this period, milk production will decrease more than for abrupt dry-off (1500), but there can still be significant milk production on (1610) and after (1840) the dry-off date (1830).


In the gradual drying-off method (1700, dashed line) of the present invention, the start (1820) of the drying-off period (1800) can be determined, as disclosed herein, from a combination of factors measured during at least one milking (1810). When the criteria for gradual drying-off have been satisfied, the drying-off period (1800) starts (1820) with a predetermined subsequent milking, such as the next milking or the next day's first milking. During the drying-off period (1800), the interval between milking is not changed, but the dairy animal is not milked out; only a predetermined fraction of the quantity of milk calculated to be in the udder (or quarter, for quarter milking) is removed. The intra-quarter pressure from the milk remaining in the udder results in a relatively rapid decrease in milk production by the dairy animal, so that, when the dry-off date (1830) is reached, actual milk production by the dairy animal (1710) is significantly smaller than that expected with the abrupt dry-off method (1500) or the increasing-interval method (1600).


It should be noted that the dairy animal typically will not be dry at dry-off, on the dry-off date (1830). However, using the method of the present invention, her total milk production will be low enough at dry-off (typically less than 5 kg/day) that discomfort, and therefore stress, in the dairy animal will be minimized, that a natural teat plug will form and that the probability of infection in the udder will be minimized.


A dairy animal can be identified manually, automatically, and any combination thereof.


Manual identification can be, for non-limiting example, by an operative identifying an animal by her markings, by her movement patterns, by her interaction with other dairy animals, by a manually-readable identifier in communication with the animal, or by manually determining biometric identification, as disclosed hereinbelow.


Automatic identification can be by means of an automatically-readable identifier or by means of biometric identification.


A dairy animal can be in communication with an automatically-readable identifier. The automatically-readable identifier is typically in communication with, either attached to or comprising part of, an animal attachment mechanism selected from a group consisting of: an ear tag, a body tag, a head collar, a neck collar, a harness, a bracelet attachable to a leg, an embedment in said dairy animal and any combination thereof. In many dairy animal identification systems, an ear tag is used.


The advanced animal identification tag can further comprise a sensor or sensors configured to enable determination of the dairy animal's health and can further be enabled to determine distress in the dairy animal.


Biometric identification can be selected from a group consisting of: identifying at least one marking on said animal, identifying a muzzle print image of said animal, identifying an iris pattern of said animal, identifying a retinal vascular pattern of said animal, facial recognition of said animal, recognition of an external physical feature of said animal, identifying an ear vascular pattern of said animal, and any combination thereof.


Non-limiting examples of an external physical feature include: shape of a portion of the dairy animal, size of a portion of the dairy animal, color of a portion of the dairy animal, relationship between shape of a portion of the dairy animal, size of a portion of the dairy animal, color of a portion of the dairy animal, and any combination thereof.


Non-limiting examples of means by which at least one external physical feature can be recognized include: an image of at least a portion of the dairy animal taken from the rear, an image of at least a portion of the dairy animal taken from a side, an image of at least a portion of the dairy animal taken from the front, an image of at least a portion of the dairy animal taken from above, and an image of at least a portion of the dairy animal taken from below.


In some embodiments, a dairy animal enters a milking stall, where a milking stall is any milking-enabled area. The milking stall can be a tie stall, a milking parlor, a milking robot, or any other conventional means of providing access to a device for machine milking a dairy animal. A device used for machine milking can include, but is not limited to, a bucket milker, a pipeline milker, a tie stall, a milking parlor station, a voluntary milking system station, a rotary milking system station, a herringbone milking system station, a milking robot and any combination thereof.


The dairy animal is automatically identified and a milking history, comprising an amount of milk produced during at least the previous milking, preferably an amount produced for each milking for a plurality of consecutive previous milkings and still more preferably, an amount produced for each milking for a week's previous milkings. The amount produced can be stored as the per-quarter amount for each quarter or the total amount produced by all milked quarters.



FIG. 3 shows an embodiment of a method for determining whether gradual drying-off or abrupt dry-off will be used, for milking systems where total milk production is measured. Using the dairy animal's identity, the duration of gestation for the dairy animal is determined. If the duration of gestation (205) is less than a predetermined time, the drying-off start time, the dairy animal is milked out (230).


The drying-off start time is determined by subtracting, from a predetermined date before parturition, a predetermined drying-off period, the drying-off start time being previous to the predetermined date before parturition. The date before parturition is typically in a range of 30-90 days before calving for a cow, 20-100 days before lambing for a sheep, 40-60 days before kidding for a goat, and 60-90 days before calving for a buffalo, but can be in a range of 30-90 days before calving for a cow, 20-100 days before lambing for a sheep, 25-70 days before kidding for a goat, and 45-100 days before calving for a buffalo. The predetermined drying-off period is typically between 7 days and 3 weeks, preferably between 10 days and 2 weeks.


If the date provided by the duration of gestation (205) is after than the drying-off start time, the average milk production (210) per milking is determined over a predetermined period, the production measurement period, with the production measurement period being in a range of one day to 2 weeks, with a preferred production measurement period being 7 days.


If the average milk production (215) is less than a predetermined amount of milk (e.g., 10 kg/day for a dairy cow) the abrupt dry-off method (220) is used and milking is discontinued immediately—the just-completed current milking is the last milking of this lactation. However, the dairy animal can remain with her social group and can continue to follow her normal routine, including entering the milking stall as normal, although she will not be milked.


If the average milk production (215) is greater than the predetermined amount of milk and either no other considerations (225) are taken into account or the at least one other consideration (225) indicates gradual drying-off, an embodiment of the gradual drying-off method (235) of the present invention is instituted.


If the average milk production (215) is greater than the predetermined amount and the at least one other consideration (225) does not indicate gradual drying-off, the dairy animal is milked out (230).


The other considerations can include, but are not limited to, the dairy animal's health, the feed the dairy animal is being given, a desired transition to another feed, the pasture the dairy animal is on, a desire to change the pasture, a need for milk (either a commercial need or a community health-related need), the dairy animal's lactation number and any combination thereof.


Typically, for a dairy cow, loss of milk production is about 30% per week, in a range from about 20% to about 40%.


The desired rate of reduction in milk production (or the desired rate of reduction of the amount of milk to be removed from a quarter) can be the same for all dairy animals in a herd, or it can be individually tailored for each dairy animal.



FIG. 4 shows an embodiment of a method for determining the amount of milk to be removed from a dairy animal during a single milking session in a system where total milk production is measured. It should be noted that the amount can be calculated per dairy animal or it can be calculated separately for each milked quarter of the dairy animal. The procedure is the same in either case, although a separate sensor would be needed for each quarter to measure per-quarter production and only a single sensor would be needed if the amount is per udder. For simplicity, the amounts of milk described below will be referred to as being per udder; it is to be understood that an embodiment of the method applied per quarter is implicitly included, as the method works in the same way for both udder milking (measurement for the whole udder and cessation of milking at the same time for all teats) and quarter milking (measurement for each quarter and cessation of milking individually for each teat).


It should be noted that, in use, it is possible to apply the method with a dairy animal where not all quarters are milked. For non-limiting example, if it is known that a dairy animal has one or more non-functional quarters, the teat cup(s) need not be applied to the teat(s) for the non-functional quarter(s). In another non-limiting example, not milking a quarter can be advisable if there is injury to the teat or the quarter. Typically, the quarter(s) are known to be non-functional before the start of gradual drying-off so that the method can be applied normally with the functional quarters.


