LNG production in cryogenic natural gas processing plants

Information

  • Patent Grant
  • 6526777
  • Patent Number
    6,526,777
  • Date Filed
    Friday, April 20, 2001
    23 years ago
  • Date Issued
    Tuesday, March 4, 2003
    21 years ago
Abstract
A process for liquefying natural gas in conjunction with processing natural gas to recover natural gas liquids (NGL) is disclosed. In the process, the natural gas stream to be liquefied is taken from one of the streams in the NGL recovery plant and cooled under pressure to condense it. A distillation stream is withdrawn from the NGL recovery plant to provide some of the cooling required to condense the natural gas stream. The condensed natural gas stream is expanded to an intermediate pressure and supplied to a mid-column feed point on a distillation column. The bottom product from this distillation column preferentially contains the majority of any hydrocarbons heavier than methane that would otherwise reduce the purity of the liquefied natural gas, and is routed to the NGL recovery plant so that these heavier hydrocarbons can be recovered in the NGL product. The overhead vapor from the distillation column is cooled and condensed, and a portion of the condensed stream is supplied to a top feed point on the distillation column to serve as reflux. A second portion of the condensed stream is expanded to low pressure to form the liquefied natural gas stream.
Description




BACKGROUND OF THE INVENTION




This invention relates to a process for processing natural gas to produce liquefied natural gas (LNG) that has a high methane purity. In particular, this invention is well suited to co-production of LNG by integration into natural gas processing plants that recover natural gas liquids (NGL) and/or liquefied petroleum gas (LPG) using a cryogenic process.




Natural gas is typically recovered from wells drilled into underground reservoirs. It usually has a major proportion of methane, i.e., methane comprises at least 50 mole percent of the gas. Depending on the particular underground reservoir, the natural gas also contains relatively lesser amounts of heavier hydrocarbons such as ethane, propane, butanes, pentanes and the like, as well as water, hydrogen, nitrogen, carbon dioxide, and other gases.




Most natural gas is handled in gaseous form. The most common means for transporting natural gas from the wellhead to gas processing plants and thence to the natural gas consumers is in high pressure gas transmission pipelines. In a number of circumstances, however, it has been found necessary and/or desirable to liquefy the natural gas either for transport or for use. In remote locations, for instance, there is often no pipeline infrastructure that would allow for convenient transportation of the natural gas to market. In such cases, the much lower specific volume of LNG relative to natural gas in the gaseous state can greatly reduce transportation costs by allowing delivery of the LNG using cargo ships and transport trucks.




Another circumstance that favors the liquefaction of natural gas is for its use as a motor vehicle fuel. In large metropolitan areas, there are fleets of buses, taxi cabs, and trucks that could be powered by LNG if there were an economic source of LNG available. Such LNG-fueled vehicles produce considerably less air pollution due to the clean-burning nature of natural gas when compared to similar vehicles powered by gasoline and diesel engines which combust higher molecular weight hydrocarbons. In addition, if the LNG is of high purity (i.e., with a methane purity of 95 mole percent or higher), the amount of carbon dioxide (a “greenhouse gas”) produced is considerably less due to the lower carbon:hydrogen ratio for methane compared to all other hydrocarbon fuels.




The present invention is generally concerned with the liquefaction of natural gas as a co-product in a cryogenic gas processing plant that also produces natural gas liquids (NGL) such as ethane, propane, butanes, and heavier hydrocarbon components. A typical analysis of a natural gas stream to be processed in accordance with this invention would be, in approximate mole percent, 92.6% methane, 4.7% ethane and other C


2


components, 1.0% propane and other C


3


components, 0.2% iso-butane, 0.2% normal butane, 0.1% pentanes plus, with the balance made up of nitrogen and carbon dioxide. Sulfur containing gases are also sometimes present.




There are a number of methods known for liquefying natural gas. For instance, see Finn, Adrian J., Grant L. Johnson, and Terry R. Tomlinson, “LNG Technology for Offshore and Mid-Scale Plants”, Proceedings of the Seventy-Ninth Annual Convention of the Gas Processors Association, pp. 429-450, Atlanta, Ga., Mar. 13-15, 2000 for a survey of a number of such processes. U.S. Pat. Nos. 5,363,655; 5,600,969; and 5,615,561 also describe relevant processes. These methods generally include steps in which the natural gas is purified (by removing water and troublesome compounds such as carbon dioxide and sulfur compounds), cooled, condensed, and expanded. Cooling and condensation of the natural gas can be accomplished in many different manners. “Cascade refrigeration” employs heat exchange of the natural gas with several refrigerants having successively lower boiling points, such as propane, ethane, and methane. As an alternative, this heat exchange can be accomplished using a single refrigerant by evaporating the refrigerant at several different pressure levels. “Multi-component refrigeration” employs heat exchange of the natural gas with a single refrigerant fluid composed of several refrigerant components in lieu of multiple single-component refrigerants. Expansion of the natural gas can be accomplished both isenthalpically (using Joule-Thomson expansion, for instance) and isentropically (using a work-expansion turbine, for instance).




While any of these methods could be employed to produce vehicular grade LNG, the capital and operating costs associated with these methods have generally made the installation of such facilities uneconomical. For instance, the purification steps required to remove water, carbon dioxide, sulfur compounds, etc. from the natural gas prior to liquefaction represent considerable capital and operating costs in such facilities, as do the drivers for the refrigeration cycles employed. This has led the inventors to investigate the feasibility of integrating LNG production into cryogemc gas processing plants used to recover NGL from natural gas. Such an integrated LNG production method would eliminate the need for separate gas purification facilities and gas compression drivers. Further, the potential for integrating the cooling/condensation for the LNG liquefaction with the process cooling required for NGL recovery could lead to significant efficiency improvements in the LNG liquefaction method.




In accordance with the present invention, it has been found that LNG with a methane purity in excess of 99 percent can be co-produced from a cryogenic NGL recovery plant without increasing its energy requirements and without reducing the NGL recovery level. The present invention, although applicable at lower pressures and warmer temperatures, is particularly advantageous when processing feed gases in the range of 400 to 1500 psia [2,758 to 10,342 kPa(a)] or higher under conditions requiring NGL recovery column overhead temperatures of −50° F. [−46° C.] or colder.











For a better understanding of the present invention, reference is made to the following examples and drawings. Referring to the drawings:





FIG. 1

is a flow diagram of a prior art cryogenic natural gas processing plant in accordance with U.S. Pat. No. 4,278,457;





FIG. 2

is a flow diagram of said cryogenic natural gas processing plant when adapted for co-production of LNG in accordance with a prior art process;





FIG. 3

is a flow diagram of said cryogenic natural gas processing plant when adapted for co-production of LNG using a prior art process in accordance with U.S. Pat. No. 5,615,561;





FIG. 4

is a flow diagram of said cryogenic natural gas processing plant when adapted for co-production of LNG in accordance with the present invention;





FIG. 5

is a flow diagram illustrating an alternative means of application of the present invention for co-production of LNG from said cryogenic natural gas processing plant;





FIG. 6

is a flow diagram illustrating an alternative means of application of the present invention for co-production of LNG from said cryogenic natural gas processing plant;





FIG. 7

is a flow diagram illustrating an alternative means of application of the present invention for co-production of LNG from said cryogenic natural gas processing plant; and





FIG. 8

is a flow diagram illustrating an alternative means of application of the present invention for co-production of LNG from said cryogenic natural gas processing plant.











In the following explanation of the above figures, tables are provided summarizing flow rates calculated for representative process conditions. In the tables appearing herein, the values for flow rates (in moles per hour) have been rounded to the nearest whole number for convenience. The total stream rates shown in the tables include all non-hydrocarbon components and hence are generally larger than the sum of the stream flow rates for the hydrocarbon components. Temperatures indicated are approximate values rounded to the nearest degree. It should also be noted that the process design calculations performed for the purpose of comparing the processes depicted in the figures are based on the assumption of no heat leak from (or to) the surroundings to (or from) the process. The quality of commercially available insulating materials makes this a very reasonable assumption and one that is typically made by those skilled in the art.




For convenience, process parameters are reported in both the traditional British units and in the units of the International System of Units (SI). The molar flow rates given in the tables may be interpreted as either pound moles per hour or kilogram moles per hour. The energy consumptions reported as horsepower (HP) and/or thousand British Thermal Units per hour (MBTU/H) correspond to the stated molar flow rates in pound moles per hour. The energy consumptions reported as kilowatts (kW) correspond to the stated molar flow rates in kilogram moles per hour. The LNG production rates reported as gallons per day (gallons/D) and/or pounds per hour (Lbs/hour) correspond to the stated molar flow rates in pound moles per hour. The LNG production rates reported as cubic meters per hour (m


3


/H) and/or kilograms per hour (kg/H) correspond to the stated molar flow rates in kilogram moles per hour.




DESCRIPTION OF THE PRIOR ART




Referring now to

FIG. 1

, for comparison purposes we begin with an example of an NGL recovery plant that does not co-produce LNG. In this simulation of a prior art NGL recovery plant according to U.S. Pat. No. 4,278,457, inlet gas enters the plant at 90° F. [32° C.] and 740 psia [5,102 kPa(a)] as stream


31


. If the inlet gas contains a concentration of carbon dioxide and/or sulfur compounds which would prevent the product streams from meeting specifications, these compounds are removed by appropriate pretreatment of the feed gas (not illustrated). In addition, the feed stream is usually dehydrated to prevent hydrate (ice) formation under cryogenic conditions. Solid desiccant has typically been used for this purpose.




The feed stream


31


is cooled in heat exchanger


10


by heat exchange with cool demethanizer overhead vapor at −66° F. [−55° C.] (stream


36




a


), bottom liquid product at 56° F. [13° C.] (stream


41




a


) from demethanizer bottoms pump


18


, demethanizer reboiler liquids at 36° F. [2° C.] (stream


40


), and demethanizer side reboiler liquids at −35° F. [−37° C.] (stream 39). Note that in all cases heat exchanger


10


is representative of either a multitude of individual heat exchangers or a single multi-pass heat exchanger, or any combination thereof. (The decision as to whether to use more than one heat exchanger for the indicated cooling services will depend on a number of factors including, but not limited to, inlet gas flow rate, heat exchanger size, stream temperatures, etc.) The cooled stream


31




a


enters separator


11


at −43° F. [42° C.] and 725 psia [4,999 kPa(a)] where the vapor (stream


32


) is separated from the condensed liquid (stream


35


).




The vapor (stream


32


) from separator


11


is divided into two streams,


33


and


34


. Stream


33


, containing about 27% of the total vapor, passes through heat exchanger


12


in heat exchange relation with the demethanizer overhead vapor stream


36


, resulting in cooling and substantial condensation of stream


33




a


. The substantially condensed stream


33




a


at −142° F. [97° C.] is then flash expanded through an appropriate expansion device, such as expansion valve


13


, to the operating pressure (approximately 320 psia [2,206 kPa(a)]) of fractionation tower


17


. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream. In the process illustrated in

FIG. 1

, the expanded stream


33




b


leaving expansion valve


13


reaches a temperature of −153° F. [−103° C.], and is supplied to separator section


17




a


in the upper region of fractionation tower


17


. The liquids separated therein become the top feed to demethanizing section


17




b.






The remaining 73% of the vapor from separator


11


(stream


34


) enters a work expansion machine


14


in which mechanical energy is extracted from this portion of the high pressure feed. The machine


14


expands the vapor substantially isentropically from a pressure of about 725 psia [4,999 kPa(a)] to the tower operating pressure, with the work expansion cooling the expanded stream


34




a


to a temperature of approximately −107° F. [−77° C.]. The typical commercially available expanders are capable of recovering on the order of 80-85% of the work theoretically available in an ideal isentropic expansion. The work recovered is often used to drive a centrifugal compressor (such as item


15


), that can be used to re-compress the residue gas (stream


38


), for example. The expanded and partially condensed stream


34




a


is supplied as feed to the distillation column at an intermediate point. The separator liquid (stream


35


) is likewise expanded to the tower operating pressure by expansion valve


16


, cooling stream


35




a


to −72° F. [−58° C.] before it is supplied to the demethanizer in fractionation tower


17


at a lower mid-column feed point.




The demethanizer in fractionation tower


17


is a conventional distillation column containing a plurality of vertically spaced trays, one or more packed beds, or some combination of trays and packing. As is often the case in natural gas processing plants, the fractionation tower may consist of two sections. The upper section


17




a


is a separator wherein the partially vaporized top feed is divided into its respective vapor and liquid portions, and wherein the vapor rising from the lower distillation or demethanizing section


17




b


is combined with the vapor portion of the top feed to form the cold demethanizer overhead vapor (stream


36


) which exits the top of the tower at −150° F. [−101° C.]. The lower, demethanizing section


17




b


contains the trays and/or packing and provides the necessary contact between the liquids falling downward and the vapors rising upward. The demethanizing section also includes reboilers which heat and vaporize a portion of the liquids flowing down the column to provide the stripping vapors which flow up the column.




