The above and other aspects, features and advantages of the present invention will become apparent from the following description of embodiments given in conjunction with the accompanying drawings, in which:
Hereinafter, various embodiments of the present invention will be described in detail with reference to the accompanying drawings.
The LNG storage tank 10 constructed as described above comprises corner structures 20 installed at inner corners of the tank, anchor structures 30 installed on a floor surface of the tank at regular intervals, and planar structures 40 each being interposed and slidably installed between the corner structures 20 or between the anchor structures 30. At this time, each of the corner structures 20, the anchor structures 30 and the planar structures 40 is beforehand manufactured as a unit module and then assembled in the storage tank 10. Further, the first sealing wall 50 is installed on the structure to seal the insulation wall in a liquid-tight manner, so that a space capable of storing liquefied natural gas (LNG) therein can be defined within an inner space of the tank.
Referring to
In the illustrated storage tank, each of the anchor structures 30 comprises an anchor support rod 36, a fixing member 37 located at the lower side, a second anchor insulation wall 32 and a first anchor insulation wall 34. Further, the second sealing walls 23 and 43 lie between the first and second anchor insulation walls 34 and 32. One end of the anchor support rod 36 is connected to the first sealing wall 50 while the other end is connected to an inner wall 12 of the ship's hull through the fixing member 37.
Furthermore, the first sealing wall 50 is welded to the upper end of the anchor support rod 36 such that the first sealing wall 50 can be coupled with the anchor structure 30. In addition, the anchor structure 30 is located at a connecting point of the adjacent planar structures 40 to connect the planar structures to each other, and the planar structures 40 are fixed to the inner wall 12 or a bulkhead 14 of the hull constituting the storage tank 10. Further, the fixing member 37 of the anchor structure 30 is installed around the anchor support rod 36.
Alternatively, dual-layered sealing wall may be used in a storage tank. The dual-layered sealing wall has an inner layer membrane in direct contact into a liquefied natural gas and an outer layer membrane in direct contact with the exterior of the inner layer membrane, to thereby improving the safety. In this configuration, however, since the inner and outer layer membranes closely contact each other, there may be problems in that friction may occur between the inner and outer layer membranes in a case where there is a motion of the liquefied natural gas in the storage tank and that the breakage of one membrane may directly result in the breakage of the other membrane. Therefore, such an exemplary dual-layered sealing wall may not be employed in the storage tank installed in a ship in which the liquefied natural gas can be moved.
In a liquefied natural gas storage tank according to an embodiment, liquefied natural gas (LNG) is stored in a high pressure and extremely low temperature state. To this end, the LNG storage tank is constructed such that shock resistance and liquid-tight characteristics are firmly maintained. The LNG storage tank mounted to an automobile or ship, in which cargo is movable, is different from the ground storage tank with little motion in that suitable countermeasures may be prepared against mechanical stress due to the cargo motion in the storage tank. However, the LNG storage tank mounted to a ship to which the countermeasures against the mechanical stress are provided can also be applied to the ground storage tank. Thus, the configuration of an LNG storage tank mounted to a ship will be described herein by way of example.
As shown in
Each inner space can be formed into a storage tank 10 for receiving and storing cryogenic liquid such as liquefied natural gas. An embodiment of the present invention is illustrated in such a manner that the storage tank 10 is installed at the second space from the left in the ship 1. Here, an interior wall or sealing wall 150 is provided to seal liquefied natural gas stored in the storage tank 10 in a liquid-tight manner. The sealing wall 150 can contact liquefied natural gas and formed with a corrugated portion on the sealing wall to cope with change in temperature according to the loading and unloading of cryogenic liquefied natural gas. In an embodiment, the sealing wall 150 is connected to the inner wall 12 or the bulkhead 14 of the ship 1 by means of a plurality of anchor structures 130. Accordingly, the sealing wall 150 cannot be freely moved with respect to the ship's hull. Further, insulation wall structures 120, 130 and 140 serving as a module for forming a layer of the insulation wall are placed between the sealing wall 150 and the inner wall 12 of the hull constituting the tank 10. The anchor structure 130 will be illustrated as one of the insulation wall modules. The insulation wall structures 120, 130 and 140 are placed between the sealing wall 150 and the inner wall 12 or bulkhead 14 of the hull to define an insulation wall for insulating the storage tank 10 from the outside. In addition, the insulation wall structures 120, 130 and 140 include the corner structures 120 placed at the corner, the anchor structures 130 installed on the inner wall of the hull at regular intervals and the planar structures 140 installed between the corner structures 120 or between the anchor structures 130, each of which is formed into a module. As described above, the sealing wall 150 are mainly supported by the anchor structures 130, and the planar structures 140 support only weight of the liquefied natural gas applied to the sealing wall and are not in a direct coupling relationship with the anchor structures.