In the embodiment of FIG. 4, the average milk production (305) per milking is determined over a predetermined period, the production measurement period, with the production measurement period being in a range of one day to 2 weeks, with a preferred production measurement period being 7 days.


The number of days left (310) until the dry-off date is determined. From the average milk production and the number of days left until the dry-off date, a desired reduction in milk production over the next time period (e.g., until a next milking, a day, a week) can be calculated. From the desired reduction in milk production (315), a desired amount of milk to be left in the udder (resulting in increased intermammary udder pressure and natural reduction in milk production) can be calculated and the desired amount to be removed determined, a desired amount to be removed being the difference between the total amount expected to be in the udder and the amount to be left therein. Typically, the amount removed will be expressed as a fraction or a percentage of her average milk production, as determined above.


The desired amount to be removed is between 50% and 80% of the average milk production.


The dairy animal can then be machine milked Preferably, preparations for milking (such as, but not limited to, cleaning the teats) are carried out automatically by methods known in the art.


Preferably, attaching the teat cups to the teats is carried out automatically by a method known in the art. Machine milking is carried out automatically by a method known in the art. A milking controller, the device used for machine milking, can include, but is not limited to, a bucket milker, a pipeline milker, a tie stall, a milking parlor station, a voluntary milking system station, a rotary milking system station, a herringbone milking system station, a milking robot and any combination thereof.


Milk production, the amount of milk removed, can be measured as weight of milk removed, as volume of milk removed and any combination thereof. Volume can be converted to weight, or vice versa, using the known density of the milk.


Measuring milk production is carried out automatically by a method known in the art, typically in real time by means of a milk meter. The milk meter can be any conventional milk meter such as, but not limited to, an inline milk meter, a scale in communication with a milking processor, a container configured to measure volume in communication with a milking processor, and any combination thereof. Cessation of milking (320) occurs when the desired amount has been removed from the udder. Unlike in the prior art, takeoff flow is irrelevant; milk flow rate is not used to determine cessation of milking. The teat cups can then be removed from the teats; in some embodiments, post-milking udder treatments are applied. After teat cup removal and any post-milking treatment, the dairy animal can be removed from the milking stall, can be allowed to remove herself from a milking stall, can have a milking machine moved away from her, or she can be moved away from a milking machine.


Any of the steps in the milking process, except for milking itself, can be carried out manually and any of the steps in the milking process can be carried out automatically. The milking process, from moving the dairy animal into the milking stall (or moving a milking machine to the dairy animal) to moving the dairy animal to a resting, feeding or treatment area after milking, can comprise any combination of manual and automatic steps, except, as hereinbefore stated, the step of machine milking, a step that includes cessation of milking.


In some embodiments, before the start of dry-off, the milk flow rate is measured for the dairy animal, with, before the start of dry-off, cessation of milking occurring when the milk flow rate is below a predetermined amount. In these embodiments, the milking duration, the time between the initiation of milking and the cessation of milking, is measured and recorded. In such embodiments, total milk production may or may not be measured.



FIG. 5 shows an embodiment of a method for determining whether gradual drying-off or abrupt dry-off will be used in a system where each milking is delimited by a total milking duration. Using the dairy animal's identity, the duration of gestation for the dairy animal is determined.


If the duration of gestation (405) is less than a predetermined time, the drying-off start time, the dairy animal is milked out (230).


The drying-off start time is determined by subtracting, from a predetermined date before parturition, a predetermined drying-off period, the drying-off start time being previous to the predetermined date before parturition. The date before parturition is typically in a range of 55-65 days before calving for a cow, 30-90 days before lambing for a sheep, 40-60 days before kidding for a goat, and 60-90 days before calving for a buffalo, but can be in a range of 30-90 days before calving for a cow, 20-100 days before lambing for a sheep, 25-70 days before kidding for a goat, and 45-100 days before calving for a buffalo. The predetermined drying-off period is typically between 7 days and 3 weeks, preferably between 10 days and 2 weeks.


If the date provided by the duration of gestation (405) is after than the drying-off start time, the milking duration (410) per milking is determined over a predetermined period, the production measurement period, with the production measurement period being in a range of one day to 2 weeks, with a preferred production measurement period being 7 days.


If the milking duration (415) is less than a predetermined amount (typically 5-6 minutes), the abrupt dry-off method (420) is used and milking is discontinued immediately—the just-completed current milking is the last milking of this lactation. However, the dairy animal can remain with her social group and can continue to follow her normal routine, including entering a milking stall as normal, although she will not be milked.


If the milking duration (415) is greater than the predetermined amount and either no other considerations (425) are taken into account or the at least one other consideration (425) indicates gradual drying-off, an embodiment of the gradual drying-off method (435) of the present invention is instituted.


If the milking duration (415) is greater than the predetermined amount and the at least one other consideration (425) does not indicate gradual drying-off, the dairy animal is milked out (430).


The other considerations can include, but are not limited to, the dairy animal's health, the feed the dairy animal is being given, a desired transition to another feed, the pasture the dairy animal is on, a desire to change the pasture, a need for milk (either a commercial need or a community health-related need), the dairy animal's lactation number and any combination thereof.


The desired rate of reduction in milk production (or the desired rate of reduction in milking duration) can be the same for all dairy animals in a herd, or it can be individually tailored for each dairy animal.



FIG. 6 shows an embodiment of the method wherein the milking duration is determined for a single milking session. It should be noted that the duration can be calculated per dairy animal or it can be calculated separately for each milked quarter of the dairy animal. The procedure is the same in either case, although a separate timer would be needed for each quarter to measure per-quarter duration and only a single timer would be needed if the duration is per udder. For simplicity, the durations described below will be referred to as being per udder; it is to be understood that an embodiment of the method applied per quarter is implicitly included, as the method works in the same way for both udder milking (duration for the whole udder and cessation of milking at the same time for all teats) and quarter milking (duration for each quarter and cessation of milking individually for each teat).


It should be noted that, in use, it is possible to apply the method with a dairy animal where not all quarters are milked. For non-limiting example, if it is known that a dairy animal has one or more non-functional quarters, the teat cup(s) need not be applied to the teat(s) for the non-functional quarter(s). In another non-limiting example, not milking a quarter can be advisable if there is injury to the teat or the quarter. Typically, the quarter(s) are known to be non-functional before the start of gradual drying-off so that the method can be applied normally with the functional quarters.


In the embodiment of FIG. 6, average milking duration (505) per milking is determined over a predetermined period, with the minimum predetermined period being one day, the maximum predetermined period being 2 weeks and a preferred predetermined period being 7 days.


The number of days left (510) until the dry-off date is determined. From the average milking duration and the number of days left until the dry-off date, a desired reduction in milking duration over the next time period (e.g., until a next milking, a day, a week) can be calculated. From the desired reduction in milking duration (515), which will result in milk left in the udder (resulting in increased intermammary udder pressure and natural reduction in milk production) a current milking duration can be calculated, which is the desired milking duration for at least the next milking.


The current milking duration will be between 50% and 80% of the average milking duration.


The dairy animal can then be machine milked Preferably, preparations for milking (such as, but not limited to, cleaning the teats) are carried out automatically by methods known in the art.