The liquid product stream


41


exits the bottom of the tower at 51° F. [10° C.], based on a typical specification of a methane to ethane ratio of 0.028:1 on a molar basis in the bottom product. The stream is pumped to approximately 650 psia [4,482 kPa(a)] (stream


41




a


) in pump


18


. Stream


41




a


, now at about 56° F. [13° C.], is warmed to 85° F. [29° C.] (stream


41




b


) in heat exchange


10


as it provides cooling to stream


31


. (The discharge pressure of the pump is usually set by the ultimate destination of the liquid product. Generally the liquid product flows to storage and the pump discharge pressure is set so as to prevent any vaporization of stream


41




b


as it is warmed in heat exchanger


10


.)




The demethanizer overhead vapor (stream


36


) passes countercurrently to the incoming feed gas in heat exchanger


12


where it is heated to −66° F. [−55° C.] (stream


36




a


), and heat exchanger


10


where it is heated to 68° F. [20° C.] (stream


36




b


). A portion of the warmed demethanizer overhead vapor is withdrawn to serve as fuel gas (stream


37


) for the plant, with the remainder becoming the residue gas (stream


38


). (The amount of fuel gas that must be withdrawn is largely determined by the fuel required for the engines and/or turbines driving the gas compressors in the plant, such as compressor


19


in this example.) The residue gas is re-compressed in two stages. The first stage is compressor


15


driven by expansion machine


14


. The second stage is compressor


19


driven by a supplemental power source which compresses the residue gas (stream


38




b


) to sales line pressure. After cooling to 120° F. [49° C.] in discharge cooler


20


, the residue gas product (stream


38




c


) flows to the sales gas pipeline at 740 psia [5,102 kPa(a)], sufficient to meet line requirements (usually on the order of the inlet pressure).




A summary of stream flow rates and energy consumption for the process illustrated in

FIG. 1

is set forth in the following table:












TABLE I











(FIG. 1)






Stream Flow Summary - Lb. Moles/Hr [kg moles/Hr]
















Stream




Methane




Ethane




Propane




Butanes+




Total



















31




35,473




1,689




585




331




38,432






32




35,210




1,614




498




180




37,851






35




263




75




87




151




580






33




9,507




436




134




49




10,220






34




25,704




1,178




363




132




27,631






36




35,432




211




6




0




35,951






37




531




3




0




0




539






38




34,901




208




6




0




35,412






41




41




1,478




578




330




2,481















Recoveries*









Ethane




87.52%







Propane




98.92%







Butanes+




99.89%







Power







Residue Gas Compression




14,517 HP




[23,866 kW]













*(Based on un-rounded flow rates)














FIG. 2

shows one manner in which the NGL recovery plant in

FIG. 1

can be adapted for co-production of LNG, in this case by application of a prior art process for LNG production similar to that described by Price (Price, Brian C. “LNG Production for Peak Shaving Operations”, Proceedings of the Seventy-Eighth Annual Convention of the Gas Processors Association, pp. 273-280, Atlanta, Ga., Mar. 13-15, 2000). The inlet gas composition and conditions considered in the process presented in

FIG. 2

are the same as those in FIG.


1


. In this example and all that follow, the simulation is based on co-production of a nominal 50,000 gallons/D [417 m


3


/D] of LNG, with the volume of LNG measured at flowing (not standard) conditions.




In the simulation of the

FIG. 2

process, the inlet gas cooling, separation, and expansion scheme for the NGL recovery plant is exactly the same as that used in FIG.


1


. In this case, the compressed and cooled demethanizer overhead vapor (stream


38




c


) produced by the NGL recovery plant is divided into two portions. One portion (stream


42


) is the residue gas for the plant and is routed to the sales gas pipeline. The other portion (stream


71


) becomes the feed stream for the LNG production plant.




The inlet gas to the NGL recovery plant (stream


31


) was not treated for carbon dioxide removal prior to processing. Although the carbon dioxide concentration in the inlet gas (about 0.5 mole percent) will not create any operating problems for the NGL recovery plant, a significant fraction of this carbon dioxide will leave the plant in the demethanizer overhead vapor (stream


36


) and will subsequently contaminate the feed stream for the LNG production section (stream


71


). The carbon dioxide concentration in this stream is about 0.4 mole percent, well in excess of the concentration that can be tolerated by this prior art process (about 0.005 mole percent). Accordingly, the feed stream


71


must be processed in carbon dioxide removal section


50


before entering the LNG production section to avoid operating problems from carbon dioxide freezing. Although there are many different processes that can be used for carbon dioxide removal, many of them will cause the treated gas stream to become partially or completely saturated with water. Since water in the feed stream would also lead to freezing problems in the LNG production section, it is very likely that the carbon dioxide removal section


50


must also include dehydration of the gas stream after treating.




The treated feed gas enters the LNG production section at 120° F. [49° C.] and 730 psia [5,033 kPa(a)] as stream


72


and is cooled in heat exchanger


51


by heat exchange with a refrigerant mixture at −261° F. [−163° C.] (stream


74




b


). The purpose of heat exchanger


51


is to cool the feed stream to substantial condensation and, preferably, to subcool the stream so as to eliminate any flash vapor being generated in the subsequent expansion step. For the conditions stated, however, the feed stream pressure is above the cricondenbar, so no liquid will condense as the stream is cooled. Instead, the cooled stream


72




a


leaves heat exchanger


51


at −256° F. [−160° C.] as a dense-phase fluid. (The cricondenbar is the maximum pressure at which a vapor phase can exist in a multi-phase fluid. At pressures below the cricondenbar, stream


72




a


would typically exit heat exchanger


51


as a subcooled liquid stream.)




Stream


72




a


enters a work expansion machine


52


in which mechanical energy is extracted from this high pressure stream. The machine


52


expands the dense-phase fluid substantially isentropically from a pressure of about 728 psia [5,019 kPa(a)] to the LNG storage pressure (18 psia [124 kPa(a)]), slightly above atmospheric pressure. The work expansion cools the expanded stream


72




b


to a temperature of approximately −257° F. [−160° C.], whereupon it is then directed to the LNG storage tank


53


which holds the LNG product (stream


73


).




All of the cooling for stream


72


is provided by a closed cycle refrigeration loop. The working fluid for this cycle is a mixture of hydrocarbons and nitrogen, with the composition of the mixture adjusted as needed to provide the required refrigerant temperature while condensing at a reasonable pressure using the available cooling medium. In this case, condensing with ambient air has been assumed, so a refrigerant mixture composed of nitrogen, methane, ethane, propane, and heavier hydrocarbons is used in the simulation of the

FIG. 2

process. The composition of the stream, in approximate mole percent, is 5.2% nitrogen, 24.6% methane, 24.1% ethane, and 18.0% propane, with the balance made up of heavier hydrocarbons.




The refrigerant stream


74


leaves partial condenser


56


at 120° F. [49° C.] and 140 psia [965 kPa(a)]. It enters heat exchanger


51


and is condensed and then subcooled to −256° F. [−160° C.] by the flashed refrigerant stream


74




b


. The subcooled liquid stream


74




a


is flash expanded substantially isenthalpically in expansion valve


54


from about 138 psia [951 kPa(a)] to about 26 psia [179 kPa(a)]. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream to −261° F. [−163° C.] (stream


74




b


). The flash expanded stream


74




b


then reenters heat exchanger


51


where it provides cooling to the feed gas (stream


72


) and the refrigerant liquid (stream


74


) as it is vaporized and superheated.




The superheated refrigerant vapor (stream


74




c


) leaves heat exchanger


51


at 110° F. [43° C.] and flows to refrigerant compressor


55


, driven by a supplemental power source. Compressor


55


compresses the refrigerant to 145 psia [1,000 kPa(a)], whereupon the compressed stream


74




d


returns to partial condenser


56


to complete the cycle.




A summary of stream flow rates and energy consumption for the process illustrated in

FIG. 2

is set forth in the following table:












TABLE II











(FIG. 2)






Stream Flow Summary - Lb. Moles/Hr [kg moles/Hr]
















Stream




Methane




Ethane




Propane




Butanes+




Total



















31




35,473




1,689




585




331




38,432






36




35,432




211




6




0




35,951






37




596




4




0




0




605






71




452




3




0




0




459






72




452




3




0




0




457






74




492




481




361




562




2,000






42




34,384




204




6




0




34,887






41




41




1,478




578




330




2,481






73




452




3




0




0




457














Recoveries*









Ethane




87.52%






Propane




98.92%






Butanes+




99.89%






LNG




50,043 gallons/D




[417.7




m


3


/D]







7,397 Lbs/H




[7,397




kg/H]






LNG Purity




98.94%






Power






Residue Gas Compression




14,484 HP




[23,811




kW]






Refrigerant Compression




 2,282 HP




[3,752




kW]






Total Gas Compression




16,766 HP




[27,563




kW]











*(Based on un-rounded flow rates)













As stated earlier, the NGL recovery plant operates exactly the same in the

FIG. 2

process as it does for the

FIG. 1

process, so the recovery levels for ethane, propane, and butanes+ displayed in Table II are exactly the same as those displayed in Table I. The only significant difference is the amount of plant fuel gas (stream


37


) used in the two processes. As can be seen by comparing Tables I and II, the plant fuel gas consumption is higher for the

FIG. 2

process because of the additional power consumption of refrigerant compressor


55


(which is assumed to be driven by a gas engine or turbine). There is consequently a correspondingly lesser amount of gas entering residue gas compressor


19


(stream


38




a


), so the power consumption of this compressor is slightly less for the

FIG. 2

process compared to the

FIG. 1

process.




The net increase in compression power for the

FIG. 2

process compared to the

FIG. 1

process is 2,249 HP [3,697 kW], which is used to produce a nominal 50,000 gallons/D [417 m


3


/D] of LNG. Since the density of LNG varies considerably depending on its storage conditions, it is more consistent to evaluate the power consumption per unit mass of LNG. The LNG production rate is 7,397 Lb/H [3,355 kg/H] in this case, so the specific power consumption for the

FIG. 2

process is 0.304 HP-H/Lb [0.500 kW-H/kg].




For this adaptation of the prior art LNG production process where the NGL recovery plant residue gas is used as the source of feed gas for LNG production, no provisions have been included for removing heavier hydrocarbons from the LNG feed gas. Consequently, all of the heavier hydrocarbons present in the feed gas become part of the LNG product, reducing the purity (i.e. methane concentration) of the LNG product. If higher LNG purity is desired, or if the source of feed gas contains higher concentrations of heavier hydrocarbons (inlet gas stream


31


, for instance), the feed stream


72


would need to be withdrawn from heat exchanger


51


after cooling to an intermediate temperature so that condensed liquid could be separated, with the uncondensed vapor thereafter returned to heat exchanger


51


for cooling to the final outlet temperature. These condensed liquids would preferentially contain the majority of the heavier hydrocarbons, along with a considerable fraction of liquid methane, which could then be re-vaporized and used to supply a part of the plant fuel gas requirements. Unfortunately, this means that the C


2


components, C


3


components, and heavier hydrocarbon components removed from the LNG feed stream would not be recovered in the NGL product from the NGL recovery plant, and their value as liquid products would be lost to the plant operator. Further, for feed streams such as the one considered in this example, condensation of liquid from the feed stream may not be possible due to the process operating conditions (i.e., operating at pressures above the cricondenbar of the stream), meaning that removal of heavier hydrocarbons could not be accomplished in such instances.




The process of

FIG. 2

is essentially a stand-alone LNG production facility that takes no advantage of the process streams or equipment in the NGL recovery plant.

FIG. 3

shows another manner in which the NGL recovery plant in

FIG. 1

can be adapted for co-production of LNG, in this case by application of the prior art process for LNG production according to U.S. Pat. No. 5,615,561, which integrates the LNG production process with the NGL recovery plant. The inlet gas composition and conditions considered in the process presented in

FIG. 3

are the same as those in

FIGS. 1 and 2

.




In the simulation of the

FIG. 3

process, the inlet gas cooling, separation, and expansion scheme for the NGL recovery plant is essentially the same as that used in FIG.


1


. The main differences are in the disposition of the cold demethanizer overhead vapor (stream


36


) and the compressed and cooled demethanizer overhead vapor (stream


45




c


) produced by the NGL recovery plant. Inlet gas enters the plant at 90° F. [32° C.] and 740 psia [5,102 kPa(a)] as stream


31


cooled in heat exchanger


10


by heat exchange with cool demethanizer overhead vapor at −69° F. [−56° C.] (stream


36




b


), bottom liquid product at 48° F. [9° C.] (stream


41




a


) from demethanizer bottoms pump


18


, demethanizer reboiler liquids at 26° F. [−3° C.] (stream


40


), and demethanizer side reboiler liquids at −50° F. [−46° C.] (stream


39


). The cooled stream


31




a


enters separator


11


at −46° F. [−43° C.]and 725 psia [4,999 kPa(a)] where the vapor (stream


32


) is separated from the condensed liquid (stream


35


).




