The present application relates generally to a system for the monitoring of environmental parameters that affect growing plants. More specifically, embodiments of the present disclosure relate to a plant monitoring system that communicates environmental parameters, such as soil moisture, to a computer or web-enabled device. In even more specific embodiments, the disclosure relates to a plant monitoring system capable of sending alerts or notifications to a computer or web-enabled device and/or to the remote sensing unit itself, based upon specific information stored in an on-line database.
While many people are interested in growing plants, maintaining plant health is often elusive due to uncertainty as to how to meet the specific needs of the particular plant. For example, plants frequently suffer from being either over-watered or under-watered. Therefore a monitoring system capable of alerting a caregiver as to the appropriate time to water a plant is desirable. Further, a plant monitoring system capable of monitoring the sum of environmental parameters necessary for optimal growth and alerting the caregiver when one or more plant need is not being met is desirable.
Implementations of the present application will now be described, by way of example only, with reference to the attached figures, wherein:
It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the implementations described herein. However, the implementations described herein can be practiced without these specific details. In other instances, methods, procedures and components have not been described in detail so as not to obscure the related relevant function being described. Also, the description is not to be considered as limiting the scope of the implementations described herein. It will be understood that descriptions and characterizations of embodiments set forth in this disclosure are not to be considered as mutually exclusive, unless otherwise noted.
The present disclosure relates to a plant monitoring system for the monitoring of environmental parameters necessary for the optimal growth of living plants.
The sensing device may be further configured to provide visible and audible alerts if an environmental parameter is unfavorable to plant health. For example, the sensing device may provide an alert if moisture levels in the growth medium are too low and plant health is threatened. The sensing device may be further configured to contain a photosensor which disables the audible alerts when the lights are off in order to not disturb plant caregivers when they may be sleeping. In some embodiments, the sensing device measures soil moisture. In other embodiments, the sensing device measures light levels, temperature, and/or soil pH, either in conjunction with soil moisture measurements or independent of soil moisture measurements.
In one embodiment, the sensing device is a soil moisture sensing device and the plant monitoring system is a soil moisture monitoring system. The soil moisture monitoring system consists of a device for the alerting of low moisture content in a soil that is comprised of a micro-controller, one or more batteries, a sensing device capable of measuring soil moisture, one or more speakers capable of producing an audible alert, and one or more light emitting diodes (LEDs) or other warning beacons capable of producing a visible alert. The device is further configured to be in wireless communication with a receiver unit that is in further communication with a server capable of issuing alerts or notifications to a computer or web-enabled device. The server may optionally be in communication with an on-line database and further configured to issue notifications based upon data contained in the database. The device may be further configured to be calibrated based on plant type and related settings in the on-line database. In still other embodiments, the device may contain additional sensors for the monitoring of light levels, temperature, and soil pH.
In one embodiment, the soil moisture monitoring system is comprised of a remote soil moisture sensing device.
The remote moisture sensing device can be placed in any type of plant container regardless of container, soil type or plant type. In one embodiment, the device accurately measures soil moisture levels either remotely or manually using a button 110 on the device which forces a reading. This allows the device to be used for continuous measurement of a single plant in a plant container or to measure soil moisture for multiple plants by quickly inserting the device into the soil of different plants and taking a forced reading.
In one embodiment, the remote plant monitoring device is configured for extended battery life using a programming technique that repurposes a watchdog timer to only allow the processor to run intermittently when a new measurement is taken. A watchdog timer is a common feature in computers and processors used in control applications. The original purpose of the watchdog timer is to reset the processor if there is a hardware problem or program crash that prohibits proper operation. The watchdog timer typically has a timeout value of a few hundred milliseconds. The properly operating software program resets the watchdog timer periodically. If the program fails to reset the timer before the timeout, as would be expected if the program crashes or gets stuck in a loop, then the timer goes off and resets the system. Commonly, the watchdog timer utilizes a timebase that is separate from the main processor clock so that the watchdog timer may continue to function and reset the processor if there is a problem with the main clock. This independent timekeeping allows the watchdog timer to be repurposed through a programming technique so as to greatly extend the battery life of the plant monitoring device. Specifically, the watchdog timer is set for the longest possible time interval. For example, on a PIC12F510 micro-controller, the watchdog timer may be set for 2.3 seconds. The main clock oscillator of the processor may be further stopped by a program. After 2.3 seconds elapses the watchdog timer resets the processor, the main clock restarts and the program starts running again. Since the remote sensing device only needs to take a measurement intermittently, a counter in the firmware program can be used to keep track of the number of watchdog restarts and after a certain number of restarts, the sensing device takes a measurement. For example, if the watchdog timer is set for 2.3 seconds and the sensing device is configured to take a measurement every 10 minutes, the device would take a reading after every 256 restarts. Since the process of updating the counter and halting the processor again takes a few tens of microseconds, and the process of taking a reading and flashing a green LED takes about 10 milliseconds, the system only draws full power from the batteries for about 10 milliseconds out of 10 minutes or 1.7E−5 of the time. For example, the battery life of the remote device may be greatly extended from months to years through use of this programming technique.
In another embodiment, the plant monitoring system allows for the remote monitoring of plants while the caregiver is away and may be coupled to a plant watering system to allow for remote watering of the plants.
In at least one embodiment, the device includes nickel plated probes or electrodes that enable the device's sensor to stay in soil for indefinite time without risk of corrosion. The device can also include a push button feature that allows for a forced reading of some or all of the sensors. This provides ability to use this device as a monitoring device to take readings of multiple plants at once. The device can be configured to read light levels and be programmed to not give audible alarm if light is too low. This can prevent the device from waking someone up at night if it senses that moisture levels are too low.
This application claims the benefit of U.S. Provisional Application No. 61/907,922, filed Nov. 22, 2013, the contents of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61907922 | Nov 2013 | US |