Preferably, attaching the teat cups to the teats is carried out automatically by a method known in the art. Machine milking is carried out automatically by a method known in the art. Although not required, milk production can be measured. Measuring milk production, if done, is typically is carried out automatically by a method known in the art, typically by means of a milk meter. The milk meter can be any conventional milk meter such as, but not limited to, an inline milk meter, a scale in communication with a milking processor, a container configure to measure volume in communication with a milking processor, and any combination thereof. Cessation of milking (520) occurs when the desired milking duration has been exceeded. Unlike in the prior art, once gradual drying-off has been instituted, takeoff flow is irrelevant; milk flow rate is not used to determine cessation of milking. The teat cups can then be removed from the teats; in some embodiments, post-milking udder treatments are applied. After teat cup removal and any post-milking treatment, the dairy animal can be removed from the milking stall, can be allowed to remove herself from a milking stall, can have a milking machine moved away from her, or she can be moved away from a milking machine.


Any of the steps in the milking process, except for milking itself, can be carried out manually, semi-automatically or automatically. The milking process, from moving the dairy animal into the milking stall to moving the dairy animal to a resting, feeding or treatment area after milking, can comprise any combination of manual and automatic steps, except, as hereinbefore stated, the step of machine milking, where the step of machine milking includes cessation of milking.


For non-limiting example, initiation of milking, the act of starting removal of milk from the teats, can be manual where, for non-limiting example, after the teat cups are emplaced on the teats, a button is pressed or a switch is flipped to start a milking machine. Initiation of milking can be semi-automatic where, for non-limiting example, after the teat cups are emplaced on the teats, after receiving a signal that an automatic check has verified that the milking device is in proper condition for milking, a button can be pressed or a switch flipped to start a milking machine. In automatic initiation of milking, after the teat cups are emplaced on the teats, milking is initiated automatically.


In embodiments where other considerations can be monitored, either manually or via an advanced identification tag, adjustments can be made to the gradual drying-off rate so as to minimize stress in the dairy animal during the gradual drying-off period, to respond to changes in considerations, and any combination thereof.


It should be noted that, although recommended values can be given and recommended ranges are provided, a user of the system can alter, via the system, at least one of the dry-off date (e.g., as a number of days before expected parturition, as a number of days after insemination, as a number of days after start of gestation), the dry-off period (the time period between start of gradual dry-off and the dry-off date), the predetermined amount of milk that determines whether abrupt dry-off or gradual drying off will be used, the predetermined drying-off start time, and the amount of milk to be removed per milking as a fraction of average milk production, the milking duration as a fraction of average milking duration, and the production measurement period (the time over which milk production is measured).