The vapor (stream


32


) from separator


11


is divided into gaseous first and second streams,


33


and


34


. Stream


33


, containing about 25 percent of the total vapor passes through heat exchanger


12


in heat exchange relation with the cold demethanizer overhead vapor stream


36




a


where it is cooled to −142° F. [−97° C.]. The resulting substantially condensed stream


33




a


is then flash expanded through expansion valve


13


to the operating pressure (approximately 291 psia [2,006 kPa(a)]) of fractionation tower


17


. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream. In the process illustrated in

FIG. 3

, the expanded stream


33




b


leaving expansion valve


13


reaches a temperature of −158° F. [−105° C.] and is supplied to fractionation tower


17


as the top column feed. The vapor portion (if any) of stream


33




b


combines with the vapors rising from the top fractionation stage of the column to form demethanizer overhead vapor stream


36


, which is withdrawn from an upper region of the tower.




Returning to the gaseous second stream


34


, the remaining 75 percent of the vapor from separator


11


enters a work expansion machine


14


in which mechanical energy is extracted from this portion of the high pressure feed. The machine


14


expands the vapor substantially isentropically from a pressure of about 725 psia [4,999 kPa(a)] to the tower operating pressure, with the work expansion cooling the expanded stream


34




a


to a temperature of approximately −116° F. [−82° C.]. The expanded and partially condensed stream


34




a


is thereafter supplied as feed to fractionation tower


17


at an intermediate point. The separator liquid (stream


35


) is likewise expanded to the tower operating pressure by expansion valve


16


, cooling stream


35




a


to −80° F. [−62° C.] before it is supplied to fractionation tower


17


at a lower mid-column feed point.




The liquid product (stream


41


) exits the bottom of tower


17


at 42° F. [6° C.]. This stream is pumped to approximately 650 psia [4,482 kPa(a)] (stream


41




a


) in pump


18


and warmed to 83° F. [28° C.] (stream


41




b


) in heat exchanger


10


as it provides cooling to stream


31


. The distillation vapor stream forming the tower overhead (stream


36


) leaves demethanizer


17


at −154° F. [−103° C.] and is divided into two portions. One portion (stream


43


) is directed to heat exchanger


51


in the LNG production section to provide most of the cooling duty in this exchanger as it is warmed to −42° F. [−41 C.] (stream


43




a


). The remaining portion (stream


42


) bypasses heat exchanger


51


, with control valve


21


adjusting the quantity of this bypass in order to regulate the cooling accomplished in heat exchanger


51


. The two portions recombine at −146° F. [−99° C.] to form stream


36




a


, which passes countercurrently to the incoming feed gas in heat exchanger


12


where it is heated to −69° F. [−56° C.] (stream


36




b


) and heat exchanger


10


where it is heated to 72° F. [22° C.] (stream


36




c


). Stream


36




c


combines with warm HP flash vapor (stream


73




a


) from the LNG production section, forming stream


44


at 72° F. [22° C.]. A portion of this stream is withdrawn (stream


37


) to serve as part of the fuel gas for the plant. The remainder (stream


45


) is re-compressed in two stages, compressor


15


driven by expansion machine


14


and compressor


19


driven by a supplemental power source, and cooled to 120° F. [49° C.] in discharge cooler


20


. The cooled compressed stream (stream


45




c


) is then divided into two portions. One portion is the residue gas product (stream


46


), which flows to the sales gas pipeline at 740 psia [5,102 kPa(a)]. The other portion (stream


71


) is the feed stream for the LNG production section.




The inlet gas to the NGL recovery plant (stream


31


) was not treated for carbon dioxide removal prior to processing. Although the carbon dioxide concentration in the inlet gas (about 0.5 mole percent) will not create any operating problems for the NGL recovery plant, a significant fraction of this carbon dioxide will leave the plant in the demethanizer overhead vapor (stream


36


) and will subsequently contaminate the feed stream for the LNG production section (stream


71


). The carbon dioxide concentration in this stream is about 0.4 mole percent, well in excess of the concentration that can be tolerated by this prior art process (0.005 mole percent). As for the

FIG. 2

process, the feed stream


71


must be processed in carbon dioxide removal section


50


(which may also include dehydration of the treated gas stream) before entering the LNG production section to avoid operating problems due to carbon dioxide freezing.




The treated feed gas enters the LNG production section at 120° F. [49° C.] and 730 psia [5,033 kPa(a)] as stream


72


and is cooled in heat exchanger


51


by heat exchange with LP flash vapor at −200 F. [129° C.] (stream


75


), HP flash vapor at −164° F. [−109° C.] (stream


73


), and a portion of the demethanizer overhead vapor (stream


43


) at −154° F. [−103° C.] from the NGL recovery plant. The purpose of heat exchanger


51


is to cool the feed stream to substantial condensation, and preferably to subcool the stream so as to reduce the quantity of flash vapor generated in subsequent expansion steps in the LNG cool-down section. For the conditions stated, however, the feed stream pressure is above the cricondenbar, so no liquid will condense as the stream is cooled. Instead, the cooled stream


72




a


leaves heat exchanger


51


at −148° F. [−100° C.] as a dense-phase fluid. At pressures below the cricondenbar, stream


72




a


would typically exit heat exchanger


51


as a condensed (and possibly subcooled) liquid stream.




Stream


72




a


is flash expanded substantially isenthalpically in expansion valve


52


from about 727 psia [5,012 kPa(a)] to the operating pressure of HP flash drum


53


, about 279 psia [1,924 kPa(a)]. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream to −164° F. [−109° C.] (stream


72




b


). The flash expanded stream


72




b


then enters HP flash drum


53


where the HP flash vapor (stream


73


) is separated and directed to heat exchanger


51


as described previously. The operating pressure of the HP flash drum is set so that the heated HP flash vapor (stream


73




a


) leaving heat exchanger


51


is at sufficient pressure to allow it to join the heated demethanizer overhead vapor (stream


36




c


) leaving the NGL recovery plant and subsequently be compressed by compressors


15


and


19


.




The HP flash liquid (stream


74


) from HP flash drum


53


is flash expanded substantially isenthalpically in expansion valve


54


from the operating pressure of the HP flash drum to the operating pressure of LP flash drum


55


, about 118 psia [814 kPa(a)]. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream to −200° F. [−129° C.] (stream


74




a


). The flash expanded stream


74




a


then enters LP flash drum


55


where the LP flash vapor (stream


75


) is separated and directed to heat exchanger


51


as described previously. The operating pressure of the LP flash drum is set so that the heated LP flash vapor (stream


75




a


) leaving heat exchanger


51


is at sufficient pressure to allow its use as plant fuel gas.




The LP flash liquid (stream


76


) from LP flash drum


55


is flash expanded substantially isenthalpically in expansion valve


56


from the operating pressure of the LP flash drum to the LNG storage pressure (18 psia [124 kPa(a)]), slightly above atmospheric pressure. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream to −254° F. [−159° C.] (stream


76




a


), whereupon it is then directed to LNG storage tank


57


where the flash vapor resulting from expansion (stream


77


) is separated from the LNG product (stream


78


).




The flash vapor (stream


77


) from LNG storage tank


57


is at too low a pressure to be used for plant fuel gas, and is too cold to enter directly into a compressor. Accordingly, it is first heated to −30° F. [−34° C.] (stream


77




a


) in heater


58


, then compressors


59


and


60


(driven by supplemental power sources) are used to compress the stream (stream


77




c


). Following cooling in aftercooler


61


, stream


77




d


at 115 psia [793 kPa(a)] is combined with streams


37


and


75




a


to become the fuel gas for the plant (stream


79


).




A summary of stream flow rates and energy consumption for the process illustrated in

FIG. 3

is set forth in the following table:












TABLE III











(FIG. 3)






Stream Flow Summary - Lb. Moles/Hr [kg moles/Hr]
















Stream




Methane




Ethane




Propane




Butanes+




Total



















31




35,473




1,689




585




331




38,432






32




35,155




1,599




482




166




37,751






35




318




90




103




165




681






33




8,648




393




119




41




9,287






34




26,507




1,205




364




125




28,464






36




35,432




209




5




0




35,947






43




2,835




17




0




0




2,876






71




815




5




0




0




827






72




815




5




0




0




824






73




85




0




0




0




86






74




730




5




0




0




738






75




150




0




0




0




151






76




580




5




0




0




586






77




131




0




0




0




132






37




330




2




0




0




335






45




35,187




208




5




0




35,699






79




610




2




0




0




618






46




34,372




203




5




0




34,872






41




41




1,479




580




331




2,484






78




450




5




0




0




455














Recoveries*









Ethane




87.60%






Propane




99.12%






Butanes+




99.92%






LNG




50,063 gallons/D




[417.8




m


3


/D]







7,365 Lbs/H




[7,365




kg/H]






LNG Purity




98.91%






Power






Residue Gas Compression




17,071 HP




[28,064




kW]






Flash Vapor Compression




  142 HP




[233




kW]






Total Gas Compression




17,213 HP




[28,298




kW]











*(Based on un-rounded flow rates)













The process of

FIG. 3

uses a portion (stream


43


) of the cold demethanizer overhead vapor (stream


36


) to provide refrigeration to the LNG production process, which robs the NGL recovery plant of some of its refrigeration. Comparing the recovery levels displayed in Table III for the

FIG. 3

process to those in Table II for the

FIG. 2

process shows that the NGL recoveries have been maintained at essentially the same levels for both processes. However, this comes at the expense of increasing the utility consumption for the

FIG. 3

process. Comparing the utility consumptions in Table III with those in Table II shows that the residue gas compression for the

FIG. 3

process is nearly 18% higher than for the

FIG. 2

process. Thus, the recovery levels could be maintained for the

FIG. 3

process only by lowering the operating pressure of demethanizer


17


, increasing the work expansion in machine


14


and thereby reducing the temperature of the demethanizer overhead vapor (stream


36


) to compensate for the refrigeration lost to the NGL recovery plant in stream


43


.




As can be seen by comparing Tables I and III, the plant fuel gas consumption is higher for the

FIG. 3

process because of the additional power consumption of flash vapor compressors


59


and


60


(which are assumed to be driven by gas engines or turbines). There is consequently a correspondingly lesser amount of gas entering residue gas compressor


19


(stream


45




a


), but the power consumption of this compressor is still higher for the

FIG. 3

process compared to the

FIG. 1

process because of the higher compression ratio. The net increase in compression power for the

FIG. 3

process compared to the

FIG. 1

process is 2,696 HP [4,432 kW] to produce the nominal 50,000 gallons/D [417 m


3


/D] of LNG. The specific power consumption for the

FIG. 3

process is 0.366 HP-H/Lb [0.602 kW-H/kg], or about 20% higher than for the

FIG. 2

process.




The

FIG. 3

process has no provisions for removing heavier hydrocarbons from the feed gas to its LNG production section. Although some of the heavier hydrocarbons present in the feed gas leave in the flash vapor (streams


73


and


75


) from separators


53


and


55


, most of the heavier hydrocarbons become part of the LNG product and reduce its purity. The

FIG. 3

process is incapable of increasing the LNG purity, and if a feed gas containing higher concentrations of heavier hydrocarbons (for instance, inlet gas stream


31


, or even residue gas stream


45




c


when the NGL recovery plant is operating at reduced recovery levels) is used to supply the feed gas for the LNG production plant, the LNG purity would be even less than shown in this example.




DESCRIPTION OF THE INVENTION




EXAMPLE 1





FIG. 4

illustrates a flow diagram of a process in accordance with the present invention. The inlet gas composition and conditions considered in the process presented in

FIG. 4

are the same as those in

FIGS. 1 through 3

. Accordingly, the

FIG. 4

process can be compared with that of the FIG.


2


and

FIG. 3

processes to illustrate the advantages of the present invention.




In the simulation of the

FIG. 4

process, the inlet gas cooling, separation, and expansion scheme for the NGL recovery plant is essentially the same as that used in FIG.


1


. The main difference is that the inlet gas (stream


30


) is divided into two portions, and only the first portion (stream


31


) is supplied to the NGL recovery plant. The other portion (stream


71


) is the feed gas for the LNG production section which employs the present invention.




Inlet gas enters the plant at 90° F. [32° C.] and 740 psia [5,102 kPa(a)] as stream


30


. The feed gas for the LNG section is withdrawn (stream


71


) and the remaining portion (stream


31


) is cooled in heat exchanger


10


by heat exchange with cool distillation vapor at −66° F. [−54° C.] (stream


36




a


), bottom liquid product at 51° F. [


10° C.] (stream 41




a


) from demethanizer bottoms pump


18


, demethanizer reboiler liquids at 30° F. [−1° C.] (stream


40


), and demethanizer side reboiler liquids at −39° F. [−39° C.] (stream


39


). The cooled stream


31




a


enters separator


11


at −44° F. [−42° C.] and 725 psia [4,999 kPa(a)] where the vapor (stream


32


) is separated from the condensed liquid (stream


35


).




