The present invention relates generally to a system for handling livestock and more particularly to a system, means, device or apparatus to effect the efficient handling of livestock in the unloading of same from a transport vehicle to a farm site or processing plant.
It will be understood and appreciated that as the foregoing description of the present invention may be explained as it pertains to the handling of poultry, this description in no way shall be indicative of the limiting of “livestock” thereto.
Commercial poultry, such as turkeys, chickens, guineas, peafowl, ostriches, ducks, geese, swans and pigeons, have been one of man's main staples of protein throughout history. For centuries poultry was raised and processed on the farm and locally delivered to those who desired such fresh poultry. But as the population migrated to towns and cities, delivery of fresh poultry became increasingly difficult while the demand for processed poultry increased dramatically. In response to this need, fresh processed poultry now had to be transported to the markets located in these cities.
The poultry was customarily gathered manually at poultry houses, boxed or crated with numerous birds per crate, manually loaded aboard an open truck or van, and transported. The problems created by such a procedure were both numerous and significant. The manual handling of the poultry not only created a materially high cost involved in raising the poultry and preparing them for market, but it also created certain physical dangers to both the poultry as well as the workmen.
For example, during hand catching and subsequent handling of poultry, some birds are bruised, injured, or even killed due to a violent reaction of the birds or the unintentional rough handling by the workmen. Additionally, fowl inevitably beat their wings in an effort to escape upon capture, this would frequently result in a bird striking the handler with sufficient force to cause physical injury.
As technology was developed for the processing and safe storage of poultry, small processing plants developed and the manual loading and unloading of crates or coops began to improve. One of the first significant improvements, particularly in the turkey industry, was to create coops or crates which were permanently attached to a trailer or truck bed. These trucks contain large numbers of individual coops attached on the truck body. The coops having doors opening outward and being arranged in horizontal rows and vertical tiers. These coops or compartments typically having a permanent middle portion partition, and as such require loading from both sides of the truck. Not only is this time consuming, but loading from both sides also requires the trailer to turn around with all of its weight on one side thus causing an unsafe situation to driver, livestock, machinery and trailer.
The usual method of loading the poultry was to catch the animals individually and then lift and carry them to the coops while using makeshift platforms to reach the higher coops or to hand the birds to other workmen who are clinging to or standing on supports attached to the sides of the truck. The adult male turkey may weigh in excess of forty pounds, thus, any mishandling thereof causes a high incident of injuries to workers and animals alike, not to mention the considerable time requirements needed to accomplish the loading/unloading of a complete truck. The past thirty years have seen various conveyor belt apparatus designs to convey the poultry to the different heights of the vertical tier of coops. However, at the exit end of the conveyor belt, personnel still manually stuffed turkeys into compartments or coops. Thus, while such apparatus eliminated the laborious task of lifting animals to the different heights of coops in the vertical tier, the arduous task of stuffing the live poultry continued.
In light of preceding problems, there has been an effort in the art to develop a method of loading poultry for transport with a minimal amount of manual labor. For example, U.S. Pat. No. 5,902,089, issued May 11, 1999 describes a poultry loading apparatus for transporting poultry from a confinement area such as a poultry house to a transport vehicle to allow transport of poultry from farm-to-farm or from farm-to-processing plant. This is accomplished through the use of a base and a sectional mainframe defining a transport conveyance system. A section of the mainframe is pivotably attached to another section which is pivotably attached to the base. The apparatus further utilizes a control system for its overall leveling and pivotal height adjustments, as well as the extending/retracting capabilities of its conveyance.
Such a conveyance system certainly provides for an apparatus and system for loading poultry for transport that minimizes labor and costs while maximizing efficiency. However, when the fully loaded vehicle stops at its desired location, it must be unloaded. Although this conveyance apparatus is certainly capable of such unloading, it may be difficult to maneuver this apparatus within the typically less spacious area of a processing plant. In any event, the unloading process during the past two generations has not changed. The animals are manually grabbed and pulled out of the crates or coops and inverted on a shackle. Consequently, the animals are under high stress and typically react violently, thereby causing possible injury to themselves and/or the workers/employees. Thus, there exists a need for a poultry unloading apparatus and system that reduces labor costs and damaged product while increasing safety and efficiency.
Today, the poultry business is a multi-billion dollar industry. Large companies dominate the production, slaughter and marketing of products. Since poultry companies are now fewer in number, they therefore demand large quantities of animals daily for processing. In fact, enormous numbers of poultry are transferred daily from production facilities to the slaughter plant or to different production facilities en route to the slaughter plant.
With the advance of science and particularly the art of genetics the animals are becoming larger earlier in life. In fact, the average weight of a male turkey (for example) may exceed fifty pounds within the next five years. This requires a high demand for automation by the processors, and fundamental changes are now occurring as the production and processing consolidates. There will be more focus on creating, managing and tracking supply chains from the farm to the retail shelf that can elevate quality, consistency and demand responsiveness to previously unforeseen levels. At the same time, there is growing evidence that retailers (and ultimately consumers) are becoming increasingly proactive about the processes that generate the meat they are purchasing. More specifically, some consumers have become increasingly proactive with respect to the welfare of the animals they are consuming.