Claims
  • 1. A method for automatically drying-off a dairy animal, comprising steps of: determining, by a processor, an average milk production for said dairy animal by averaging of milk production per milking over a production measurement period;upon said average milk production being greater than a predetermined amount of milkand at least one other consideration being met, start a drying off process, including,for each current milking of said dairy animal until a dry-off date at which a predetermined drying-off period end: determining, by the processor, utilizing a current date and said dry-off date, a number of days until said dry-off date;determining, by the processor, an amount of milk to be removed utilizing (a) said number of days until said dry-off date, and (b) the average milk production;machine milking said dairy animal;measuring, by the processor, removal of milk in real time during milking; and,at such time as said milk production is greater than said amount of milk to be removed, stopping said current milking.
  • 2. The method of claim 1, wherein the criteria includes that the duration of gestation is after a predetermined drying-off start time.
  • 3. The method of claim 1, wherein the dry-off date is determined using a start date and a predetermined dry-off period, the start date being a date at which the average milk production is greater than a predetermined amount of milk.
  • 4. The method of claim 1, wherein said amount of milk to be removed is independent of flow rate of milk from said dairy animal.
  • 5. The method of claim 1, wherein said average milk production is average daily milk production.
  • 6. The method of claim 1, additionally comprising a step of providing a system for milking said dairy animal, said dairy animal uniquely identifiable; said system comprising: a milking controller configured to control said removal of milk from said dairy animal's udder;at least one milk meter in communication with said milking controller, said at least one milk meter configured to measure an amount of said removal of milk; andat least one milking processor, said milking processor configured to determine said amount of milk to be removed by said milking controller; said milking processor further configured to store, for said dairy animal, at least one previous amount of milk removed and to generate, for said dairy animal, said average milk production from said at least one previous amount of milk removed.
  • 7. The method of claim 1, additionally comprising a step of selecting said at least one other consideration from a group consisting of: a dairy animal's health, feed a dairy animal is being given, a need to transition to another feed, pasture a dairy animal is on, a desire to change pasture, a need for milk, a dairy animal's lactation number and any combination thereof.
  • 8. The method of claim 1, additionally comprising steps of, for said at least one other consideration not indicating gradual drying-off, milking-out at each milking until either said average milk production is less than or equal to said predetermined amount of milk; and for said at least one other consideration indicating gradual drying-off, selecting abrupt dry-off for average milk production being less than or equal to said predetermined amount of milk and selecting gradual drying-off for average milk production being greater than said predetermined amount of milk.
  • 9. The method of claim 1, additionally comprising a step of identifying said dairy animal using biometric identification selected from a group consisting of: identifying at least one marking on said animal, identifying a muzzle print image of said animal, identifying an iris pattern of said animal, identifying a retinal vascular pattern of said animal, facial recognition of said animal, recognition of an external physical feature of said animal, identifying an ear vascular pattern of said animal, and any combination thereof.
  • 10. The method of claim 1, additionally comprising a step of selecting said production measurement period to be in a range of one day to 2 weeks.
  • 11. The method of claim 1, additionally comprising a step of selecting said predetermined drying-off start time to be an expected parturition date minus the sum of a predetermined amount of time before expected parturition and said predetermined drying-off period.
  • 12. The method of claim 11, additionally comprising a step of selecting said predetermined amount of time before expected parturition to be in a range of 30-90 days before calving for a cow, 20-100 days before lambing for a sheep, 25-70 days before kidding for a goat, and 45-100 days before calving for a buffalo.
  • 13. The method of claim 11, additionally comprising a step of selecting said predetermined drying-off period to be in a range of 7 days to 3 weeks.
  • 14. A drying-off system for automatically drying-off a dairy animal, said drying-off system comprising a processor comprising instructions configured to: determine an average milk production for said dairy animal by averaging of milk production per milking over a production measurement period;upon said average milk production being greater than a predetermined amount of milkand at least one other consideration being met, start a drying off process, including,for each current milking of said dairy animal until a dry-off date at which a predetermined drying-off period end: determine, utilizing a current date and said dry-off date, a number of days until said dry-off date;determine an amount of milk to be removed utilizing (a) said number of days until said dry-off date, and (b) the average milk production;machine milk said dairy animal;measure removal of milk in real time during milking; andat such time as said milk production is greater than said amount of milk to be removed, stop said current milking.
PCT Information
Filing Document Filing Date Country Kind
PCT/IL2019/051111 10/10/2019 WO
Publishing Document Publishing Date Country Kind
WO2020/075174 4/16/2020 WO A
US Referenced Citations (432)
Number Name Date Kind
85575 Drake Jan 1869 A
818783 Philippi Apr 1906 A
823079 Rais Jun 1906 A
1016752 Leith Feb 1912 A
1188510 Timson Jun 1916 A
1364137 Pannier Jan 1921 A
1759400 Hobbs May 1930 A
1843314 Berntson et al. Feb 1932 A
1863037 Archbold Jun 1932 A
2078827 Ashton Apr 1937 A