The vapor (stream


32


) from separator


11


is divided into gaseous first and second streams,


33


and


34


. Stream


33


, containing about 26 percent of the total vapor passes through heat exchanger


12


in heat exchange relation with cold distillation vapor stream


36


where it is cooled to −148° F. [−100° C.]. The resulting substantially condensed stream


33




a


is then flash expanded through expansion valve


13


to the operating pressure (approximately 301 psia [2,075 kPa(a)]) of fractionation tower


17


. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream. In the process illustrated in

FIG. 4

, the expanded stream


33




b


leaving expansion valve


13


reaches a temperature of −156° F. [−105° C.] and is supplied to fractionation tower


17


as the top column feed. The vapor portion (if any) of stream


33




b


combines with the vapors rising from the top fractionation stage of the column to form distillation vapor stream


42


, which is withdrawn from an upper region of the tower.




Returning to the gaseous second stream


34


, the remaining 74 percent of the vapor from separator


11


enters a work expansion machine


14


in which mechanical energy is extracted from this portion of the high pressure feed. The machine


14


expands the vapor substantially isentropically from a pressure of about 725 psia [4,999 kPa(a)] to the tower operating pressure, with the work expansion cooling the expanded stream


34




a


to a temperature of approximately −111° F. [−80° C.]. The expanded and partially condensed stream


34




a


is thereafter supplied as feed to fractionation tower


17


at an intermediate point. The separator liquid (stream


35


) is likewise expanded to the tower operating pressure by expansion valve


16


, cooling stream


35




a


to −75° F. [−59° C.] before it is supplied to fractionation tower


17


at a lower mid-column feed point.




The liquid product (stream


41


) exits the bottom of tower


17


at 45° F. [7° C.]. This stream is pumped to approximately 650 psia [4,482 kPa(a)] (stream


41




a


) in pump


18


and warmed to 84° F. [29° C.] (stream


41




b


) in heat exchanger


10


as it provides cooling to stream


31


. The distillation vapor stream forming the tower overhead at −152° F. [−102° C.] (stream


42


) is divided into two portions. One portion (stream


86


) is directed to the LNG production section. The remaining portion (stream


36


) passes countercurrently to the incoming feed gas in heat exchanger


12


where it is heated to −66° F. [54° C.] (stream


36




a


) and in heat exchanger


10


where it is heated to 72° F. [22° C.] (stream


36




b


). A portion of the warmed distillation vapor stream is withdrawn (stream


37


) to serve as part of the fuel gas for the plant, with the remainder becoming the first residue gas (stream


43


). The first residue gas is then re-compressed in two stages, compressor


15


driven by expansion machine


14


and compressor


19


driven by a supplemental power source to form the compressed first residue gas (stream


43




b


).




Turning now to the LNG production section that employs the present invention, feed stream


71


enters heat exchanger


50


at 90° F. [32° C.] and 740 psia [5,102 kPa(a)]. Note that in all cases heat exchanger


50


is representative of either a multitude of individual heat exchangers or a single multi-pass heat exchanger, or any combination thereof. (The decision as to whether to use more than one heat exchanger for the indicated cooling services will depend on a number of factors including, but not limited to, feed stream flow rate, heat exchanger size, stream temperatures, etc.) In heat exchanger


50


, the feed stream


71


is cooled by heat exchange with cool LNG flash vapor (stream


83




a


) and the distillation vapor stream from the NGL recovery plant (stream


86


). The cooled stream


71




a


enters separator


51


at −36° F. [−38° C.] and 737 psia [5,081 kPa(a)] where the vapor (stream


72


) is separated from the condensed liquid (stream


73


).




The vapor (stream


72


) from separator


51


enters a work expansion machine


52


in which mechanical energy is extracted from this portion of the high pressure feed. The machine


52


expands the vapor substantially isentropically from a pressure of about 737 psia [5,081 kPa(a)] to slightly above the operating pressure (440 psia [3,034 kPa(a)]) of distillation column


56


, with the work expansion cooling the expanded stream


72




a


to a temperature of approximately −79° F. [−62° C.]. The expanded and partially condensed stream


72




a


is directed to heat exchanger


50


and further cooled and condensed by heat exchange with cool LNG flash vapor (stream


83




a


) and the distillation vapor stream from the NGL recovery plant (stream


86


) as described earlier, and by flash liquids (stream


80


) and distillation column reboiler liquids at −135° F. [−93° C.] (stream


76


). The condensed stream


72




b


, now at −135° F. [−93° C.], is thereafter supplied as feed to distillation column


56


at an intermediate point.




Distillation column


56


serves as an LNG purification tower. It is a conventional distillation column containing a plurality of vertically spaced trays, one or more packed beds, or some combination of trays and packing. This tower recovers nearly all of the hydrocarbons heavier than methane present in its feed stream (stream


72




b


) as its bottom product (stream


77


) so that the only significant impurity in its overhead (stream


74


) is the nitrogen contained in the feed stream. Equally important, this tower also captures in its bottom product nearly all of the carbon dioxide feeding the tower, so that carbon dioxide does not enter the downstream LNG cool-down section where the extremely low temperatures would cause the formation of solid carbon dioxide, creating operating problems. The lower section of LNG purification tower


56


includes a reboiler which heats and vaporizes a portion of the liquids flowing down the column (by cooling stream


72




a


in heat exchanger


50


as described earlier) to provide stripping vapors which flow up the column to strip some of the methane from the liquids. This reduces the amount of methane in the bottom product from the tower (stream


77


) so that less methane must be rejected by fractionation tower


17


when this stream is supplied to it (as described later).




Reflux for distillation column


56


is created by cooling and condensing the tower overhead vapor (stream


74


at −142° F. [−96° C.]) in heat exchanger


50


by heat exchange with cool LNG flash vapor at −147° F. [−99° C.] (stream


83




a


) and flash liquids at −152° F. [−102° C.] (stream


80


). The condensed stream


74




a


, now at −144° F. [−98° C.], is divided into two portions. One portion (stream


78


) becomes the feed to the LNG cool-down section. The other portion (stream


75


) enters reflux pump


55


. After pumping, stream


75




a


at −143° F. [−97° C.] is supplied to LNG purification tower


56


at a top feed point to provide the reflux liquid for the tower. This reflux liquid rectifies the vapors rising up the tower so that the tower overhead vapor (stream


74


) and consequently feed stream


78


to the LNG cool-down section contain minimal amounts of carbon dioxide and hydrocarbons heavier than methane. The amount of reboiling in the bottom of the column is adjusted as necessary to generate sufficient overhead vapor from the column, so that there is enough reflux liquid from heat exchanger


50


to provide the desired rectification in the tower.




The feed stream for the LNG cool-down section (condensed liquid stream


78


) enters heat exchanger


58


at −144° F. [−98° C.] and is subcooled by heat exchange with cold LNG flash vapor at −255° F. [−160° C.] (stream


83


) and cold flash liquids (stream


79




a


). The cold flash liquids are produced by withdrawing a portion of the partially subcooled feed stream (stream


79


) from heat exchanger


58


and flash expanding the stream through an appropriate expansion device, such as expansion valve


59


, to slightly above the operating pressure of fractionation tower


17


. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream from −157° F. [−105° C.] to −161° F. [−107° C.] (stream


79




a


). The flash expanded stream


79




a


is then supplied to heat exchanger


58


as previously described.




The remaining portion of the partially subcooled feed stream is further subcooled in heat exchanger


58


to −170° F. [−112° C.] (stream


82


). It then enters a work expansion machine


60


which mechanical energy is extracted from this intermediate pressure stream. The machine


60


expands the subcooled liquid substantially isentropically from a pressure of about 434 psia [2,992 kPa(a)] to the LNG storage pressure (18 psia [124 kPa(a)]), slightly above atmospheric pressure. The work expansion cools the expanded stream


82


a to a temperature of approximately −255° F. [−160° C.], whereupon it is then directed to LNG storage tank


61


where the flash vapor resulting from expansion (stream


83


) is separated from the LNG product (stream


84


).




Tower bottoms stream


77


from LNG purification tower


56


is flash expanded to slightly above the operating pressure of fractionation tower


17


by expansion valve


57


. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream from −133° F. [−92° C.] to −152° F. [−102° C.] (stream


77




a


). The flash expanded stream


77


a is then combined with warmed flash liquid stream


79




b


leaving heat exchanger


58


at −147° F. [−99° C.] to form a combined flash liquid stream (stream


80


) at −152° F.[−102° C.] which is supplied to heat exchanger


50


. It is heated to −88° F. [−67° C.] (stream


80




a


) as it supplies cooling to expanded stream


72




a


and tower overhead vapor stream


74


as described earlier.




The separator liquid (stream


73


) is flash expanded to the operating pressure of fractionation tower


17


by expansion valve


54


, cooling stream


73




a


to −65° F. [−54° C.]. The expanded stream


73




a


is combined with heated flash liquid stream


80




a


to form stream


81


, which is supplied to fractionation tower


17


at a lower mid-column feed point. If desired, stream


81


can be combined with flash expanded stream


35




a


described earlier and the combined stream supplied to a single lower mid-column feed point on the tower.




The flash vapor (stream


83


) from LNG storage tank


61


passes countercurrently to the incoming liquid in heat exchanger


58


where it is heated to −147° F. [−99° C.] (stream


83




a


). It then enters heat exchanger


50


where it is heated to 87° F. [31° C.] (stream


83




b


) as it supplies cooling to feed stream


71


, expanded stream


72




a


, and tower overhead stream


74


. Since this stream is at low pressure (15.5 psia [107 kPa(a)]), it must be compressed before it can be used as plant fuel gas. Compressors


63


and


65


(driven by supplemental power sources) with intercooler


64


are used to compress the stream (stream


83




e


). Following cooling in aftercooler


66


, stream


83




f


at 115 psia [793 kPa(a)] is combined with stream


37


to become the fuel gas for the plant (stream


85


).




The cold distillation vapor stream from the NGL recovery plant (stream


86


) is heated to 86° F. [30° C.] as it supplies cooling to feed stream


71


and expanded stream


72




a


in heat exchanger


50


, becoming the second residue gas (stream


86




a


). The second residue gas is then re-compressed in two stages, compressor


53


driven by expansion machine


52


and compressor


62


driven by a supplemental power source. The compressed second residue gas (stream


86




c


) combines with the compressed first residue gas (stream


43




b


) to form residue gas stream


38


. After cooling to 120° F. [49° C.] in discharge cooler


20


, the residue gas product (stream


38




a


) flows to the sales gas pipeline at 740 psia [5,102 kPa(a)].




A summary of stream flow rates and energy consumption for the process illustrated in

FIG. 4

is set forth in the following table:












TABLE IV











(FIG. 4)






Stream Flow Summary - Lb. Moles/Hr [kg moles/Hr]
















Stream




Methane




Ethane




Propane




Butanes+




Total



















30




35,473




1,689




585




331




38,432






31




32,760




1,560




540




306




35,492






32




32,508




1,488




457




164




34,940






35




252




72




83




141




552






33




8,550




391




120




43




9,189






34




23,959




1,097




337




121




25,751






42




34,767




212




5




0




35,276






36




32,254




196




5




0




32,726






37




358




2




0




0




363






71




2,714




129




45




25




2,940






72




2,701




125




40




16




2,909






73




13




4




4




9




31






74




1,239




0




0




0




1,258






77




1,945




125




40




16




2,142






75




483




0




0




0




491






78




756




0




0




0




767






79




91




0




0




0




92






83




211




0




0




0




220






85




569




2




0




0




583






86




2,513




15




0




0




2,550






38




34,409




209




5




0




34,913






41




41




1,477




579




331




2,481






84




455




0




0




0




456














Recoveries*









Ethane




87.47%






Propane




99.09%






Butanes+




99.91%






LNG




50,034 gallons/D




[417.6




m


3


/D]







7,333 Lbs/H




[7,333




kg/H]






LNG Purity




99.77%






Power






1


st


Residue Gas Compression




14,529 HP




[23,885




kW]






2


nd


Residue Gas Compression




 1,197 HP




[1,968




kW]






Flash Vapor Compression




  289 HP




[475




kW]






Total Gas Compression




16,015 HP




[26,328




kW]











*(Based on un-rounded flow rates)













Comparing the recovery levels displayed in Table IV for the

FIG. 4

process to those in Table I for the

FIG. 1

process shows that the recoveries in the NGL recovery plant have been maintained at essentially the same levels for both processes. Comparison of the utility consumptions displayed in Table IV for the

FIG. 4

process with those in Table I for the

FIG. 1

process shows that the residue gas compression required for the NGL recovery plant is essentially the same for both processes. This indicates that there is no loss in recovery efficiency despite using a portion (stream


86


) of the cold distillation vapor stream (stream


42


) from the NGL recovery plant to provide refrigeration to the LNG production section. Thus, unlike the

FIG. 3

process, integrating the LNG production process of the present invention with the NGL recovery plant can be accomplished without adverse impact on NGL recovery efficiency.




The net increase in compression power for the

FIG. 4

process compared to the

FIG. 1

process is 1,498 HP [2,463 kW] to produce the nominal 50,000 gallons/D [417 m


3


/D] of LNG, giving a specific power consumption of 0.204 HP-H/Lb [0.336 kW-H/kg] for the

FIG. 4

process. Thus, the present invention has a specific power consumption that is only 67% of the

FIG. 2

prior art process and only 56% of the

FIG. 3

prior art process. Further, the present invention does not require carbon dioxide removal from the feed gas prior to entering the LNG production section like the prior art processes do, eliminating the capital cost and operating cost associated with constructing and operating the gas treatment processes required for the FIG.