In view of the aforementioned needs and the shortcomings of the prior art, it is therefore an object of the present invention to provide a system that overcomes the deficiencies of the current practices whereby an apparatus and system is provided for unloading livestock for transport with a minimum amount of labor and with maximum efficiency at a minimum cost.
It is another object of the present invention to provide a livestock unloading system which maximizes efficiency and decreases damage to the animals during processing. It is another object of the present invention to provide a livestock unloading system which minimizes labor costs by reducing the number of employees as well as the turnover rate of employees.
It is yet another object of the present invention to provide a livestock unloading system whereby the manual and perhaps rough handling of the livestock is eliminated thereby improving overall animal quality by reducing animal stress and minimizing any damages sustained to the livestock. This reduction of stress decreases fecal contamination which in turn increases food safety.
Still another object of the present invention is to provide a user friendly livestock unloading apparatus that may be operated effectively by very few personnel.
Another object of the present invention is to provide an answer to the animal welfare conscious public regarding the handling of livestock.
Still another object of the present invention is to provide an unloading system that integrates tracking and/or data collection systems for the coop modules, trailers, transport vehicles and individual livestock.
These and other objects, features and advantages of the present invention will be clearly understood through a consideration of the following detailed description.
According to the present invention, there is provided a lifting device for a livestock storage module including a module engaging member. A module securing mechanism is operatively associated with the module engaging member such that activation of the module securing mechanism causes the module engaging member to engage with a portion of the livestock storage module. In another aspect of the present invention, a method for transporting a livestock storage module is provided including positioning a lifting device near the livestock storage module and engaging a portion of the livestock storage module with said lifting device for transportation thereof.
A system for unloading livestock from a livestock module is further provided including a section of conveyor for carrying the livestock storage module. The section of conveyor is situated in proximity to an unloader. A hoist associated with the section of conveyor is also situated in proximity to the unloader and is adapted to position the section of conveyor and livestock storage module carried thereon in proximity to the unloader. In another aspect of the present invention, a method for unloading livestock is further provided including the steps of situating a livestock storage module on a section of conveyor and positioning the livestock storage module in proximity to an unloader by hoisting the section of conveyor and livestock storage module situated thereon.
A partition system for a livestock storage module section is further provided including a partition extending the general height of the module section. A linkage operatively couples a module section door with the partition, such that movement of the door causes movement of the partition.
The features of the present invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with the further objects and advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying drawings, in the several figures of which like reference numerals identify like elements, and in which:
The present invention provides for a system of unloading livestock from a transport vehicle to a farm site or processing plant. As the livestock first require to be loaded upon the vehicle,
The present invention includes, among other things, a uniquely designed transport vehicle.
Each coop module 16 is secured on the coop trailer 12 via attachment members 13, which will be discussed in further detail below. The coop module 16 is secured onto the trailer in a semi-secure manner to allow the module to move slightly during transport. This movement helps to deter stress cracks on the module frame.
A standard coop trailer typically includes one hundred forty four coops per trailer, with each coop having a volume of about 16 cubic feet. This standard trailer requires the loading of one side of the trailer and turning the trailer around to load the opposite side. As such, the manual unloading process for turkeys entails personnel on both sides of the coop trailer physically grabbing/pulling and inverting the turkey to position its legs into a shackle. By contrast, the present system includes a coop trailer 12 with coops 14 having a volume of about 64 cubic feet. The swinging partition 18 of this trailer 12 allows the extension of the primary indexes of the unloading apparatus through the length of the coop (width of the transport vehicle), thus allowing the trailer to be completely unloaded and loaded from one side. This primary index extension arrangement is described in further detail in co-pending U.S. patent application Ser. No. 10/044,675. With fewer and larger coops, loading/unloading speeds can match processing plants line speed; and biosecurity and cleaning of coop modules are easier and require less time.
More particularly, an embodiment of the coop module 16 design of the present invention is illustrated in
The coop floor support, not shown, is currently a checkered pattern flat iron structure, while the coop floor is thin durable and washable plastic compound. The floor is slid into place from the side and held in place by metal tabs 28 or other means of securement. The floor may be more securely held atop the structure via screws in its middle, or rubber mounts attached above to allow the floor to flex to a minimal bend, particularly during the updraft wind pressure caused during transport without the livestock.
As shown in
An additional mesh 30 is used for the sides of the coop 14. This mesh 30 is stationary and welded to the tubular steel frame 32 of the module. The size of the mesh is such that it allows free air movement yet small enough where animal parts cannot become entangled during transport and/or loading/unloading. This mesh or the doors may be enclosed by wooden or plastic panels or a flexible curtain (riot shown) during inclement weather. These panels or curtains may be stored under the trailer as previously shown in
As shown in
The partition 18 is generally situated in the middle of the coop and its structure serves to prevent the animal from shifting while inside the coop. More specifically, the partition 18 is situated such that it does not touch the floor 39 of the coop 14. The top portion of the partition 18 further includes a semicircular top portion or the like 38 and is further situated such that the semi-circular top portion 38 generally engages the ceiling 40 of the coop 14. This arrangement prevents the animals from shifting while inside the coop while further stopping them from entangling their limbs when the partition raises or lowers.