2553400 Blair May 1951 A
2570048 Cooke et al. Oct 1951 A
3091770 McMurray et al. Jun 1963 A
3261243 Ellison Jul 1966 A
3596541 Bieganski Aug 1971 A
3812859 Murphy et al. May 1974 A
3884100 Fideldy May 1975 A
3981209 Caroff Sep 1976 A
4064838 Mukarovsky et al. Dec 1977 A
4120303 Villa-Massone et al. Oct 1978 A
4121591 Hayes Oct 1978 A
4281657 Ritchey Aug 1981 A
4323183 Duchin Apr 1982 A
4497321 Fearing et al. Feb 1985 A
4516577 Scott et al. May 1985 A
4531520 Reggers et al. Jul 1985 A
4552147 Gardner Nov 1985 A
4666436 McDonald et al. May 1987 A
4672966 Haas, Jr. Jun 1987 A
4696119 Howe et al. Sep 1987 A
4821683 Veldman Apr 1989 A
4943294 Knapp Jul 1990 A
5154721 Perez Oct 1992 A
5267464 Cleland Dec 1993 A
5651791 Zavlodaver et al. Jul 1997 A
5743209 Bazin et al. Apr 1998 A
5769023 Van Der Lely et al. Jun 1998 A
5778820 van der Lely et al. Jul 1998 A
6007548 Ritchey Dec 1999 A
6016769 Forster Jan 2000 A
6043748 Touchton et al. Mar 2000 A
6053926 Luehrs Apr 2000 A
6095915 Battista et al. Aug 2000 A
6099482 Brune et al. Aug 2000 A
6100804 Brady et al. Aug 2000 A
6113539 Ridenour Sep 2000 A
6114957 Westrick et al. Sep 2000 A
6145225 Ritchey Nov 2000 A
6166643 Janning et al. Dec 2000 A
6172640 Durst et al. Jan 2001 B1
6209485 Van Der Lely et al. Apr 2001 B1
6232880 Anderson et al. May 2001 B1
6235036 Gardner et al. May 2001 B1
6271757 Touchton et al. Aug 2001 B1
6297739 Small Oct 2001 B1
6310553 Dance Oct 2001 B1
6402692 Morford Jun 2002 B1
6497197 Huisma Dec 2002 B1
6502060 Christian Dec 2002 B1
6510630 Gardner Jan 2003 B1
6535131 Bar-Shalom et al. Mar 2003 B1
6569092 Booker May 2003 B1
6659039 Larsen Dec 2003 B1
6830008 Sjolund et al. Dec 2004 B2
6868804 Huisma et al. Mar 2005 B1
7016730 Ternes Mar 2006 B2
7046152 Peinetti et al. May 2006 B1
7137359 Braden Nov 2006 B1
7296539 Iljas Nov 2007 B2
7380518 Kates Jun 2008 B2
7705736 Kedziora Apr 2010 B1
7843350 Geissler et al. Nov 2010 B2
7937861 Zacher May 2011 B1
8005624 Starr Aug 2011 B1
8266990 Janson Sep 2012 B1
8305220 Gibson Nov 2012 B2
8478389 Brockway et al. Jul 2013 B1
8622929 Wilson et al. Jan 2014 B2
8763557 Lipscomb et al. Jul 2014 B2
8955462 Golden et al. Feb 2015 B1
8978584 Uslar Valenzuela Mar 2015 B2
9215862 Bladen et al. Dec 2015 B2
9392767 Johnson, III et al. Jul 2016 B2
9392946 Sarantos et al. Jul 2016 B1
9449487 Spitalny Sep 2016 B1
9648849 Vivathana May 2017 B1
9654925 Solinsky et al. May 2017 B1
9693536 Dana Jul 2017 B1
9717216 Schlachta et al. Aug 2017 B1
9743643 Kaplan et al. Aug 2017 B1
9848577 Brandao et al. Dec 2017 B1
9861080 Hathway et al. Jan 2018 B1
10021857 Bailey et al. Jul 2018 B2
10039263 Teychene et al. Aug 2018 B2
10045511 Yarden et al. Aug 2018 B1
10064391 Riley Sep 2018 B1
10091972 Jensen et al. Oct 2018 B1
10231442 Chang et al. Mar 2019 B1
10242547 Struhsaker et al. Mar 2019 B1
10264762 Lamb Apr 2019 B1
10352759 Jensen Jul 2019 B1
10446006 Johnson, Jr. et al. Oct 2019 B1
10512430 Hladio Dec 2019 B1
10588295 Riley Mar 2020 B1
10628756 Kuper et al. Apr 2020 B1
10638726 Makarychev et al. May 2020 B1
10691674 Leong et al. Jun 2020 B2
20010027751 van den Berg Oct 2001 A1
20020010390 Guice et al. Jan 2002 A1
20020021219 Edwards Feb 2002 A1
20020091326 Hashimoto et al. Jul 2002 A1
20020095828 Koopman et al. Jul 2002 A1
20020154015 Hixson Oct 2002 A1
20020158765 Pape et al. Oct 2002 A1
20030004652 Brunner et al. Jan 2003 A1
20030023517 Marsh et al. Jan 2003 A1
20030062001 Andersson Apr 2003 A1
20030066491 Stampe Apr 2003 A1
20030144926 Bodin et al. Jul 2003 A1
20030146284 Schmit et al. Aug 2003 A1
20030149526 Zhou et al. Aug 2003 A1
20030177025 Curkendall et al. Sep 2003 A1
20030201931 Durst et al. Oct 2003 A1
20030208157 Eidson et al. Nov 2003 A1
20030221343 Volk et al. Dec 2003 A1
20030229452 Lewis Dec 2003 A1
20040066298 Schmitt et al. Apr 2004 A1
20040078390 Saunders Apr 2004 A1
20040118920 He Jun 2004 A1
20040123810 Lorton et al. Jul 2004 A1
20040177011 Ramsay et al. Sep 2004 A1
20040201454 Waterhouse et al. Oct 2004 A1
20050010333 Lorton et al. Jan 2005 A1
20050026181 Davis et al. Feb 2005 A1
20050097997 Hile May 2005 A1
20050108912 Bekker May 2005 A1
20050115508 Little Jun 2005 A1
20050128086 Brown et al. Jun 2005 A1
20050139168 Light et al. Jun 2005 A1
20050145187 Gray Jul 2005 A1
20050273117 Teychene Dec 2005 A1
20050279287 Kroeker Dec 2005 A1
20050284381 Bell et al. Dec 2005 A1
20060011145 Kates Jan 2006 A1
20060052986 Rogers et al. Mar 2006 A1
20060064325 Matsumoto et al. Mar 2006 A1
20060087440 Klein Apr 2006 A1
20060106289 Elser et al. May 2006 A1
20060117619 Costantini Jun 2006 A1
20060155172 Rugg Jul 2006 A1
20060170561 Eyal Aug 2006 A1
20060173367 Stuart et al. Aug 2006 A1
20060185605 Renz et al. Aug 2006 A1
20060201436 Kates Sep 2006 A1
20060207515 Palett Sep 2006 A1
20060241521 Cohen Oct 2006 A1
20060282274 Bennett Dec 2006 A1
20060290514 Sakama et al. Dec 2006 A1
20070006494 Hayes et al. Jan 2007 A1
20070008155 Trost et al. Jan 2007 A1
20070021660 Delonzor et al. Jan 2007 A1
20070027375 Melker et al. Feb 2007 A1
20070027377 Delonzor et al. Feb 2007 A1
20070027379 Delonzor et al. Feb 2007 A1
20070029381 Braiman Feb 2007 A1
20070044317 Critelli Mar 2007 A1
20070044732 Araki et al. Mar 2007 A1
20070062457 Bates et al. Mar 2007 A1
20070069899 Shih et al. Mar 2007 A1
20070103296 Paessel et al. May 2007 A1
20070149871 Sarussi et al. Jun 2007 A1
20070152825 August et al. Jul 2007 A1
20070222624 Eicken et al. Sep 2007 A1
20070255124 Pologe et al. Nov 2007 A1
20070258625 Mirtsching Nov 2007 A1
20070283791 Engvall et al. Dec 2007 A1
20070298421 Jiang et al. Dec 2007 A1
20080001815 Wang et al. Jan 2008 A1
20080004798 Troxler et al. Jan 2008 A1
20080017126 Adams et al. Jan 2008 A1
20080018481 Zehavi Jan 2008 A1
20080021352 Keegan et al. Jan 2008 A1
20080036610 Hokuf et al. Feb 2008 A1
20080047177 Hilpert Feb 2008 A1
20080055155 Hensley et al. Mar 2008 A1
20080059263 Stroman et al. Mar 2008 A1
20080061990 Milnes et al. Mar 2008 A1
20080076988 Sarussi et al. Mar 2008 A1
20080076992 Hete et al. Mar 2008 A1
20080085522 Meghen et al. Apr 2008 A1
20080097726 Lorton et al. Apr 2008 A1
20080110406 Anderson et al. May 2008 A1
20080146890 LeBoeuf et al. Jun 2008 A1
20080173255 Mainini et al. Jul 2008 A1
20080190202 Kulach et al. Aug 2008 A1
20080190379 Mainini et al. Aug 2008 A1
20080215484 Oldham Sep 2008 A1
20080227662 Stromberg et al. Sep 2008 A1