2


and

FIG. 3

processes.




Not only is the present invention more efficient than either prior art process, the LNG it produces is of higher purity due to the inclusion of LNG purification tower


56


. This higher LNG purity is even more noteworthy considering that the source of the feed gas used for this example (inlet gas, stream


30


) contains much higher concentrations of heavier hydrocarbons than the feed gas used in the FIG.


2


and

FIG. 3

processes (i.e., the NGL recovery plant residue gas). The purity of the LNG is in fact limited only by the concentration of gases more volatile than methane (nitrogen, for instance) present in feed stream


71


, as the operating parameters of purification tower


56


can be adjusted as needed to keep the concentration of heavier hydrocarbons in the LNG product as low as desired.




EXAMPLE 2





FIG. 4

represents the preferred embodiment of the present invention for the temperature and pressure conditions shown because it typically provides the most efficient LNG production. A slightly less complex design that maintains the same LNG production with somewhat higher utility consumption can be achieved using another embodiment of the present invention as illustrated in the

FIG. 5

process. The inlet gas composition and conditions considered in the process presented in

FIG. 5

are the same as those in

FIGS. 1 through 4

. Accordingly, the

FIG. 5

process can be compared with that of the FIG.


2


and

FIG. 3

processes to illustrate the advantages of the present invention, and can likewise be compared to the embodiment displayed in FIG.


4


.




In the simulation of the

FIG. 5

process, the inlet gas cooling, separation, and expansion scheme for the NGL recovery plant is essentially the same as that used in FIG.


4


. Inlet gas enters the plant at 90° F. [32° C.] and 740 psia [5,102 kPa(a)] as stream


30


. The feed gas for the LNG section is withdrawn (stream


71


) and the remaining portion (stream


31


) is cooled in heat exchanger


10


by heat exchange with cool distillation vapor at −65° F. [−54° C.] (stream


36




a


), bottom liquid product at 50° F. [10° C.] (stream


41




a


) from demethanizer bottoms pump


18


, demethanizer reboiler liquids at 29° F. [−2° C.] (stream


40


), and demethanizer side reboiler liquids at −41° F. [−40° C.] (stream


39


). The cooled stream


31




a


enters separator


11


at −43° F. [−42° C.] and 725 psia [4,999 kPa(a)] where the vapor (stream


32


) is separated from the condensed liquid (stream


35


).




The vapor (stream


32


) from separator


11


is divided into gaseous first and second streams,


33


and


34


. Stream


33


, containing about 26 percent of the total vapor passes through heat exchanger


12


in heat exchange relation with the cold distillation vapor stream


36


where it is cooled to −148° F. [−100° C.]. The resulting substantially condensed stream


33




a


is then flash expanded through expansion valve


13


to the operating pressure (approximately 296 psia [2,041 kPa(a)]) of fractionation tower


17


. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream. In the process illustrated in

FIG. 5

, the expanded stream


33




b


leaving expansion valve


13


reaches a temperature of −157F [−105° C.] and is supplied to fractionation tower


17


as the top column feed. The vapor portion (if any) of stream


33




b


combines with the vapors rising from the top fractionation stage of the column to form distillation vapor stream


42


, which is withdrawn from an upper region of the tower.




Returning to the gaseous second stream


34


, the remaining 74 percent of the vapor from separator


11


enters a work expansion machine


14


in which mechanical energy is extracted from this portion of the high pressure feed. The machine


14


expands the vapor substantially isentropically from a pressure of about 725 psia [4,999 kPa(a)] to the tower operating pressure, with the work expansion cooling the expanded stream


34




a


to a temperature of approximately −112° F. [−80° C.]. The expanded and partially condensed stream


34




a


is thereafter supplied as feed to fractionation tower


17


at an intermediate point. The separator liquid (stream


35


) is likewise expanded to the tower operating pressure by expansion valve


16


, cooling stream


35




a


to −75°F. [−59° C.] before it is supplied to fractionation tower


17


at a lower mid-column feed point.




The liquid product (stream


41


) exits the bottom of tower


17


at 44° F. [7° C.]. This stream is pumped to approximately 650 psia [4,482 kPa(a)] (stream


41




a


) in pump


18


and warmed to 83° F. [28° C.] (stream


41




b


) in heat exchanger


10


as it provides cooling to stream


31


. The distillation vapor stream forming the tower overhead at −153° F. [−103° C.] (stream


42


) is divided into two portions. One portion (stream


86


) is directed to the LNG production section. The remaining portion (stream


36


) passes countercurrently to the incoming feed gas in heat exchanger


12


where it is heated to −65° F. [54° C.] (stream


36




a


) and heat exchanger


10


where it is heated to 73° F. [23° C.] (stream


36




b


). A portion of the warmed distillation vapor stream is withdrawn (stream


37


) to serve as part of the fuel gas for the plant, with the remainder becoming the first residue gas (stream


43


). The first residue gas is then re-compressed in two stages, compressor


15


driven by expansion machine


14


and compressor


19


driven by a supplemental power source to form the compressed first residue gas (stream


43




b


).




Turning now to the LNG production section that employs an alternative embodiment of the present invention, feed stream


71


enters heat exchanger


50


at 90° F. [32° C.] and 740 psia [5,102 kPa(a)]. The feed stream


71


is cooled to −120° F. [−84° C.] in heat exchanger


50


by heat exchange with cool LNG flash vapor (stream


83




a


), the distillation vapor stream from the NGL recovery plant at −153° F. [−103° C.] (stream


86


), flash liquids (stream


80


), and distillation column reboiler liquids at −134° F. [−92° C.] (stream


76


). The resulting substantially condensed stream


71




a


is then flash expanded through an appropriate expansion device, such as expansion valve


52


, to the operating pressure (440 psia [3,034 kPa(a)]) of distillation column


56


. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream. In the process illustrated in

FIG. 5

, the expanded stream


71




b


leaving expansion valve


52


reaches a temperature of −134° F. [−92° C.] and is thereafter supplied as feed to distillation column


56


at an intermediate point.




As in the

FIG. 4

embodiment of the present invention, distillation column


56


serves as an LNG purification tower, recovering nearly all of the carbon dioxide and the hydrocarbons heavier than methane present in its feed stream (stream


71




b


) as its bottom product (stream


77


) so that the only significant impurity in its overhead (stream


74


) is the nitrogen contained in the feed stream. Reflux for distillation column


56


is created by cooling and condensing the tower overhead vapor (stream


74


at −141° F. [−96° C.]) in heat exchanger


50


by heat exchange with cool LNG flash vapor at −146° F. [−99° C.] (stream


83




a


) and flash liquids at −152° F. [−102° C.] (stream


80


). The condensed stream


74




a


, now at −144° F. [−98° C.], is divided into two portions. One portion (stream


78


) becomes the feed to the LNG cool-down section. The other portion (stream


75


) enters reflux pump


55


. After pumping, stream


75




a


at −143° F. [−97° C.] is supplied to LNG purification tower


56


at a top feed point to provide the reflux liquid for the tower. This reflux liquid rectifies the vapors rising up the tower so that the tower overhead (stream


74


) and consequently feed stream


78


to the LNG cool-down section contain minimal amounts of carbon dioxide and hydrocarbons heavier than methane.




The feed stream for the LNG cool-down section (condensed liquid stream


78


) enters heat exchanger


58


at −144° F. [−98° C.] and is subcooled by heat exchange with cold LNG flash vapor at −255° F. [−160° C.] (stream


83


) and cold flash liquids (stream


79




a


). The cold flash liquids are produced by withdrawing a portion of the partially subcooled feed stream (stream


79


) from heat exchanger


58


and flash expanding the stream through an appropriate expansion device, such as expansion valve


59


, to slightly above the operating pressure of fractionation tower


17


. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream from −157° F. [−105° C.] to −162° F. [−108° C.] (stream


79




a


). The flash expanded stream


79




a


is then supplied to heat exchanger


58


as previously described.




The remaining portion of the partially subcooled feed stream is further subcooled in heat exchanger


58


to −170° F. [−112° C.] (stream


82


). It then enters a work expansion machine


60


in which mechanical energy is extracted from this intermediate pressure stream. The machine


60


expands the subcooled liquid substantially isentropically from a pressure of about 434 psia [2,992 kPa(a)] to the LNG storage pressure (18 psia [124 kPa(a)]), slightly above atmospheric pressure. The work expansion cools the expanded stream


82




a


to a temperature of approximately −255° F. [−160° C.], whereupon it is then directed to LNG storage tank


61


where the flash vapor resulting from expansion (stream


83


) is separated from the LNG product (stream


84


).




Tower bottoms stream


77


from LNG purification tower


56


is flash expanded to slightly above the operating pressure of fractionation tower


17


by expansion valve


57


. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream from −133° F. [−91° C.] to −152° F. [−102° C.] (stream


77




a


). The flash expanded stream


77




a


is then combined with warmed flash liquid stream


79




b


leaving heat exchanger


58


at −146° F. [−99° C.] to form a combined flash liquid stream (stream


80


) at −152° F. [−102° C.] which is supplied to heat exchanger


50


. It is heated to −87° F. [−66° C.] (stream


80




a


) as it supplies cooling to feed stream


71


and tower overhead vapor stream


74


as described earlier, and thereafter supplied to fractionation tower


17


at a lower mid-column feed point. If desired, stream


80




a


can be combined with flash expanded stream


35




a


described earlier and the combined stream supplied to a single lower mid-column feed point on the tower.




The flash vapor (stream


83


) from LNG storage tank


61


passes countercurrently to the incoming liquid in heat exchanger


58


where it is heated to −146° F. [−99° C.] (stream


83




a


). It then enters heat exchanger


50


where it is heated to 87° F. [31° C.] (stream


83




b


) as it supplies cooling to feed stream


71


and tower overhead stream


74


. Since this stream is at low pressure (15.5 psia [107 kPa(a)]), it must be compressed before it can be used as plant fuel gas. Compressors


63


and


65


(driven by supplemental power sources) with intercooler


64


are used to compress the stream (stream


83




e


). Following cooling in aftercooler


66


, stream


83




f


at 115 psia [793 kPa(a)] is combined with stream


37


to become the fuel gas for the plant (stream


85


).




The cold distillation vapor stream from the NGL recovery plant (stream


86


) is heated to 87° F. [31° C.] as it supplies cooling to feed stream


71


in heat exchanger


50


, becoming the second residue gas (stream


86




a


) which is then re-compressed in compressor


62


driven by a supplemental power source. The compressed second residue gas (stream


86




b


) combines with the compressed first residue gas (stream


43




b


) to form residue gas stream


38


. After cooling to 120° F. [49° C.] in discharge cooler


20


, the residue gas product (stream


38




a


) flows to the sales gas pipeline at 740 psia [5,102 kPa(a)].




A summary of stream flow rates and energy consumption for the process illustrated in

FIG. 5

is set forth in the following table:












TABLE V











(FIG. 5)






Stream Flow Summary - Lb. Moles/Hr [kg moles/Hr]
















Stream




Methane




Ethane




Propane




Butanes+




Total



















30




35,473




1,689




585




331




38,432






31




32,701




1,557




539




305




35,428






32




32,459




1,488




459




166




34,894






35




242




69




80




139




533






33




8,537




391




121




44




9,177






34




23,922




1,097




338




123




25,717






42




34,766




211




5




0




35,275






36




31,918




193




5




0




32,385






37




376




2




0




0




381






71




2,773




132




46




26




3,004






74




1,240




0




0




0




1,258






77




2,016




132




46




26




2,237






75




484




0




0




0




491






78




757




0




0




0




767






79




91




0




0




0




92






83




211




0




0




0




219






85




586




2




0




0




600






86




2,848




17




0




0




2,890






38




34,391




208




5




0




34,894






41




41




1,478




580




331




2,481






84




455




0




0




0




456














Recoveries*









Ethane




87.53%






Propane




99.11%






Butanes+




99.91%






LNG




50,041 gallons/D




[417.6




m


3


/D]







7,334 Lbs/H




[7,334




kg/H]






LNG Purity




99.78%






Power






1


st


Residue Gas Compression




14,664 HP




[24,107




kW]






2


nd


Residue Gas Compression




 1,661 HP




[2,731




kW]






Flash Vapor Compression




  289 HP




[475




kW]






Total Gas Compression




16,614 HP




[27,313




kW]











*(Based on un-rounded flow rates)













As can be seen by comparing the recovery levels and utility consumptions displayed in Table V for the

FIG. 5

process with those in Table I and Table IV for the FIG.


