Hydrocarbons that are gaseous at room temperature such as 20° C., are often transported by tanker as LNG (liquified natural gas) at −160° C. and atmospheric pressure. Other cold forms during transport are hydrates (gas entrapped in ice) and cooled CNG (compressed natural gas that has been cooled well below 0° C. to reduce the pressure required to keep it liquid). At the tanker's destination, the LNG (or other cold gas) may be offloaded, heated and pressurized, and carried by pipeline to an onshore station for distribution (or possibly for use as by a power plant at the onshore station).
Proposed prior art offloading and regas/injection systems (for heating and pressuring LNG) include a fixed platform extending up from the sea floor to a height above the sea surface and containing facilities that heat and pump the cold hydrocarbons and containing crew facilities (beds, toilet, food storage, etc.). The heating is sufficient to transform LNG into gas that is warm enough (usually at least 0° C.) to avoid ice formations around noncryogenic hoses and pipes that carry the gas. The platform also carries a pump system that pumps the gas to a high enough pressure to pump it along a sea floor pipeline to an onshore station, and/or to a cavern and maintain a high pressure in the cavern so gas can flow therefrom to an onshore station. A platform that is large enough to carry such gas heating and pumping systems can be expensive even in shallow waters.
It is possible to greatly lower costs by the use of a floating weathervaning structure such as a barge with a turret near the bow, that is moored by catenary chains to the sea floor, to carry the regas and pressurizing equipment and crew quarters, and to moor the tanker. However, in shallow depths (e.g. less than about 70 meters), drifting of the vessel tends to lift the entire length of chain off the sea floor. This can result in a sudden increase in chain tension rather that a gradual increase that is required. A system of minimum cost, for mooring a tanker, offloading LNG from the tanker, heating and pressuring the LNG, accommodating any crew, and flowing the gaseous hydrocarbons to an onshore station, in a sea location of shallow depth, would be of value.
In accordance with one embodiment of the invention, applicant provides a system for use in shallow depths such as no more than 70 meters, for mooring a tanker carrying cold hydrocarbons (well below 0° C., and usually LNG), regasing the hydrocarbons (heating cold hydrocarbons, usually to above 0° C., as to gasify LNG), pressurizing the now-gaseous hydrocarbons, holding a crew that operates and maintains the equipment, and carrying the gaseous hydrocarbons to an onshore installation, all in a system of minimum cost. In one system, applicant provides a floating structure such as a barge, and a simple tower whose only major function is to permanently moor the barge while allowing it to weathervane. The tanker is attached to the barge so they weathervane together. The barge may be attached to the tower by a yoke that can pivot about a vertical axis on the tower to allow the barge to weathervane, and the tower carries a fluid swivel to pass fluids while the barge weathervanes. A regas unit, a pressurizing unit and crew quarters, are all located on the barge, and not on the tower.
In another system, a fixed structure in the form of a breakwater, provides a shallow sea location at which the tanker can be moored , while the tanker is protected from prevailing winds and waves. Regas and pressurizing units as well as crew quarters lie on the breakwater. The breakwater has a length at least 60%, and preferably at least 100%, of the tanker length, has a width no more that one-fourth as much as its length and extends a plurality of meters above the sea surface.
The regas and pressurizing units can be electrically energized, and electric power is carried between an onshore electric power station and the structure on which the regas and pressurizing units lie.
The novel features of the invention are set forth with particularity in the appended claims. The invention will be best understood from the following description when read in conjunction with the accompanying drawings.
The tanker carries cold hydrocarbons that are cooled well below 0° C., and which must be heated to at least 0° C. before they can be pressurized and flowed though a pipeline to shore. The most common type of such cold hydrocarbons is LNG (liquified natural gas) which has been cooled to −160° C. so it is liquid at atmospheric pressure. Another type is hydrates wherein gas is trapped in ice, and still another type is CNG (compressed natural gas) that is both cooled and pressurized. Before such cooled hydrocarbons can be passed though ordinary (noncryogenic) pipes, they must be heated to at least 0° C. to prevent ice formations about the pipes.