Further, the sealing wall 150 contacting with liquefied natural gas are installed on the insulation structures 130 and 140. The sealing wall 150 have a dual-layer structure comprising a first sealing wall layer or first layer 151 which directly contact the liquefied natural gas and a second sealing wall layer or second layer 155 which is installed below the first sealing wall layer 151. The first sealing wall layer 151 and the second sealing wall layer 155 are disposed such that they are spaced from each other by a predetermined height.
In addition, the sealing wall 150 are formed with a plurality of corrugated portions P (convex portions in the drawing) to prevent the sealing wall layers from being damaged when it is contracted and expanded. The corrugated portions P are contracted or expanded by the temperature change at the time of loading and unloading the liquefied natural gas to prevent the damage of the sealing wall 150 caused by thermal deformation applied to the sealing wall. Further, the sealing wall layers of the sealing wall 150 are fixed to an end of the anchor support rod 136 of the anchor structure 130 through a welding process.
Although it has been illustrated in
The planar structure 140 comprises a planar lower plate 141 having face-to-face contact with the inner wall 12, a planar insulation 142 and a planar upper plate 143 formed on the planar insulation. Here, the planar lower and upper plates 141 and 143 are made of a plywood material, while the planar insulation 142 is made of polyurethane foam or reinforced polyurethane foam.
In the illustrated embodiment, each of the anchor structures 130 comprises a lower anchor plate 131, anchor insulation 132 formed on the lower anchor plate 131 and made of polyurethane foam or reinforced polyurethane foam, and an upper anchor plate 133 coupled onto the upper side of the anchor insulation.
The lower anchor plate 131 is mechanically secured to the inner wall 12. To this end, the plurality of stud pins 138 are installed on the inner wall 12 at regular intervals and an anchor base plate 137 with penetrating portions corresponding to the stud pins is coupled with the stud pins 138. The lower anchor plate 131 is mechanically secured to the inner wall 12 by means of the nuts 139 coupled with the stud pins 138. The anchor lower plate 131 is installed on the anchor base plate 137, a predetermined recessed space is formed at a central portion of the anchor lower plate 131, and a rod support cap 134 is installed in the recessed space. The rod support cap 134 may be provided with a nut 134a or formed integrally with a nut structure. The aforementioned anchor support rod 136 is coupled vertically with the rod support cap 134. To this end, the rod support cap 134 has a cap section provided with the nut 134a and a flange section extending radially from a lower end of the cap section. In addition, the flange section is interposed between the corresponding stud pins 138 and nuts 139 such that the flange section can be further secured. A lower structure of the anchor support rod 136 may be the same as those disclosed in Korean Patent Nos. 499711 and 499713.
In addition, the anchor insulation 132 made of polyurethane foam or reinforced polyurethane foam is inserted around the anchor support rod 136 and then placed on the lower anchor plate 131. The upper anchor plate 133 is fixedly attached to an upper surface of the anchor insulation 132 through which the anchor support rod 136 is inserted. And, a coupler or upper cap 135, which forms the interior sealing wall along with the first layer and the second layer, is placed at a central portion of the upper anchor plate 133 and then coupled to an upper end of the anchor support rod 136.
In the illustrated embodiment, the sealing wall 150 contacting the liquefied natural gas is installed on the insulation wall structures 130 and 140. Further, the walls of the sealing wall 150 are fixedly welded to one side of the upper cap 135. The layers of the sealing wall 150 also have a plurality of corrugated portions P (convex portions in the figures) which are formed on the wall to prevent the sealing wall from being damaged when the sealing wall layers are contracted or expanded by the temperature change or motion of the insulation wall structures.
Here, the sealing wall 150 may have a multiple-layer structure in which the plurality of sealing wall layers are stacked one above another. Preferably, the sealing wall has a dual-layer structure comprising the first and second sealing wall layers 151 and 155. That is, the sealing wall 150 comprises the second sealing wall layer 155 placed on the insulation wall structures 130 and 140 and the first sealing wall layer 151 installed over the second sealing wall layer 155, and the first and second sealing wall layers 151 and 155 are fixedly welded to the upper cap 135. To this end, a step portion 135a corresponding to the height of the sealing wall 150 may be formed at the upper cap 135 and the first and second sealing wall layers 151 and 155 are fixedly welded to the step portion 135a. That is, the second sealing wall layer 155 is fixedly welded to a lower end of the step portion 135a and the first sealing wall layer 151 is fixedly welded to an upper end of the step portion 135a. As described above, since a distance between the first and second sealing wall layers 151 and 155 is kept constant due to the step portion 135a, mechanical stress caused by the interference between the two sealing wall layers is not generated.