1


and

FIG. 4

processes, respectively, the recovery efficiency of the NGL recovery plant is undiminished when integrated with this embodiment of the present invention for co-production of LNG. The LNG production efficiency of this embodiment is not as high as for the preferred embodiment shown in

FIG. 4

due to the higher utility consumption of second residue gas compressor


62


that results from eliminating the work expansion machine


52


that was used to drive compressor


53


in the

FIG. 4

embodiment. The net increase in compression power for the

FIG. 5

process compared to the

FIG. 1

process is 2,097 HP [3,447 kW] to produce the nominal 50,000 gallons/D [417 m


3


/D] of LNG, giving a specific power consumption of 0.286 HP-H/Lb [0.470 kW-H/kg] for the

FIG. 5

process. Although this is about 40% higher than the preferred embodiment shown in

FIG. 4

, it is still lower than either of the prior art processes displayed in

FIGS. 2 and 3

. Further, as for the

FIG. 4

embodiment, the LNG purity is higher than for either prior art process, and carbon dioxide removal from the feed gas to the LNG production section is not required.




The choice between the

FIG. 4

embodiment and the

FIG. 5

embodiment of the present invention depends on the relative value of the simpler arrangement and lower capital cost of the

FIG. 5

embodiment versus the lower utility consumption of the

FIG. 4

embodiment. The decision of which embodiment of the present invention to use in a particular circumstance will often depend on factors such as plant size, available equipment, and the economic balance of capital cost versus operating cost.




EXAMPLE 3




In

FIGS. 4 and 5

, a portion of the plant inlet gas is processed using the present invention to co-produce LNG. Alternatively, the present invention can instead be adapted to process a portion of the plant residue gas to co-produce LNG as illustrated in FIG.


6


. The inlet gas composition and conditions considered in the process presented in

FIG. 6

are the same as those in

FIGS. 1 through 5

. Accordingly, the

FIG. 6

process can be compared with that of the FIG.


2


and

FIG. 3

processes to illustrate the advantages of the present invention, and can likewise be compared to the embodiments displayed in

FIGS. 4 and 5

.




In the simulation of the

FIG. 6

process, the inlet gas cooling, separation, and expansion scheme for the NGL recovery plant is essentially the same as that used in FIG.


1


. The main differences are in the disposition of the cold distillation stream (stream


42


) and the compressed and cooled third residue gas (stream


44




a


) produced by the NGL recovery plant. Note that the third residue gas (stream


44




a


) is divided into two portions, and only the first portion (stream


38


) becomes the residue gas product from the NGL recovery plant that flows to the sales gas pipeline. The other portion (stream


71


) is the feed gas for the LNG production section which employs the present invention.




Inlet gas enters the plant at 90° F. [32° C.] and 740 psia [5,102 kPa(a)] as stream


31


and is cooled in heat exchanger


10


by heat exchange with cool distillation vapor stream


36




a


at −66° F. [−55° C.], bottom liquid product at 52° F. [11° C.] (stream


41




a


) from demethanizer bottoms pump


18


, demethanizer reboiler liquids at 31° F. [0° C.] (stream


40


), and demethanizer side reboiler liquids at −42° F. [−41° C.] (stream


39


). The cooled stream


31




a


enters separator


11


at −44° F. [−42° C.] and 725 psia [4,999 kPa(a)] where the vapor (stream


32


) is separated from the condensed liquid (stream


35


).




The vapor (stream


32


) from separator


11


is divided into gaseous first and second streams,


33


and


34


. Stream


33


, containing about 26 percent of the total vapor passes through heat exchanger


12


in heat exchange relation with the cold distillation vapor stream


36


where it is cooled to −146° F. [−99° C.]. The resulting substantially condensed stream


33




a


is then flash expanded through expansion valve


13


to the operating pressure (approximately 306 psia [2,110 kPa(a)]) of fractionation tower


17


. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream. In the process illustrated in

FIG. 6

, the expanded stream


33




b


leaving expansion valve


13


reaches a temperature of −155° F. [−104° C.] and is supplied to fractionation tower


17


as the top column feed. The vapor portion (if any) of stream


33




b


combines with the vapors rising from the top fractionation stage of the column to form distillation vapor stream


42


, which is withdrawn from an upper region of the tower.




Returning to the gaseous second stream


34


, the remaining 74 percent of the vapor from separator


11


enters a work expansion machine


14


in which mechanical energy is extracted from this portion of the high pressure feed. The machine


14


expands the vapor substantially isentropically from a pressure of about 725 psia [4,999 kPa(a)] to the tower operating pressure, with the work expansion cooling the expanded stream


34




a


to a temperature of approximately −110° F. [−79° C.]. The expanded and partially condensed stream


34




a


is thereafter supplied as feed to fractionation tower


17


at an intermediate point. The separator liquid (stream


35


) is likewise expanded to the tower operating pressure by expansion valve


16


, cooling stream


35




a


to −75° F. [−59° C.] before it is supplied to fractionation tower


17


at a lower mid-column feed point.




The liquid product (stream


41


) exits the bottom of tower


17


at 47° F. [8° C.]. This stream is pumped to approximately 650 psia [4,482 kPa(a)] (stream


41




a


) in pump


18


and warmed to 83° F. [28° C.] (stream


41




b


) in heat exchanger


10


as it provides cooling to stream


31


. The distillation vapor stream forming the tower overhead at −151° F. [−102° C.] (stream


42


) is divided into two portions. One portion (stream


86


) is directed to the LNG production section. The remaining portion (stream


36


) passes countercurrently to the incoming feed gas in heat exchanger


12


where it is heated to −66° F. [−55° C.] (stream


36




a


) and heat exchanger


10


where it is heated to 72° F. [22° C.] (stream


36




b


). A portion of the warmed distillation vapor stream is withdrawn (stream


37


) to serve as part of the fuel gas for the plant, with the remainder becoming the first residue gas (stream


43


). The first residue gas is then re-compressed in two stages, compressor


15


driven by expansion machine


14


and compressor


19


driven by a supplemental power source to form the compressed first residue gas (stream


43




b


).




Turning now to the LNG production section that employs an alternative embodiment of the present invention, feed stream


71


enters heat exchanger


50


at 120° F. [49° C.] and 740 psia [5,102 kPa(a)]. The feed stream


71


is cooled to −120° F. [−84° C.] in heat exchanger


50


by heat exchange with cool LNG flash vapor (stream


83




a


), the distillation vapor stream from the NGL recovery plant at −151° F. [−102° C.] (stream


86


), flash liquids (stream


80


), and distillation column reboiler liquids at −142° F. [−97° C.] (stream


76


). (For the conditions stated, the feed stream pressure is above the cricondenbar, so no liquid will condense as the stream is cooled. Instead, the cooled stream


71




a


leaves heat exchanger


50


as a dense-phase fluid. For other processing conditions, it is possible that the feed gas pressure will be below its cricondenbar pressure, in which case the feed stream will be cooled to substantial condensation. In addition, it may be advantageous to withdraw the feed stream after cooling to an intermediate temperature, separate any condensed liquid that may have formed, and then expand the vapor stream in a work expansion machine prior to cooling the expanded stream to substantial condensation, similar to the embodiment displayed in FIG.


4


. In this case, there was little advantage to work expanding the dense-phase feed stream, so the simpler embodiment shown in

FIG. 6

was employed instead.) The resulting cooled stream


71




a


is then flash expanded through an appropriate expansion device, such as expansion valve


52


, to the operating pressure (420 psia [2,896 kPa(a)]) of distillation column


56


. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream. In the process illustrated in

FIG. 6

, the expanded stream


71




b


leaving expansion valve


52


reaches a temperature of −143° F. [−97° C.] and is thereafter supplied as feed to distillation column


56


at an intermediate point.




As for the FIG.


4


and

FIG. 5

embodiments of the present invention, distillation column


56


serves as an LNG purification tower, recovering nearly all of the carbon dioxide and the hydrocarbons heavier than methane present in its feed stream (stream


71




b


) as its bottom product (stream


77


) so that the only significant impurity in its overhead (stream


74


) is the nitrogen contained in the feed stream. Reflux for distillation column


56


is created by cooling and condensing the tower overhead vapor (stream


74


at −144° F. [−98° C.]) in heat exchanger


50


by heat exchange with cool LNG flash vapor at −155° F. [−104° C.] (stream


83




a


) and flash liquids at −156° F. [−105° C.] (stream


80


). The condensed stream


74




a


, now at −146° F. [−99° C.], is divided into two portions. One portion (stream


78


) becomes the feed to the LNG cool-down section. The other portion (stream


75


) enters reflux pump


55


. After pumping, stream


75




a


at −145° F. [−98° C.] is supplied to LNG purification tower


56


at a top feed point to provide the reflux liquid for the tower. This reflux liquid rectifies the vapors rising up the tower so that the tower overhead (stream


74


) and consequently feed stream


78


to the LNG cool-down section contain minimal amounts of carbon dioxide and hydrocarbons heavier than methane.




The feed stream for the LNG cool-down section (condensed liquid stream


78


) enters heat exchanger


58


at −146° F. [−99° C.] and is subcooled by heat exchange with cold LNG flash vapor at −255° F. [−159° C.] (stream


83


) and cold flash liquids (stream


79




a


). The cold flash liquids are produced by withdrawing a portion of the partially subcooled feed stream (stream


79


) from heat exchanger


58


and flash expanding the stream through an appropriate expansion device, such as expansion valve


59


, to slightly above the operating pressure of fractionation tower


17


. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream from −156° F. [−104° C.] to −160° F. [−106° C.] (stream


79




a


). The flash expanded stream


79




a


is then supplied to heat exchanger


58


as previously described.




The remaining portion of the partially subcooled feed stream is further subcooled in heat exchanger


58


to −169° F. [−112° C.] (stream


82


). It then enters a work expansion machine


60


which mechanical energy is extracted from this intermediate pressure stream. The machine


60


expands the subcooled liquid substantially isentropically from a pressure of about 414 psia [2,858 kPa(a)] to the LNG storage pressure (18 psia [124 kPa(a)]), slightly above atmospheric pressure. The work expansion cools the expanded stream


82




a


to a temperature of approximately −255° F. [−159° C.], whereupon it is then directed to LNG storage tank


61


where the flash vapor resulting from expansion (stream


83


) is separated from the LNG product (stream


84


).




Tower bottoms stream


77


from LNG purification tower


56


is flash expanded to slightly above the operating pressure of fractionation tower


17


by expansion valve


57


. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream from −141° F. [−96° C.] to −156° F. [−105° C.] (stream


77




a


). The flash expanded stream


77




a


is then combined with warmed flash liquid stream


79




b


leaving heat exchanger


58


at −155° F. [−104° C.] to form a combined flash liquid stream (stream


80


) at −156° F. [−105° C.] which is supplied to heat exchanger


50


. It is heated to −90° F. [−68° C.] (stream


80




a


) as it supplies cooling to feed stream


71


and tower overhead vapor stream


74


as described earlier, and thereafter supplied to fractionation tower


17


at a lower mid-column feed point. If desired, stream


80


a can be combined with flash expanded stream


35




a


described earlier and the combined stream supplied to a single lower mid-column feed point on the tower.




The flash vapor (stream


83


) from LNG storage tank


61


passes countercurrently to the incoming liquid in heat exchanger


58


where it is heated to −155° F. [−104° C.] (stream


83




a


). It then enters heat exchanger


50


where it is heated to 115° F. [46° C.] (stream


83




b


) as it supplies cooling to feed stream


71


and tower overhead stream


74


. Since this stream is at low pressure (15.5 psia [107 kPa(a)]), it must be compressed before it can be used as plant fuel gas. Compressors


63


and


65


(driven by supplemental power sources) with intercooler


64


are used to compress the stream (stream


83




e


). Following cooling in aftercooler


66


, stream


83




f


at 115 psia [793 kPa(a)] is combined with stream


37


to become the fuel gas for the plant (stream


85


).




The cold distillation vapor stream from the NGL recovery plant (stream


86


) is heated to 115° F. [46° C.] as it supplies cooling to feed stream


71


in heat exchanger


50


, becoming the second residue gas (stream


86




a


) which is then re-compressed in compressor


62


driven by a supplemental power source. The compressed second residue gas (stream


86




b


) combines with the compressed first residue gas (stream


44




a


) to form third residue gas stream


44


. After cooling to 120° F. [49° C.] in discharge cooler


20


, third residue gas stream


44




a


is divided into two portions. One portion (stream


71


) becomes the feed stream to the LNG production section. The other portion (stream


38


) becomes the residue gas product, which flows to the sales gas pipeline at 740 psia [5,102 kPa(a)].