Now turning to
As shown in
As shown in
With the above mentioned lifting device 46, each coop module 16 may be removed from a trailer, moved, and placed near a base unloader unit 70. As shown in
The base unloader 73 of the present embodiment unloads the livestock much like the unloader disclosed in applicant's recently allowed U.S. patent application Ser. No. 10/044,675, hereby incorporated herein by reference. More particularly, when the coop module 16 is positioned adjacent the unloader 73, at least one primary index 72 extends into a coop. It is important to note that the primary index is fully extendable into the coop and therefore enables the unloading of a coop module 16 from a single side without the need to re-position the coop module to unload from the other side. Once a coop is emptied of livestock, the primary index can be repositioned to empty the remaining column of coops. Once a full column of coops is emptied of livestock, the coop module may be repositioned on the conveyor 80 to empty the next column. Alternatively, the base unloader 73 may have multiple indexes and accordingly be capable of unloading more than one column and coop at a time.
Once the livestock leaves the coop module 16, they can be conveyed to an unloading station and/or a preshackle stunner before they are moved on to final processing. At the unloading station, individual livestock information may be gathered (i.e. weight, DOA, etc.) for later further analysis. The preshackle stunner may be of the typical CO2/O2, nitrogen, electric, and/or other means. Once these steps are complete, the livestock is ready for further animal processing.
Opposite the primary index 72 is a movable platform 76 to facilitate in the unloading process. By raising and lowering of this platform 76, an operator may easily access each coop. Accordingly, an operator helper may release a lodged animal and may further access each coop via opening the coop door to assist in the washing and disinfecting of the coop module. In addition, the operator can manually raise the partition 18 by inserting a hook and pulling the top 38 of the partition and temporarily lock the middle partition in the up position during the unloading process. In any event, during this process, the coop module 16 is further positioned on a coop module transfer conveyor 78. The section of conveyor 80 associated with the base unloader 74 and the coop module 16 situated thereon are raised and lowered, or otherwise moved away and toward the primary index 72 via a hoist 82, in order to facilitate the aforementioned unloading process.
The conveyor 80 has predetermined stops for the coop module to stop at a position for the primary index 72 to extend cleanly the length of the container for each column of the coop module. In addition, as base unloader units 70 are utilize, predetermined stops are designed for all columns of the coop module in case one or more base unloading units 70 primary indexes malfunctions. Synchronization component 86 insures a true vertical and descending motion of the coop module in relation to the base unloader units 70 primary indexes 72. This will allow for the primary index 72 to slide evenly over the coop floor 39 and preventing feathers or toes from being pinched. Means other than hydraulic cylinders could raise the conveyor 80 and other means could be implemented to maintain the conveyor vertically true to the base unloader unit primary indexes.
After unloading and processing, the coop module is conveyed to another section of the conveyor 84 for washing or disinfecting. The clean coop module may further be transferred back to a trailer via yet a lifting device similar to that described above.
The flow diagram, or value stream map, of
Depending upon plant parameters, coop modules are removed from the trailer and the trailer may be stored at an optional trailer park 120 until such time as it is called to load preparation 138. In any event, the modules are moved to a staging area 122 before the overhead crane picks them up at module sequencing 124 and delivers them to the chain conveyor 126.
The unloading station 128 removes the livestock from the modules as described above and delivers the modules to the wash/disinfect area 130 and the livestock to the preshackle stunner area 132 and on to animal processing 134. After the modules are washed and disinfected at 130, they are stored 136 and perhaps serviced/repaired before they are attached back to a trailer at load preparation 138.
The present invention has also been designed for ease in tracking and data collection, and in particular takes into account the numerous advantages of radio frequency identification (RFID), for example. RFID is a system for tagging and identifying mobile objects (i.e. coop modules, coop trailers, semi-trailers, livestock, loaders and unloaders) so that they can be labeled and tracked as they move from place to place. Information can be attained through the use of RFID. At the loading station 108, for example, such personal animal information like weight and individual temperature, as well as other more general information like location, start time, finish time, temperature, humidity, barometric pressure, number of animals, etc. can be documented with the use of a personal digital assistant or other electronic recording/transmitting means or possibly non-electric means. Similarly, at the unloading station 128, the same information as well as other information (i.e. DOAs, body temperature and individual weight) can be documented. Theses types of tracking systems can take into account the possibility of future improvement of data gathering within the livestock itself that could collect/analyze information (i.e. hormone and enzyme levels, antibodies, specific animal traits, etc.).
While particular embodiments of the invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made therein without departing from the invention in its broader aspects, and, therefore, the aim in the appended claims is to cover all such changes and modifications that fall within the true spirit and scope of the invention.