20080228105 Howell et al. Sep 2008 A1
20080262326 Hete et al. Oct 2008 A1
20080272908 Boyd Nov 2008 A1
20080312511 Osler et al. Dec 2008 A1
20090009388 Wangrud Jan 2009 A1
20090020613 Chang et al. Jan 2009 A1
20090025651 Lalor Jan 2009 A1
20090058730 Geissler et al. Mar 2009 A1
20090094869 Geissler et al. Apr 2009 A1
20090102668 Thompson et al. Apr 2009 A1
20090139462 So Jun 2009 A1
20090149727 Truitt et al. Jun 2009 A1
20090187392 Riskey et al. Jul 2009 A1
20090255484 Muelken Oct 2009 A1
20090312667 Utsunomiya et al. Dec 2009 A1
20100012038 Petersen Jan 2010 A1
20100018363 Chervenak et al. Jan 2010 A1
20100030036 Mottram et al. Feb 2010 A1
20100045468 Geissler Feb 2010 A1
20100113902 Hete et al. May 2010 A1
20100139575 Duncan et al. Jun 2010 A1
20100160809 Laurence et al. Jun 2010 A1
20100175625 Klenotiz Jul 2010 A1
20100217102 Leboeuf et al. Aug 2010 A1
20100228532 Abdel-Azim Sep 2010 A1
20100250198 Lorton et al. Sep 2010 A1
20100289639 Gibson et al. Nov 2010 A1
20100315241 Jow Dec 2010 A1
20100321182 Wangrud Dec 2010 A1
20100321189 Gibson et al. Dec 2010 A1
20100331739 Afikim et al. Dec 2010 A1
20110018717 Takahashi et al. Jan 2011 A1
20110061605 Hardi et al. Mar 2011 A1
20110095089 Kolton et al. Apr 2011 A1
20110121356 Krawinkel et al. May 2011 A1
20110137185 Hete et al. Jun 2011 A1
20110152876 Vandeputte Jun 2011 A1
20110178423 Hatch Jul 2011 A1
20110203144 Junek et al. Aug 2011 A1
20110258130 Grabiner et al. Oct 2011 A1
20110272470 Baba et al. Nov 2011 A1
20110313264 Hete Dec 2011 A1
20120009943 Greenberg et al. Jan 2012 A1
20120068848 Campbell et al. Mar 2012 A1
20120089152 Lynd et al. Apr 2012 A1
20120092132 Holme et al. Apr 2012 A1
20120111286 Lee et al. May 2012 A1
20120112917 Menachem et al. May 2012 A1
20120160181 So Jun 2012 A1
20120175412 Grabiner et al. Jul 2012 A1
20120204811 Ryan Aug 2012 A1
20120236690 Rader et al. Sep 2012 A1
20120291715 Jiang et al. Nov 2012 A1
20120299731 Triener Nov 2012 A1
20120325153 Mostert Dec 2012 A1
20120326862 Kwak et al. Dec 2012 A1
20120326874 Kwak et al. Dec 2012 A1
20130006065 Yanai et al. Jan 2013 A1
20130014706 Menkes Jan 2013 A1
20130046170 Haynes Feb 2013 A1
20130113622 Pratt et al. May 2013 A1
20130119142 McCoy et al. May 2013 A1
20130175347 Decaluwe et al. Jul 2013 A1
20130192526 Mainini Aug 2013 A1
20130211773 Loeschinger et al. Aug 2013 A1
20130222141 Rhee et al. Aug 2013 A1
20130237778 Rouquette et al. Sep 2013 A1
20130239904 Kim et al. Sep 2013 A1
20130239907 Laurence et al. Sep 2013 A1
20130265165 So et al. Oct 2013 A1
20130285815 Jones, II Oct 2013 A1
20140073486 Ahmed et al. Mar 2014 A1
20140122488 Jung et al. May 2014 A1
20140123912 Menkes et al. May 2014 A1
20140135596 Leboeuf et al. May 2014 A1
20140135631 Brumback et al. May 2014 A1
20140171762 Leboeuf et al. Jun 2014 A1
20140174376 Touchton et al. Jun 2014 A1
20140196673 Menkes et al. Jul 2014 A1
20140230755 Trenkle et al. Aug 2014 A1
20140232541 Trenkle et al. Aug 2014 A1
20140253709 Bresch et al. Sep 2014 A1
20140261235 Rich et al. Sep 2014 A1
20140267299 Couse Sep 2014 A1
20140275824 Couse Sep 2014 A1
20140276089 Kirenko et al. Sep 2014 A1
20140290013 Eidelman et al. Oct 2014 A1
20140302783 Aiuto et al. Oct 2014 A1
20140331942 Sarazyn Nov 2014 A1
20140333439 Downing et al. Nov 2014 A1
20140347184 Triener Nov 2014 A1
20140352632 McLaughlin Dec 2014 A1
20140368338 Rettedal et al. Dec 2014 A1
20150025394 Hong et al. Jan 2015 A1
20150039239 Shuler et al. Feb 2015 A1
20150057963 Zakharov et al. Feb 2015 A1
20150097668 Toth Apr 2015 A1
20150099472 Ickovic Apr 2015 A1
20150100245 Huang et al. Apr 2015 A1
20150107519 Rajkondawar et al. Apr 2015 A1
20150107522 Lamb Apr 2015 A1
20150122893 Warther May 2015 A1
20150128873 Prescott et al. May 2015 A1
20150130617 Triener May 2015 A1
20150148811 Swope et al. May 2015 A1
20150157435 Chasins et al. Jun 2015 A1
20150182322 Couse et al. Jul 2015 A1
20150245592 Sibbald et al. Sep 2015 A1
20150282457 Yarden Oct 2015 A1
20150334994 Prasad Nov 2015 A1
20150342143 Stewart Dec 2015 A1
20150351885 Kool et al. Dec 2015 A1
20150366166 Mueller Dec 2015 A1
20160000045 Funaya et al. Jan 2016 A1
20160021506 Bonge, Jr. Jan 2016 A1
20160058379 Menkes et al. Mar 2016 A1
20160066546 Borchersen et al. Mar 2016 A1
20160100802 Newman Apr 2016 A1
20160106064 Bladen et al. Apr 2016 A1
20160113524 Gross et al. Apr 2016 A1
20160120154 Hill et al. May 2016 A1
20160128637 Leboeuf et al. May 2016 A1
20160135431 John May 2016 A1
20160148086 Clarke et al. May 2016 A1
20160150362 Shaprio et al. May 2016 A1
20160151013 Atallah et al. Jun 2016 A1
20160165851 Harty et al. Jun 2016 A1
20160165852 Goldfain et al. Jun 2016 A1
20160166761 Piehl et al. Jun 2016 A1
20160198957 Arditi et al. Jul 2016 A1
20160210841 Huang et al. Jul 2016 A1
20160213317 Richardson et al. Jul 2016 A1
20160278712 Sagara et al. Sep 2016 A1
20160286757 Armstrong Oct 2016 A1
20160287108 Wei et al. Oct 2016 A1
20160317049 Leboeuf et al. Nov 2016 A1
20160345881 Sarantos et al. Dec 2016 A1
20160360733 Triener Dec 2016 A1
20160367495 Miller et al. Dec 2016 A1
20170000090 Hall Jan 2017 A1
20170006836 Torres Jan 2017 A1
20170042119 Garrity Feb 2017 A1
20170067770 Sun Mar 2017 A1
20170079247 Womble et al. Mar 2017 A1
20170095206 Leib et al. Apr 2017 A1
20170156288 Singh Jun 2017 A1
20170164905 Gumiero Jun 2017 A1
20170193208 Ashley et al. Jul 2017 A1
20170196203 Huisma et al. Jul 2017 A1
20170202185 Trumbull et al. Jul 2017 A1
20170245797 Quinn Aug 2017 A1
20170258039 Lauterbach Sep 2017 A1
20170272842 Touma et al. Sep 2017 A1
20170280675 MacNeil et al. Oct 2017 A1
20170280688 Deliou et al. Oct 2017 A1
20170318781 Rollins et al. Nov 2017 A1
20170360004 Carver Dec 2017 A1
20170372583 Lamkin et al. Dec 2017 A1
20180000045 Bianchi et al. Jan 2018 A1
20180007863 Bailey et al. Jan 2018 A1
20180014512 Arabani et al. Jan 2018 A1
20180055016 Hsieh et al. Mar 2018 A1
20180064068 McKee et al. Mar 2018 A1
20180070559 So Mar 2018 A1
20180098522 Steinfort Apr 2018 A1
20180110205 Czarnecky et al. Apr 2018 A1
20180131074 Wilkinson et al. May 2018 A1
20180132455 Pradeep et al. May 2018 A1
20180206455 Thiex et al. Jul 2018 A1
20180242860 Leboeuf et al. Aug 2018 A1
20180249683 Borchersen et al. Sep 2018 A1
20180260976 Watanabe et al. Sep 2018 A1
20180271058 Valdez Sep 2018 A1
20180279582 Yajima et al. Oct 2018 A1
20180288968 Cisco Oct 2018 A1
20180295809 Yajima et al. Oct 2018 A1