A summary of stream flow rates and energy consumption for the process illustrated in

FIG. 6

is set forth in the following table:












TABLE VI











(FIG. 6)






Stream Flow Summary - Lb. Moles/Hr [kg moles/Hr]
















Stream




Methane




Ethane




Propane




Butanes+




Total



















31




35,473




1,689




585




331




38,432






32




35,201




1,611




495




178




37,835






35




272




78




90




153




597






33




9,258




424




130




47




9,951






34




25,943




1,187




365




131




27,884






42




36,684




222




6




0




37,222






36




34,784




211




6




0




35,294






37




376




2




0




0




382






71




1,923




12




0




0




1,951






74




1,229




0




0




0




1,242






77




1,173




12




0




0




1,193






75




479




0




0




0




484






78




750




0




0




0




758






79




79




0




0




0




80






83




216




0




0




0




222






85




592




2




0




0




604






86




1,900




12




0




0




1,928






38




34,385




208




6




0




34,889






41




41




1,478




579




331




2,482






84




455




0




0




0




456














Recoveries*









Ethane




87.52%






Propane




99.05%






Butanes+




99.91%






LNG




50,070 gallons/D




[417.9




m


3


/D]







7,330 Lbs/H




[7,330




kg/H]






LNG Purity




99.84%






Power






1


st


Residue Gas Compression




15,315 HP




[25,178




kW]






2


nd


Residue Gas Compression




 1,124 HP




[1,848




kW]






Flash Vapor Compression




  300 HP




[493




kW]






Total Gas Compression




16,739 HP




[27,519




kW]











*(Based on un-rounded flow rates)













Comparing the recovery levels displayed in Table VI for the

FIG. 6

process to those in Table I for the

FIG. 1

process shows that the recoveries in the NGL recovery plant have been maintained at essentially the same levels for both processes. The net increase in compression power for the

FIG. 6

process compared to the

FIG. 1

process is 2,222 HP [3,653 kW] to produce the nominal 50,000 gallons/D [417 m


3


/D] of LNG, giving a specific power consumption of 0.303 HP-H/Lb [0.498 kW-H/kg] for the

FIG. 6

process. Thus, the present invention has a specific power consumption that is lower than both the FIG.


2


and the

FIG. 3

prior art processes, with no need for carbon dioxide removal from the feed gas prior to entering the LNG production section like the prior art processes do.




This embodiment of the present invention, which uses the residue gas from the NGL recovery plant as its feed gas, has a lower LNG production efficiency that the FIG.


4


and

FIG. 5

embodiments which process a portion of the NGL recovery plant feed gas. This lower efficiency is mainly due to a reduction in the efficiency of the NGL recovery plant as a result of using a portion (stream


86


) of the cold distillation vapor (stream


42


) from the NGL recovery plant to supply some of the process refrigeration in the LNG production section. Although stream


86


is used in a similar fashion in the FIG.


4


and

FIG. 5

embodiments, the NGL recovery plants in these embodiments are processing a lesser quantity of the inlet gas since one portion (stream


71


in

FIGS. 4 and 5

) is fed to the LNG production section rather than to the NGL recovery plant. The loss in NGL recovery plant efficiency is reflected in the higher utility consumption of first residue gas compressor


19


shown in Table VI for the

FIG. 6

process versus the corresponding values in Table IV and Table V for the FIG.


4


and

FIG. 5

processes, respectively.




For most inlet gases, the plant inlet gas will be the preferred source of the feed stream for processing according to the present invention, as illustrated in Examples 1 and 2. In some cases, however, the NGL recovery plant residue gas may be the better choice as the source of the feed stream as illustrated in Example 3. For instance, if the inlet gas contains hydrocarbons that may solidify at cold temperatures, such as heavy paraffins or benzene, the NGL recovery plant can serve as a feed conditioning unit for the LNG production section by recovering these compounds in the NGL product. The residue gas leaving the NGL recovery plant will not contain significant quantities of heavier hydrocarbons, so processing a portion of the plant residue gas for co-production of LNG using the present invention can be accomplished in such instances without risk of solids formation in the heat exchangers in the LNG production and LNG cool-down sections. The decision of which embodiment of the present invention to use in a particular circumstance may also be influenced by factors such as inlet gas and residue gas pressure levels, plant size, available equipment, and the economic balance of capital cost versus operating cost.




OTHER EMBODIMENTS




One skilled in the art will recognize that the present invention can be adapted for use with all types of NGL recovery plants to allow co-production of LNG. The examples presented earlier have all depicted the use of the present invention with an NGL recovery plant employing the process disclosed in U.S. Pat. No. 4,278,457 in order to facilitate comparisons of the present invention with the prior art. However, the present invention is generally applicable for use with any NGL recovery process that produces a distillation vapor stream that is at temperatures of −50° F. [−46° C.] or colder. Examples of such NGL recovery processes are described and illustrated in U.S. Pat. Nos. 3,292,380; 4,140,504; 4,157,904; 4,171,964; 4,185,978; 4,251,249; 4,278,457; 4,519,824; 4,617,039; 4,687,499; 4,689,063; 4,690,702; 4,854,955; 4,869,740; 4,889,545; 5,275,005; 5,555,748; 5,568,737; 5,771,712; 5,799,507; 5,881,569; 5,890,378; 5,983,664; 6,182,469; reissue 33,408; and co-pending application No. 60/225,260 and Ser. No. 09/677,220, the full disclosures of which are incorporated by reference herein in their entirety. Further, the present invention is applicable for use with NGL recovery plants that are designed to recover only C


3


components and heavier hydrocarbon components in the NGL product (i.e., no significant recovery of C


2


components), or with NGL recovery plants that are designed to recover C


2


components and heavier hydrocarbon components in the NGL product but are being operated to reject the C


2


components to the residue gas so as to recover only C


3


components and heavier hydrocarbon components in the NGL product (i.e., ethane rejection mode of operation). This feedstock flexibility is due to LNG purification tower


56


shown in

FIGS. 4 through 6

, which ensures that only methane (and other volatile gases when present) enters the LNG cool-down section.




In accordance with this invention, the cooling of the feed stream to the LNG production section may be accomplished in many ways. In the processes of

FIGS. 4 through 6

, feed stream


71


, expanded stream


72




a


(for the

FIG. 4

process only), and distillation vapor stream


74


are cooled and condensed by a portion of the demethanizer overhead vapor (stream


86


) along with flash vapor, flash liquid, and tower liquids produced in the LNG production and LNG cool-down sections. However, demethanizer liquids (such as stream


39


) could be used to supply some or all of the cooling and condensation of streams


71


and


74


in

FIGS. 4 through 6

and/or stream


72




a


in

FIG. 4

, as could the flash expanded stream


73




a


as shown in FIG.


7


. Further, any stream at a temperature colder than the stream(s) being cooled may be utilized. For instance, a side draw of vapor from the demethanizer could be withdrawn and used for cooling. Other potential sources of cooling include, but are not limited to, flashed high pressure separator liquids and mechanical refrigeration systems. The selection of a source of cooling will depend on a number of factors including, but not limited to, feed gas composition and conditions, plant size, heat exchanger size, potential cooling source temperature, etc. One skilled in the art will also recognize that any combination of the above cooling sources or methods of cooling may be employed in combination to achieve the desired feed stream temperature(s).




In accordance with this invention, external refrigeration may be employed to supplement the cooling available to the feed gas from other process streams, particularly in the case of a feed gas richer than that used in Examples 1 and 2. The use and distribution of LNG tower liquids for process heat exchange, and the particular arrangement of heat exchange for feed gas cooling, must be evaluated for each particular application, as well as the choice of process streams for specific heat exchange services.




It will also be recognized that the relative amount of the feed stream


71


that is directed to the LNG cool-down section (stream


78


) and that is withdraw to become flash liquid (stream


79


) will depend on several factors, including feed gas pressure, feed gas composition, the amount of heat which can economically be extracted from the feed, and the quantity of horsepower available. More feed to the LNG cool-down section may increase LNG production while decreasing the purity of the LNG (stream


84


) because of the corresponding decrease in reflux (stream


75


) to the LNG purification tower. Increasing the amount that is withdrawn to become flash liquid reduces the power consumption for flash vapor compression but increases the power consumption for compression of the first residue gas by increasing the quantity of recycle to demethanizer


17


in stream


79


. Further, as shown by the dashed lines in

FIGS. 4 through 7

, the flash liquid could be eliminated completely from heat exchanger


58


(at the expense of increasing the quantity of flash vapor in stream


83


and increasing the power consumption for flash vapor compression).




Subcooling of condensed liquid stream


78


in heat exchanger


58


reduces the quantity of flash vapor (strum


83


) generated during expansion of the stream to the operating pressure of LNG storage tank


61


. This generally reduces the specific power consumption for producing the LNG by reducing the power consumption of flash gas compressors


63


and


65


. However, as illustrated in FIG.


8


and by the dashed lines in

FIGS. 4 through 7

, some circumstances may favor reducing the capital cost of the facility by eliminating heat exchanger


58


in its entirety. As also illustrated in FIG.


8


and by the dashed lines in

FIGS. 4 through 7

, the quantity of tower bottoms stream


77


may be such that using the flash expanded stream


77




a


for heat exchange may not be warranted. In such cases, the flash expanded stream


77




a


could be supplied at an appropriate feed location directly to fractionation tower


17


as shown.




Although individual am expansion is depicted in particular expansion devices, alternative expansion means may be employed where appropriate. For example, conditions may warrant work expansion of the substantially condensed feed stream (stream


71




a


in

FIGS. 5

,


6


, and


8


) or the LNG purification tower bottoms stream (stream


77


in FIGS.


4


through


8


). Further, isenthalpic flash expansion may be used in lieu of work expansion for subcooled liquid stream


82


in

FIGS. 4 through 7

or condensed liquid stream


73


in

FIG. 8

(with the resultant increase in the relative quantity of flash vapor produced by the expansion, increasing the power consumption for flash vapor compression), or for vapor stream


72


in

FIGS. 4 and 7

(with the resultant increase in the power consumption for compression of the second residue gas).




While there have been described what are believed to be preferred embodiments of the invention, those skilled in the art will recognize that other and further modifications may be made thereto, e.g. to adapt the invention to various condition, types of feed or other requirements without departing from the spirit of the present invention.



