Load-bearing three-dimensional structure

Information

  • Patent Grant
  • 8505258
  • Patent Number
    8,505,258
  • Date Filed
    Friday, February 8, 2008
    16 years ago
  • Date Issued
    Tuesday, August 13, 2013
    11 years ago
Abstract
A load-bearing three-dimensional structure including a skeletal structure formed by a sheet of material having a plurality of bend lines, each bend line including a plurality of folding displacements, wherein the sheet of material is bent along the bend lines into a box-section; and a reinforcing member configured for substantially surrounding a portion of the skeletal structure when bent into a box-section to reinforce the structural integrity of the skeletal structure. A method of manufacturing the three-dimensional structure is also disclosed.
Description
TECHNICAL FIELD

This invention relates, in general, to the designing and precision folding of sheets of material and the manufacture of three-dimensional load-bearing structures therefrom. More particularly, the present invention relates to ways of designing, manufacturing, and preparing two-dimensional sheets material in order to enable precision folding into a three-dimensional structure having high-strength and fatigue-resistance for use with industrial machinery and other load-bearing structures.


BACKGROUND OF THE INVENTION

Industrial machinery such as backhoes, loaders, harvesters, and material handlers utilize linkage arms to connect the main body of the machinery to the material handling components. Linkage arms manipulate loaders, shovels, and other components in myriad applications such as hauling, digging, grading, and lifting. The arms allow materials to be moved relative to the body of the respective machinery. Other machinery utilize arms to support plows or blades for groundwork.


Machinery such as backhoe loaders and forest machines use multiple arms as a linkage to perform digging work. One end of the linkage is connected to an engine or motor. The other end is connected to a digging shovel. Each individual arm has a pivot for mounting to another linkage arm and mounting points for controls rods or struts. The struts control each arm in the linkage such that the shovel can be positioned and forced into the ground. As such, the linkage arms must have extremely high strength and fatigue resistance at the pivot points and throughout the structure.


Although the linkage arm may be manufactured as a solid beam, a solid beam is cumbersome, heavy, and does not make economical use of materials. The traditional approach to the manufacture of cost-effective linkage arms has been to weld multiple planar pieces of steel together to form a three-dimensional structure. The planar pieces may be welded together along their edges or faces to form load-bearing structures with minimal use of material. In applications calling for a more pleasing cosmetic appearance, the arm may be configured as a box-beam that appears as a solid object but has a hollow center. Other arms are essentially load beams with cross-sections shaped like an “I” or other such shapes.


As compared to solid arms, these arms support high load forces with a fraction of the material use and weight. Such arms, however, have several drawbacks. In particular, these linkage arms and support beams require significant welding along all the edges of the component parts which presents problems during the manufacturing and assembly processes.


The use of complex welding in the assembly process adds significant logistical problems and cost-concerns to the manufacturing process. For example, the manufacturing process for welded beams requires a long weld line to be formed along the edges of the sheets of stock material. The weld lines are the key to the structural integrity of the linkage arm and thus require a skilled welder and time.


Modern robotics can limit welding errors and decrease manufacturing time; however, such robots require significant investment and add manufacturing complexity. Welding robots are costly and cumbersome. Significant space must be allotted to the welding area and safety region around the robots. Given the size of the equipment needed for high-temperature welding, once the body shop is configured, it can not be easily moved. Furthermore, every time an engineering change is made, additional time and money investment will be required to reconfigure the manufacturing process.


Having the welding done away from the assembly line also adds to manufacturing time. Once the welds are finished, the piece must be cooled and possibly treated before being handled or moved to the assembly line.


In addition to manufacturing issues, welded beams present shipping, assembly, and repair concerns. Because the arms require skilled labor and heavy machinery to manufacture, they must be manufactured near the machine assembly line or shipped as an assembled unit. In comparison to shipping and handling of sheet stock, shipping an entire linkage arm greatly increases costs and logistical problems.


Additionally, in the field, repair of linkage arms and beams can be more inefficient than the original manufacturing process. Shipping an entire linkage arm can be costly. For this reason, when many simple structures are needed, parts are typically shipped to the site and welding is done on-site. However, this requires a highly-skilled welder to be at the site. A problem also arises from the handling and accurate positioning of the several parts in place when welding or bonding them together. The entire process can take significant time and extends downtime when a linkage arm fails.


Recently, another approach previously applied exclusively to small three-dimensional structures has gained interest as an alternative to welded structures. Such designs involve the manufacture of three-dimensional structures with conventional tools from a two-dimensional sheet. The sheet material is bent along a first line and then bent again along subsequent bend lines with reference to the previous bend lines.


The folded sheets of the Related Applications often have been used to provide three-dimensional structures including, but not limited to, electrical appliances, electronic component chassis for computers, audio receivers, televisions, motor vehicles, autos, aerospace, appliances, industrial, and other goods.