20180303425 Wordham et al. Oct 2018 A1
20180310526 Birch et al. Nov 2018 A1
20180325382 Brandao et al. Nov 2018 A1
20180332989 Chiu et al. Nov 2018 A1
20180333244 Hanks et al. Nov 2018 A1
20190008118 Keegan Jan 2019 A1
20190008124 Komatsu et al. Jan 2019 A1
20190029226 Triener Jan 2019 A1
20190053469 Mardirossian Feb 2019 A1
20190053470 Singh et al. Feb 2019 A1
20190059335 Crider, Jr. et al. Feb 2019 A1
20190059337 Robbins Feb 2019 A1
20190059741 Crider, Jr. et al. Feb 2019 A1
20190069512 Eriksson et al. Mar 2019 A1
20190075945 Strassburger et al. Mar 2019 A1
20190082654 Robbins Mar 2019 A1
20190090754 Brandao et al. Mar 2019 A1
20190110433 Myers Apr 2019 A1
20190110436 Gardner et al. Apr 2019 A1
20190125509 Hotchkin May 2019 A1
20190130728 Struhsaker et al. May 2019 A1
20190133086 Katz et al. May 2019 A1
20190159428 Bolen May 2019 A1
20190166802 Seltzer et al. Jun 2019 A1
20190183091 Betts-Lacroix et al. Jun 2019 A1
20190183092 Couse et al. Jun 2019 A1
20190208358 De Barros et al. Jul 2019 A1
20190213860 Shaprio et al. Jul 2019 A1
20190254599 Young et al. Aug 2019 A1
20190287429 Dawson et al. Sep 2019 A1
20190290133 Crider et al. Sep 2019 A1
20190290847 Veyrent et al. Sep 2019 A1
20190298226 Filipowicz Oct 2019 A1
20190298924 Gibson et al. Oct 2019 A1
20190327939 Sharpe et al. Oct 2019 A1
20190335715 Hicks et al. Nov 2019 A1
20190350168 Shi Nov 2019 A1
20190365324 Chang Dec 2019 A1
20190373857 Leigh-Lancaster et al. Dec 2019 A1
20190380311 Crouthamel et al. Dec 2019 A1
20190385037 Robadey et al. Dec 2019 A1
20190385332 Yajima et al. Dec 2019 A1
20200015740 Alnofeli et al. Jan 2020 A1
20200037886 Greer et al. Feb 2020 A1
20200068853 Radovcic Mar 2020 A1
20200085019 Gilbert et al. Mar 2020 A1
20200100463 Rooda et al. Apr 2020 A1
20200107522 Kersey et al. Apr 2020 A1
20200110946 Kline et al. Apr 2020 A1
20200113728 Spector et al. Apr 2020 A1
20200170222 Gotts Jun 2020 A1
20200178505 Womble et al. Jun 2020 A1
20200178800 Geissler et al. Jun 2020 A1
20200205381 Wernimont et al. Jul 2020 A1
20200229391 De Groot Jul 2020 A1
20200229707 Donnelly Jul 2020 A1
20200242551 Lau et al. Jul 2020 A1
20200281151 Schmidt Sep 2020 A1
Foreign Referenced Citations (322)
Number Date Country
199534570 Oct 1994 AU
2003239832 May 2002 AU
2003238759 Jan 2004 AU
2004263067 Feb 2005 AU
2004305403 Jul 2005 AU
2011210083 Aug 2011 AU
2016266101 Dec 2016 AU
2017100469 May 2017 AU
2018220079 Sep 2018 AU
8701673 Mar 2009 BR
112012018909 Jan 2011 BR
2267812 Oct 2000 CA
2493331 Jan 2005 CA
2788153 Aug 2011 CA
2880138 Feb 2013 CA
2858905 Oct 2013 CA
2875637 Jan 2014 CA
2875578 Dec 2014 CA
2915843 Dec 2014 CA
2990620 Dec 2016 CA
2916286 Jun 2017 CA
3007296 Jun 2017 CA
1989895 Jul 2007 CN
201171316 Dec 2008 CN
101578516 Nov 2009 CN
101816290 Sep 2010 CN
101875975 Nov 2010 CN
101875976 Nov 2010 CN
102781225 Jan 2011 CN
102142116 Aug 2011 CN
102395266 Mar 2012 CN
102485892 Jun 2012 CN
102682322 Sep 2012 CN
203313865 Dec 2013 CN
203689049 Feb 2014 CN
203523519 Apr 2014 CN
204047531 Aug 2014 CN
204305813 May 2015 CN
204331349 May 2015 CN
204335503 May 2015 CN
105191817 Dec 2015 CN
106125648 Nov 2016 CN
106172068 Dec 2016 CN
106197675 Dec 2016 CN
106719037 Feb 2017 CN
205919898 Feb 2017 CN
106472347 Mar 2017 CN
106845598 Jun 2017 CN
206431665 Aug 2017 CN
107201409 Sep 2017 CN
207201674 Sep 2017 CN
107251851 Oct 2017 CN
107667898 Feb 2018 CN
108353810 Feb 2018 CN
207100094 Mar 2018 CN
207249710 Apr 2018 CN
108651301 May 2018 CN
108656996 May 2018 CN
108684549 May 2018 CN
108118096 Jun 2018 CN
108308055 Jul 2018 CN
109006541 Aug 2018 CN
109008529 Aug 2018 CN
108617533 Oct 2018 CN
108717668 Oct 2018 CN
108766586 Nov 2018 CN
109006550 Dec 2018 CN
208273869 Dec 2018 CN
109355402 Feb 2019 CN
109937904 Mar 2019 CN
109937905 Mar 2019 CN
109823691 May 2019 CN
110073995 May 2019 CN
110059781 Jul 2019 CN
110106261 Aug 2019 CN
110106262 Aug 2019 CN
110506656 Nov 2019 CN
210076292 Feb 2020 CN
633742 Aug 1936 DE
2850438 May 1980 DE
19629166 Feb 1997 DE
19826348 Jun 1998 DE
29906146 Jun 1999 DE
19911766 Sep 2000 DE
20018364 Jan 2001 DE
10001176 May 2001 DE
102004027978 Dec 2005 DE
202010008325 Feb 2012 DE
202013011075 Jan 2014 DE
202016101289 Apr 2016 DE
140001 Nov 1979 DK
55127 Jun 1982 EP
125915 Nov 1984 EP
0499428 Aug 1992 EP
513525 Nov 1992 EP
743043 Nov 1996 EP
938841 Feb 1998 EP
898449 Mar 1999 EP
1076485 Feb 2001 EP
1445723 Aug 2004 EP
1479338 Nov 2004 EP
1521208 Apr 2005 EP
1907816 Apr 2008 EP
1961294 Aug 2008 EP
2028931 Mar 2009 EP
2172878 Apr 2010 EP
2528431 Jan 2011 EP
2453733 May 2012 EP
2465344 Jun 2012 EP
2488237 Aug 2012 EP
2528431 Dec 2012 EP
2534945 Dec 2012 EP
2657889 Oct 2013 EP
2664234 Nov 2013 EP
2728995 May 2014 EP
2879615 Jun 2015 EP
2955998 Dec 2015 EP
3153098 Apr 2017 EP
3164855 May 2017 EP
3210531 Aug 2017 EP
3217566 Sep 2017 EP
3218865 Sep 2017 EP
3225106 Oct 2017 EP
3316680 May 2018 EP
3346422 Jul 2018 EP
3385886 Oct 2018 EP
3593634 Jan 2020 EP
3627856 Mar 2020 EP
3660855 Jun 2020 EP
2046912 Feb 1994 ES
2206009 May 2004 ES
2215152 Oct 2004 ES
1072416 Jul 2010 ES
2391341 Nov 2012 ES
1194609 Oct 2017 ES
20165318 Jun 2017 FI
2106705 May 1972 FR
2297565 Aug 1976 FR
2342024 Jan 1983 FR
2601848 Jan 1988 FR
2779153 Dec 1999 FR
2834521 Jul 2003 FR
2964777 Mar 2012 FR
3046332 Jan 2016 FR
3024653 Feb 2016 FR
3085249 Sep 2018 FR
588870 Jun 1947 GB
641394 Aug 1950 GB
865164 Apr 1961 GB
1072971 Jun 1967 GB
1267830 Mar 1972 GB
1415650 Nov 1975 GB
2067121 Jul 1981 GB
2055670 Jul 1983 GB
2114045 Aug 1983 GB
2125343 Mar 1984 GB
2142812 Jan 1985 GB
2392138 Feb 2004 GB
2469326 Oct 2010 GB
2554636 Sep 2016 GB
2554636 Apr 2018 GB
2570340 Jul 2019 GB
2571404 Aug 2019 GB
201103443 Dec 2011 IN
200802272 Jun 2016 IN
57173562 Nov 1982 JP
7177832 Jul 1995 JP
2001178692 Jul 2001 JP
2004292151 Oct 2004 JP
2005102959 Apr 2005 JP
5659243 Jan 2011 JP
2011067178 Apr 2011 JP
2011087657 May 2011 JP
2013247941 Jun 2012 JP
2017112857 Jun 2017 JP
2017002170 Apr 2018 JP
2003061157 Jul 2003 KR
2005046330 May 2005 KR
780449 Nov 2007 KR
20130019970 Feb 2013 KR
20130057683 Jun 2013 KR
2013138899 Dec 2013 KR
2019061805 Nov 2017 KR
101827311 Feb 2018 KR
20180035537 Apr 2018 KR
2018109451 Oct 2018 KR
20190081598 Jul 2019 KR
2019091708 Aug 2019 KR
9600754 Feb 1997 MX
356331 Jan 2011 MX
2017104 Jan 2018 NL
2019186 Jan 2019 NL
2020275 Jul 2019 NL
198486 May 1986 NZ
199494 Jul 1986 NZ