By mounting the regas and injection units 32, 34 and crew quarters 36 on the barge 14 rather than on the mooring tower 12, applicant greatly reduces the cost of the tower while only moderately increasing the cost of the barge. The fact that the regas unit lies on the barge, which is moored to the tanker, allows LNG on the tanker to be offloaded in less time and with less expensive equipment (especially cryogenic hoses), than if the LNG had to pass from the tanker to the barge and then to a regas unit on the tower before being regassed. The fact that the yoke absorbs sudden large mooring forces as when a large wave impacts the barge and tanker, by allowing the barge and tanker to move away from the tower and to then pull them back, avoids the use of a massive and expensive tower. The tower is devoid of machinery (other than the fluid swivel) and operates without an onboard crew or crew quarters.
The mooring towers 12 and 12A of
A tanker is moored to the barge and LNG on the tanker is unloaded, perhaps once in every five days. It may take one day to offload the tanker, during which time some of the LNG is stored in LNG tanks on the barge, while some of the LNG is regassed, pressurized and flowed to the onshore station and/or cavern 54. It may take an additional day to regas and pressurize the LNG stored in the tanks on the barge. During the other three days before the tanker arrives again, the power plant on the barge can continue to be operated to produce electricity, and that electricity is delivered to the shore-based facility 124. Such power, delivered for perhaps three days out of every five, supplements electrical power produced by onshore power plants. In
A cryogenic hose or pipe 200 transfers very cold (e.g. −160° C.) hydrocarbons from the tanker to equipment 202 placed on the top of, or on the inside of the breakwater. The equipment includes a regas unit that heats the cold gaseous (when heated) hydrocarbons, and pumps that pressurize the gas. The pressurized gas is pumped though a pipe 204 that carries it to a reservoir pipe 206 that leads to a cavern 210 (that lies under the sea or under an onshore location), and/or to a sea floor pipe 212 that carries gas past a shoreline 214 to an onshore installation 216.
Thus, the invention provides gas offloading and pressurizing systems for transferring LNG or other cold hydrocarbons whose temperature is well below 0° C., from a tanker to an onshore facility and/or a cavern, at an offshore location of shallow depth (no more than 70 meters). A system can includes a fixed tower with a mooring swivel at the top, and a floating structure such as a barge that is moored to the tower to weathervane about the tower. The floating structure is connected to the tanker so the combination of floating structure and tanker weathervanes as a combination. Regas facilities for heating cold hydrocarbons (below 0° C.) and pressurizing facilities for pumping the resulting gas, as well as any crew quarters, are located on the floating structure where they can be placed at minimum cost. This allows the use of a tower of minimum size and cost. The floating structure can be a barge that is permanently moored to a tower yoke, or a direct attachment floating structure that fixes itself to the tanker while the tanker is moored to the tower. An electric power cable can extend between the floating structure and an onshore power system. Electrical energy can be carried from the shore to the floating structure to power electrically energized equipment, or electrical energy can be carried from an electricity generator on the floating structure to an onshore electric distributing facility when such electricity is not needed on the floating structure.
Another gas offloading and pressurizing system for shallow depths, includes a breakwater to which a tanker is moored, which shields the tanker from winds and waves and which also carries regas and pressurizing equipment.
Although particular embodiments of the invention have been described and illustrated herein, it is recognized that modifications and variations may readily occur to those skilled in the art, and consequently, it is intended that the claims be interpreted to cover such modifications and equivalents.
Applicant claims priority from U.S. provisional applications Ser. No. 60/515,767 filed Oct. 30, 2003, Ser. No. 60/550,133 filed Mar. 4, 2004, and Ser. No. 60/559,989 filed Apr. 5, 2004.
Number | Name | Date | Kind |
---|---|---|---|
3541622 | Harlow | Nov 1970 | A |
4317474 | Kentosh | Mar 1982 | A |
4516942 | Pedersen | May 1985 | A |
4567843 | d'Hautefeuille | Feb 1986 | A |
4665856 | Pedersen | May 1987 | A |
5511905 | Bishop et al. | Apr 1996 | A |
5878814 | Breivik et al. | Mar 1999 | A |
6003603 | Breivik et al. | Dec 1999 | A |
6230809 | Korsgaard | May 2001 | B1 |
6244920 | de Baan | Jun 2001 | B1 |
6517286 | Latchem | Feb 2003 | B1 |
6739140 | Bishop et al. | May 2004 | B1 |
20050106959 | Storvoll et al. | May 2005 | A1 |
Number | Date | Country |
---|---|---|
597595 | May 1994 | EP |
Number | Date | Country | |
---|---|---|---|
20050095068 A1 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
60559989 | Apr 2004 | US | |
60550133 | Mar 2004 | US | |
60515767 | Oct 2003 | US |