Claims
  • 1. A process for liquefying a natural gas stream containing methane and heavier hydrocarbon components wherein(a) said natural gas stream is withdrawn from a cryogenic natural gas processing plant recovering natural gas liquids; (b) said natural gas stream is cooled under pressure sufficiently to partially condense it; (c) a distillation stream is withdrawn from said plant to supply at least a portion of said cooling of said natural gas stream; (d) said partially condensed natural gas stream is separated into a liquid stream and a vapor stream, whereupon said liquid stream is directed to said plant; (e) said vapor stream is expanded to an intermediate pressure and further cooled at said intermediate pressure to condense it; (f) said condensed expanded stream is directed to a distillation column at a mid-column feed point; (g) a liquid distillation stream is withdrawn from a lower region of said distillation column and directed to said plant; (h) a vapor distillation stream is withdrawn from an upper region of said distillation column and cooled under pressure to condense at least a portion of it and form a condensed stream; (i) said condensed stream is divided into at least two portions, with a first portion directed to said distillation column at a top feed position; (j) a second portion of said condensed stream is expanded to lower pressure to form said liquefied natural gas stream; and (k) the temperature of said partially condensed natural gas stream and the quantities and temperatures of said feed streams to said distillation column are effective to maintain the overhead temperature of said distillation column at a temperature whereby the major portion of said heavier hydrocarbon components is recovered in said liquid stream and said liquid distillation stream.
  • 2. A process for liquefying a natural gas stream containing methane and heavier hydrocarbon components wherein(a) said natural gas stream is withdrawn from a cryogenic natural gas processing plant recovering natural gas liquids; (b) said natural gas stream is cooled under pressure sufficiently to partially condense it; (c) a distillation stream is withdrawn from said plant to supply at least a portion of said cooling of said natural gas stream; (d) said partially condensed natural gas stream is separated into a liquid stream and a vapor stream; (e) said liquid stream is expanded to an intermediate pressure, heated, and thereafter directed to said plant; (f) said vapor stream is expanded to an intermediate pressure and further cooled at said intermediate pressure to condense it; (g) said condensed expanded stream is directed to a distillation column at a mid-column feed point; (h) a liquid distillation stream is withdrawn from a lower region of said distillation column and directed to said plant; (i) a vapor distillation stream is withdrawn from an upper region of said distillation column and cooled under pressure to condense at least a portion of it and form a condensed stream; (j) said condensed stream is divided into at least two portions, with a first portion directed to said distillation column at a top feed position; (k) a second portion of said condensed stream is expanded to lower pressure to form said liquefied natural gas stream; and (l) the temperature of said partially condensed natural gas stream and the quantities and temperatures of said feed streams to said distillation column are effective to maintain the overhead temperature of said distillation column at a temperature whereby the major portion of said heavier hydrocarbon components is recovered in said liquid stream and said liquid distillation stream.
  • 3. A process for liquefying a natural gas stream containing methane and heavier hydrocarbon components wherein(a) said natural gas stream is withdrawn from a cryogenic natural gas processing plant recovering natural gas liquids; (b) said natural gas stream is cooled under pressure to substantially condense it; (c) a distillation stream is withdrawn from said plant to supply at least a portion of said cooling of said natural gas stream; (d) said condensed natural gas stream is expanded to an intermediate pressure and directed to a distillation column at a mid-column feed point; (e) a liquid distillation stream is withdrawn from a lower region of said distillation column and directed to said plant; (f) a vapor distillation stream is withdrawn from an upper region of said distillation column and cooled under pressure to condense at least a portion of it and form a condensed stream; (g) said condensed stream is divided into at least two portions, with a first portion directed to said distillation column at a top feed position; (h) a second portion of said condensed stream is expanded to lower pressure to form said liquefied natural gas stream; and (i) the quantities and temperatures of said feed streams to said distillation column are effective to maintain the overhead temperature of said distillation column at a temperature whereby the major portion of said heavier hydrocarbon components is recovered in said liquid distillation stream.
  • 4. The improvement according to claim 1, 2, or 3 wherein said second portion of said condensed stream is cooled before being expanded to said lower pressure.
  • 5. The improvement according to claim 4 wherein a third portion of said condensed stream is withdrawn, expanded to an intermediate pressure, and directed in heat exchange relation with said second portion of said condensed stream to supply at least a portion of said cooling.
  • 6. The improvement according to claim 1, 2, or 3 wherein said liquid distillation stream is expanded and heated before being directed to said plant.
  • 7. The improvement according to claim 4 wherein said liquid distillation stream is expanded and heated before being directed to said plant.
  • 8. The improvement according to claim 5 wherein said liquid distillation stream is expanded and heated before being directed to said plant.
  • 9. An apparatus for liquefying a natural gas stream containing methane and heavier hydrocarbon components comprising(a) first withdrawing means connected to a cryogenic natural gas processing plant recovering natural gas liquids to withdraw said natural gas stream; (b) first heat exchange means connected to said first withdrawing means to receive said natural gas stream and cool it under pressure sufficiently to partially condense it; (c) second withdrawing means connected to said plant to withdraw a distillation stream, said second withdrawing means being further connected to said first heat exchange means to heat said distillation stream and thereby supply at least a portion of said cooling of said natural gas stream; (d) separation means connected to said first heat exchange means to receive said partially condensed natural gas stream and to separate it into a vapor stream and a liquid stream, whereupon said liquid stream is directed to said plant; (e) first expansion means connected to said separation means to receive said vapor stream and expand it to an intermediate pressure, said first expansion means being further connected to said first heat exchange means to supply said expanded vapor stream to said first heat exchange means, with said first heat exchange means being adapted to further cool said expanded vapor stream at said intermediate pressure to substantially condense it; (f) a distillation column connected to said first heat exchange means to receive said substantially condensed expanded stream at a mid-column feed point, with said distillation column adapted to withdraw a liquid distillation stream from a lower region of said distillation column and direct it to said plant, and to withdraw a vapor distillation stream from an upper region of said distillation column, said distillation column being further connected to said first heat exchange means to supply said vapor distillation stream to said first heat exchange means, with said first heat exchange means being adapted to cool said vapor distillation stream under pressure, thereby to condense at least a portion of it and form a condensed stream; (g) dividing means connected to said first heat exchange means to receive said condensed stream and divide it into at least two portions, said dividing means being further connected to said distillation column to direct a first portion of said condensed stream to said distillation column at a top feed position; (h) second expansion means connected to said dividing means to receive a second portion of said condensed stream and expand it to lower pressure to form said liquefied natural gas stream; and (i) control means adapted to regulate the temperature of said partially condensed natural gas stream and the quantities and temperatures of said feed streams to said distillation column to maintain the overhead temperature of said distillation column at a temperature whereby the major portion of said heavier hydrocarbon components is recovered in said liquid stream and said liquid distillation stream.
  • 10. An apparatus for liquefying a natural gas stream containing methane and heavier hydrocarbon components comprising(a) first withdrawing means connected to a cryogenic natural gas processing plant recovering natural gas liquids to withdraw said natural gas stream; (b) first heat exchange means connected to said first withdrawing means to receive said natural gas stream and cool it under pressure sufficiently to partially condense it; (c) second withdrawing means connected to said plant to withdraw a distillation stream, said second withdrawing means being further connected to said first heat exchange means to heat said distillation stream and thereby supply at least a portion of said cooling of said natural gas stream; (d) separation means connected to said first heat exchange means to receive said partially condensed natural gas stream and to separate it into a vapor stream and a liquid stream; (e) first expansion means connected to said separation means to receive said vapor stream and expand it to an intermediate pressure, said first expansion means being further connected to said first heat exchange means to supply said expanded vapor stream to said first heat exchange means, with said first heat exchange means being adapted to further cool said expanded vapor stream at said intermediate pressure to substantially condense it; (f) a distillation column connected to said first heat exchange means to receive said substantially condensed expanded stream at a mid-column feed point, with said distillation column adapted to withdraw a liquid distillation stream from a lower region of said distillation column and direct it to said plant, and to withdraw a vapor distillation stream from an upper region of said distillation column, said distillation column being further connected to said first heat exchange means to supply said vapor distillation stream to said first heat exchange means, with said first heat exchange means being adapted to cool said vapor distillation stream under pressure, thereby to condense at least a portion of it and form a condensed stream; (g) dividing means connected to said first heat exchange means to receive said condensed stream and divide it into at least two portions, said dividing means being further connected to said distillation column to direct a first portion of said condensed stream to said distillation column at a top feed position; (h) second expansion means connected to said dividing means to receive a second portion of said condensed stream and expand it to lower pressure to form said liquefied natural gas stream; (i) third expansion means connected to said separation means to receive said liquid stream and expand it to an intermediate pressure, said third expansion means being further connected to said first heat exchange means to heat said expanded liquid stream and thereby supply at least a portion of said cooling, with said expanded heated liquid stream thereafter directed to said plant; and (j) control means adapted to regulate the temperature of said partially condensed natural gas stream and the quantities and temperatures of said feed streams to said distillation column to maintain the overhead temperature of said distillation column at a temperature whereby the major portion of said heavier hydrocarbon components is recovered in said liquid stream and said liquid distillation stream.
  • 11. An apparatus for liquefying a natural gas stream containing methane and heavier hydrocarbon components comprising(a) first withdrawing means connected to a cryogenic natural gas processing plant recovering natural gas liquids to withdraw said natural gas stream; (b) first heat exchange means connected to said first withdrawing means to receive said natural gas stream and cool it under pressure to substantially condense it; (c) second withdrawing means connected to said plant to withdraw a distillation stream, said second withdrawing means being further connected to said first heat exchange means to heat said distillation stream and thereby supply at least a portion of said cooling of said natural gas stream; (d) first expansion means connected to said first heat exchange means to receive said substantially condensed stream and expand it to an intermediate pressure; (e) a distillation column connected to said first expansion means to receive said expanded stream at a mid-column feed point, with said distillation column adapted to withdraw a liquid distillation stream from a lower region of said distillation column and direct it to said plant, and to withdraw a vapor distillation stream from an upper region of said distillation column, said distillation column being further connected to said first heat exchange means to supply said vapor distillation stream to said first heat exchange means, with said first heat exchange means being adapted to cool said vapor distillation stream under pressure, thereby to condense at least a portion of it and form a condensed stream; (f) dividing means connected to said first heat exchange means to receive said condensed stream and divide it into at least two portions, said dividing means being further connected to said distillation column to direct a first portion of said condensed stream to said distillation column at a top feed position; (g) second expansion means connected to said dividing means to receive a second portion of said condensed stream and expand it to lower pressure to form said liquefied natural gas stream; and (h) control means adapted to regulate the quantities and temperatures of said feed streams to said distillation column to maintain the overhead temperature of said distillation column at a temperature whereby the major portion of said heavier hydrocarbon components is recovered in said liquid distillation stream.
  • 12. The improvement according to claim 9 or 11 wherein a second heat exchange means is connected to said dividing means to receive said second portion of said condensed stream and cool it, said second heat exchange means being further connected to supply said cooled second portion to said second expansion means.
  • 13. The improvement according to claim 10 wherein a second heat exchange means is connected to said dividing means to receive said second portion of said condensed stream and cool it, said second heat exchange means being further connected to supply said cooled second portion to said second expansion means.
  • 14. The improvement according to claim 12 wherein a third withdrawing means is connected to said second heat exchange means to withdraw a third portion of said condensed stream from said cooled second portion, said third withdrawing means being further connected to supply said third portion to a third expansion means and expand it to an intermediate pressure, said third expansion means being further connected to supply said expanded third portion to said second heat exchange means to supply at least a portion of said cooling.
  • 15. The improvement according to claim 13 wherein a third withdrawing means is connected to said second heat exchange means to withdraw a third portion of said condensed stream from said cooled second portion, said third withdrawing means being further connected to supply said third portion to a fourth expansion means and expand it to an intermediate pressure, said fourth expansion means being further connected to supply said expanded third portion to said second heat exchange means to supply at least a portion of said cooling.
  • 16. The improvement according to claim 9 or 11 wherein a third expansion means is connected to said distillation column to receive said liquid distillation stream and expand it, said third expansion means being further connected to said first heat exchange means to heat said expanded liquid distillation stream and thereby supply at least a portion of said cooling, with said expanded heated liquid distillation stream thereafter directed to said plant.
  • 17. The improvement according to claim 10 wherein a fourth expansion means is connected to said distillation column to receive said liquid distillation stream and expand it, said fourth expansion means being further connected to supply said expanded liquid distillation stream to said first heat exchange means to heat said expanded liquid distillation stream and thereby supply at least a portion of said cooling, with said expanded heated liquid distillation stream thereafter directed to said plant.
  • 18. The improvement according to claim 12 wherein a third expansion means is connected to said distillation column to receive said liquid distillation stream and expand it, said third expansion means being further connected to supply said expanded liquid distillation stream to said first heat exchange means to heat said expanded liquid distillation stream and thereby supply at least a portion of said cooling, with said expanded heated liquid distillation stream thereafter directed to said plant.
  • 19. The improvement according to claim 13 wherein a fourth expansion means is connected to said distillation column to receive said liquid distillation stream and expand it, said fourth expansion means being further connected to supply said expanded liquid distillation stream to said first heat exchange means to heat said expanded liquid distillation stream and thereby supply at least a portion of said cooling, with said expanded heated liquid distillation stream thereafter directed to said plant.
  • 20. The improvement according to claim 14 wherein a fourth expansion means is connected to said distillation column to receive said liquid distillation stream and expand it, said fourth expansion means being further connected to supply said expanded liquid distillation stream to said first heat exchange means to heat said expanded liquid distillation stream and thereby supply at least a portion of said cooling, with said expanded heated liquid distillation stream thereafter directed to said plant.
  • 21. The improvement according to claim 15 wherein a fifth expansion means is connected to said distillation column to receive said liquid distillation stream and expand it, said fifth expansion means being further connected to supply said expanded liquid distillation stream to said first heat exchange means to heat said expanded liquid distillation stream and thereby supply at least a portion of said cooling, with said expanded heated liquid distillation stream thereafter directed to said plant.
US Referenced Citations (35)
Number Name Date Kind
3292380 Bucklin Dec 1966 A
4140504 Campbell et al. Feb 1979 A
4157904 Campbell et al. Jun 1979 A
4171964 Campbell et al. Oct 1979 A
4185978 McGalliard et al. Jan 1980 A
4251249 Gulsby Feb 1981 A
4278457 Campbell et al. Jul 1981 A
4519824 Huebel May 1985 A
4617039 Buck Oct 1986 A
4687499 Aghili Aug 1987 A
4689063 Paradowski et al. Aug 1987 A
4690702 Paradowski et al. Sep 1987 A
4710214 Sharma et al. Dec 1987 A
4854955 Campbell et al. Aug 1989 A
4869740 Campbell et al. Sep 1989 A
4889545 Campbell et al. Dec 1989 A
4895584 Buck et al. Jan 1990 A
RE33408 Khan et al. Oct 1990 E
5275005 Campbell et al. Jan 1994 A
5363655 Kikkawa et al. Nov 1994 A
5555748 Campbell et al. Sep 1996 A
5566554 Vijayaraghavan et al. Oct 1996 A
5568737 Campbell et al. Oct 1996 A
5600969 Low Feb 1997 A
5615561 Houshmand et al. Apr 1997 A
5755155 Buesing May 1998 A
5771712 Campbell et al. Jun 1998 A
5795380 Billings et al. Aug 1998 A
5799507 Wilkinson et al. Sep 1998 A
5881569 Campbell et al. Mar 1999 A
5890378 Rambo et al. Apr 1999 A
5983664 Campbell et al. Nov 1999 A
6109061 Gaskin Aug 2000 A
6182468 Stothers Feb 2001 B1
6182469 Campbell et al. Feb 2001 B1
Foreign Referenced Citations (2)
Number Date Country
9847839 Oct 1998 WO
0033006 Jun 2000 WO
Non-Patent Literature Citations (2)
Entry
Finn, Adrian, J., Grant L. Johnson, and Terry R. Tomlinson, “LNG Technology for Offshore and Mid-Scale Plant”, Proceedings of the Seventy-Ninth Annual Convention of the Gas Processors Association, pp. 429-450, Atlanta, Georgia, Mar. 13-15, 2000.
Price, Brian C., “LNG Production for Peak Shaving Operations”, Proceedings of the Seventy-Eighth Annual Convention of the Gas Processors Association, pp. 273-280, Nashville, Tennessee, Mar. 1-3, 1999.