203924 Oct 1986 NZ
335702 Mar 2001 NZ
507129 Aug 2002 NZ
582984 Jan 2011 NZ
101747418 Jan 2011 NZ
2178711 Jan 2002 RU
2265324 Dec 2005 RU
4567 Mar 1893 SE
5549 Apr 1894 SE
123213 Nov 1948 SE
188102 Mar 1964 SE
1766336 Oct 1992 SU
1984000468 Feb 1984 WO
1991011956 Aug 1991 WO
199302549 Feb 1993 WO
199822028 May 1998 WO
1998039475 Sep 1998 WO
1999017658 Apr 1999 WO
2000062263 Apr 1999 WO
9945761 Sep 1999 WO
2000013393 Mar 2000 WO
2000061802 Oct 2000 WO
2001033950 May 2001 WO
2001087054 Nov 2001 WO
2002031629 Apr 2002 WO
2002085106 Oct 2002 WO
2003001180 Jan 2003 WO
2004092920 Mar 2003 WO
2003087765 Oct 2003 WO
2003094605 Nov 2003 WO
2004015655 Feb 2004 WO
2005104775 Apr 2004 WO
2006078943 Jan 2005 WO
2005104930 Apr 2005 WO
2005073408 Aug 2005 WO
2006021855 Mar 2006 WO
2006134197 Dec 2006 WO
2006135265 Dec 2006 WO
2007034211 Mar 2007 WO
2007095684 Aug 2007 WO
2007122375 Nov 2007 WO
2008033042 Mar 2008 WO
2008041839 Apr 2008 WO
WO2008041839 Apr 2008 WO
2008052298 May 2008 WO
2008075974 Jun 2008 WO
2010091686 Dec 2008 WO
2009034497 Mar 2009 WO
2009062249 May 2009 WO
2009076325 Jun 2009 WO
2009089215 Jul 2009 WO
2009117764 Oct 2009 WO
2009153779 Dec 2009 WO
2010008620 Jan 2010 WO
2010048753 May 2010 WO
2010053811 May 2010 WO
2010068713 Jun 2010 WO
2010140900 Dec 2010 WO
2012075480 Dec 2010 WO
2011039112 Apr 2011 WO
2011076886 Jun 2011 WO
2011154949 Dec 2011 WO
2012071670 Jun 2012 WO
2013008115 Jan 2013 WO
2013038326 Mar 2013 WO
2013082227 Jun 2013 WO
2015001537 Jul 2013 WO
2013118121 Aug 2013 WO
2015024050 Aug 2013 WO
2013179020 Dec 2013 WO
2013190423 Dec 2013 WO
2014020463 Feb 2014 WO
2014095759 Jun 2014 WO
2014107766 Jul 2014 WO
2014118788 Aug 2014 WO
2014125250 Aug 2014 WO
2016027271 Aug 2014 WO
2014140148 Sep 2014 WO
2014141084 Sep 2014 WO
2014194383 Dec 2014 WO
2014197631 Dec 2014 WO
2014199363 Dec 2014 WO
2015009167 Jan 2015 WO
2015030832 Mar 2015 WO
2015055709 Apr 2015 WO
2015086338 Jun 2015 WO
2016207844 Jun 2015 WO
2015107354 Jul 2015 WO
2017001717 Jul 2015 WO
2017031532 Aug 2015 WO
2015140486 Sep 2015 WO
2015158787 Oct 2015 WO
2015175686 Nov 2015 WO
2015176027 Nov 2015 WO
2015197385 Dec 2015 WO
2016037190 Mar 2016 WO
2017149049 Mar 2016 WO
2016053104 Apr 2016 WO
2016108187 Jul 2016 WO
2016166748 Oct 2016 WO
2017001538 Jan 2017 WO
2017027551 Feb 2017 WO
2017037479 Mar 2017 WO
2017066813 Apr 2017 WO
2017089289 Jun 2017 WO
2017096256 Jun 2017 WO
2017121834 Jul 2017 WO
2018006965 Jan 2018 WO
2018011736 Jan 2018 WO
2018019742 Feb 2018 WO
2020022543 Jul 2018 WO
2018172976 Sep 2018 WO
2020060248 Sep 2018 WO
2018203203 Nov 2018 WO
2019009717 Jan 2019 WO
2019025138 Feb 2019 WO
2019046216 Mar 2019 WO
2019058752 Mar 2019 WO
WO2019048521 Mar 2019 WO
2019071222 Apr 2019 WO
2019132803 Jul 2019 WO
2019207561 Oct 2019 WO
2019235942 Dec 2019 WO
2019245978 Dec 2019 WO
2020003310 Jan 2020 WO
2020096528 May 2020 WO
2020140013 Jul 2020 WO
Non-Patent Literature Citations (13)
Entry
Christian Pahl, Eberhard Hartung, Anne Grothmann, Katrin Mahlkow-Nerge, Angelika Haeussermann, Rumination activity of dairy cows in the 24 hours before and after calving, Journal of Dairy Science, vol. 97, Issue 11, 2014, pp. 6935-6941.
Steensels, Machteld; Maltz, Ephraim; Bahr, Claudia; Berckmans, Daniel; Antler, Aharon; et al., Towards practical application of sensors for monitoring animal health: The effect of post-calving health problems on rumination duration, activity and milk yield, The Journal of Dairy Research; Cambridge vol. 84, Iss. 2, (May 2017): 132-138.
Clark, C., Lyons, N., Millapan, L., Talukder, S., Cronin, G., Kerrisk, K., & Garcia, S. (2015), Rumination and activity levels as predictors of calving for dairy cows, Animal, 9(4), 691-695.
K. Koyama, T. Koyama, M. Sugimoto, N. Kusakari, R. Miura, K. Yoshioka, M. Hirako, Prediction of calving time in Holstein dairy cows by monitoring the ventral tail base surface temperature, The Veterinary Journal, vol. 240, 2018, pp. 1-5, ISSN 1090-0233.
L. Calamari, N. Soriani, G. Panella, F. Petrera, A. Minuti, E. Trevisi, Rumination time around calving: An early signal to detect cows at greater risk of disease, Journal of Dairy Science, vol. 97, Issue 6, 2014, pp. 3635-3647, ISSN 0022-0302.
S. Benaissa, F.A.M. Tuyttens, D. Plets, J. Trogh, L. Martens, L. Vandaele, W. Joseph, B. Sonck, Calving and estrus detection in dairy cattle using a combination of indoor localization and accelerometer sensors, Computers and Electronics in Agriculture, vol. 168, 2020, 105153, ISSN 0168-1699.
N. Soriani, E. Trevisi, L. Calamari, Relationships between rumination time, metabolic conditions, and health status in dairy cows during the transition period, Journal of Animal Science, vol. 90, Issue 12, Dec. 2012, pp. 4544-4554.
The role of sensors, big data and machine learning in modern animal farming; Suresh Neethirajan; Received Jun. 2, 2020; Received in revised form Jun. 30, 2020; Accepted Jul. 3, 2020 Sensing and Bio-Sensing Research 29 (2020) 1003672214-1804/ © 2020 The Author. Published by Elsevier B.V.
A Review on Determination of Computer Aid Diagnosis and/or Risk Factors Using Data Mining Methods in Veterinary Field Pinar Cihan, Erhan Göçe, Oya Kalupsiz; Tekirda{hacek over (g)} Namik Kemal University, Çorlu Faculty of Engineering, Department of Computer Engineering, Tekirda{hacek over (g)}, Turkey. 2019.
Big Data Analytics and Precision Animal Agriculture Symposium: Data to decisions B. J. White, D. E. Amrine, and R. L. Larson Beef Cattle Institute, Kansas State University, Manhattan, KS; © The Author(s) 2018. Published by Oxford University Press on behalf of American Society of Animal Science.
Gasteiner, J.; Boswerger, B.; Guggenberger, T., Practical use of a novel ruminal sensor on dairy farms, Praktische Tierarzt 2012 vol. 93 No. 8 p. 730 . . . 739 ref.45.
Drying up Cows and The Effect of Different Methods Upon Milk Production; Ralph Wayne, C. H. Eckles, and W. E. Peterson; Division of Dairy Husbandry, University of Minnesota, St. Paul; Research-Article| vol. 16, Issue 1, p. 69-78, Jan. 1, 1933.
Wayne R et al, “Drying up cows and the effect of different methods upon milk production”, Journal of Dairy Science, vol. 16, No. 1, pp. 69-78 DOI: https://doi.org/10.3168/jds.S0022-0302(33)93317-2.
Related Publications (1)
Number Date Country
20210386032 A1 Dec 2021 US
Provisional Applications (1)
Number Date Country
62743567 Oct 2018 US