As described above, the insulation walls 120, 130 and 140 are formed through the combination of the corner structures 120, the anchor structures 130 and the planar structures 140 which will become insulation walls. In addition, the fabrication method, shape and material of the insulation wall disclosed in U.S. Pat. Nos. 4,747,513, 5,501,359, 5,586,513 and 6,035,795, PCT International Publication WO 89/09909, Japanese Patent Laid-Open Publication Nos. 2000-038190 and 2001-122386 may be used, and all of the publications are incorporated herein by reference. An embodiment of the present invention can employ an insulation wall and timber to be attached which are disclosed in the aforementioned patents. Although it has been described in the embodiment of the present invention that the anchor structure 130 is mechanically fixed to the inner wall 12 of the hull 1, the anchor structure may be fixed to the inner wall 12 by welding the anchor support rod 136 directly to the inner wall 12. In addition, a lower structure of the anchor structure 130 may be provided by using the structure disclosed in detail in Korean Patent Nos. 499711 and 499713.
In the meantime, the sealing wall 150 can be slightly expanded and contracted according to the temperature change. In such a case, the first and second sealing wall layers 151 and 155 may be damaged by their mutual contact, and thus, it is preferable to provide the structure in which the walls do not contact each other. To this end, a supporting board or spacer 160 is installed between the first and second sealing wall layers 151 and 155 such that a spaced distance between the two walls can be kept constant.
At this time, the supporting board or substance 160 is preferably provided over all the regions of the sealing wall 150 except the corrugated portions. In an embodiment, the supporting board 160 may be provided over a portion of the regions of the sealing wall. In certain embodiments, the supporting board 160 is formed of any material that can substantially maintain the distance between the first layer and the second layer. In one embodiment, the supporting board 160 may be formed of a material selected from the group consisting of plywood, polyurethane foam (or reinforced polyurethane foam), and a composite material in which plywood is bonded to at least one of top and bottom surfaces of polyurethane foam (or reinforced polyurethane foam).
As described above, since the first and second sealing wall layers 151 and 155 are spaced apart from each other, the temperature of the second sealing wall layer 155 can be kept higher than the temperature of the first sealing wall layer 151 in direct contact with the cryogenic liquefied natural gas. Therefore, since the durability of the second sealing wall layer 155 is enhanced, the life of the second sealing wall layer 155 may be longer than that of the first sealing wall layer 151.
Further, even though the hull and thus the storage tank are deformed due to waves, no direct friction occurs between the first and second sealing wall layers. Further, even though damage occurs on any one of the sealing wall layers due to impact applied thereto, it is possible to prevent the damage from being propagating directly to the other sealing wall layer. Furthermore, reference numeral “170” indicates a leveling material, which is placed between the inner wall 12 of the hull 1 and the bottom surface of the insulation wall structure at the time of installing the insulation wall structure such that the insulation wall structure can be kept at a constant height with respect to the inner wall 12.
Although it has been described in one embodiment of the present invention that first and second layers of the sealing wall are made of corrugated stainless steel for use in a GTT Mark-III type, invar steel for use in GTT No. 96 is also applicable. In certain embodiment, the first and second layers can be formed of any metallic material. Further, the sealing wall layers made of invar steel can be closely installed in a multiple-layer structure, and thus, the same effect as when the sealing member is made of stainless steel can be obtained.
As described above, the liquefied natural gas storage tank having an improved insulation structure according to embodiments of the present invention is configured to comprise an insulation wall and sealing wall layers of a multiple-layer structure, i.e. a dual-layer sealing wall structure. The configuration of the storage tank according to embodiments can be simplified, the sealing reliability can be increased, the assembling work for the tank can also be easily made, and the sealing reliability can be increased. Further, there is an advantage in that an installation structure of the storage tank installed in a ship for transporting liquefied natural gas in a cryogenic liquid state can be further simplified to thereby reducing an assembling process.
Although embodiments of the present invention has been described in connection with the accompanying drawings, the present invention is not limited thereto and it is apparent to those skilled in the art that various modifications and changes can be made thereto without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0035743 | Apr 2006 | KR | national |