Folding technology offers many advantages over welding. In particular, it allows for easier and quicker assembly without the use of skilled labor. It also allows the part to be shipped and moved as a sheet material and later assembled quickly on-location.


Advances in folding technology have allowed the use of thicker sheet material, which greatly increases the strength of the resulting three-dimensional structure. Thus, a stable three-dimensional structure can be formed without the need for extensive welding and cumbersome tools.


One common approach to folding sheets has been to employ sheets of materials with regions designed to control the location of the bends in the sheet material by slitting or grooving the material along a bend line. U.S. Pat. No. 6,640,605 to Gitlin et al. and U.S. Pat. No. 4,628,661 to St. Louis describe exemplars of such designs.


Using a tool such as a cutting edge, thinned regions or slits may be introduced to a sheet of material to promote bending of the material about a bend line. Alternating series of slits are cut parallel to and laterally offset from a desired bend line to promote bending of the material. The material between the overlapping slits forms bending webs or straps therebetween. As the material is bent, the straps twist and plastically deform to allow the sheet to be folded along the slit portion. Since the slits can be laid out on a flat sheet of material precisely, the cumulative error from multiple bending decreases.


In addition to other limitations discussed in detail in the applications mentioned above, the slit- and groove-based bending of sheet material described by Gitlin et al. and St. Louis have several problems under loading. The stresses in the bending straps of these designs are substantial and concentrated. If the material is grooved such that the slit does not fully penetrate the material as taught by St. Louis, then the stresses on the backside or bottom web of the groove are also substantial and concentrated. As the material is bent and the straps twist, micro tears form in the strap region. Thus, the resulting material is overstressed and failures can occur along the bending region.


Additionally, groove and slit designs similar to the designs taught by Gitlin et al. and St. Louis can not withstand significant load forces. In fact, St. Louis and Gitlin et al. admittedly apply only to minimally loaded three-dimensional structures such as appliance frames, housings, or covers. In fact, Gitlin et al. and other conventional methods are directed to bending plastic or paperboard. Even if thicker material were combined with the designs of Gitlin et al. and St. Louis, the resulting three-dimensional structure could not support significant loads.


These designs are limited in application for several reasons. First, as a result of the stresses on the straps as they are twisted during bending, they are prone to failure if any significant force is applied to the structure. Second, these configurations also lack support for the faces. Loads on the structure are held primarily by the bent straps because the edges of the slits are forced away from an opposing face during bending.


In order to strengthen the strap region, the straps can be increased in length by increasing the overlap of alternating slits. As the strap length increases, however, the force of the straps pulling the sheet against an opposing face decreases. Thus, such conventional slit designs require a trade-off between reduction of stresses in the strap regions and maintaining edge-to-face contact to support the structure.


Another approach to slitting sheet material that provides greater structural integrity is described in U.S. patent Ser. No. 10/931,615, to Durney et al., hereby incorporated by reference. This design provides for a groove defining a bending strap at one end that extends obliquely across the bend line. The straps are defined so as to promote edge-to-face contact during bending. In contrast to slit designs such as Gitlin et al., the strap extends obliquely across the bend line and bends rather than twists or torques during bending. The contact of the edges with an adjacent face also provides support to the three-dimensional structure's sides far greater than the slit and groove designs taught by Gitlin et al. and St. Louis. The diverging end portions and location of the bend straps further reduces stress concentrations over such slit and groove designs.


Folded sheets generally have free or adjacent planar segments that are folded into abutting or overlapping relation and then affixed and/or joined together to stabilize the resulting structure against unfolding and to otherwise promote rigidity. The previous techniques for affixing and/or joining the planar segments of the folded sheets together have varied considerably, depending upon the application. In many instances, adjoining planar segments on either side of a bend line have been three-dimensionally fixed utilizing a third, intersecting planar segment or other intersecting structure to limit the degrees of freedom and otherwise promote rigidity between the adjoining planar segments.


Nonetheless, even this design in combination with a thick sheet material does not have sufficient strength to support high loads for use as a linkage arm or load beam. A linkage arm for industrial machinery such as hoes, loaders, and handlers generally must withstand tens of thousands of foot-pounds torque while moving in three-dimensions with minimal fatigue during the life of its use. For example, a typical digging application call for swing load capacity of over 50,000 ft-lb. swing torque at 10 rpm and load capacity of 6000 lbs.


Prior art sheet material designed to be bent into a three-dimensional structure have several limitations preventing their use in such high-load applications. First, folding displacements in general lack the rigidity of a weld. The structure is thus prone to wobble or collapse when high forces are applied.


Folding technology also does not easily allow the formation of shapes such as an “I-beam,” which has a superior ratio of strength to material use than prior folding technology shapes. Furthermore, prior art sheet designs can not accommodate load-bearing junctions, such as pivot mounts, for attachment to other structures. With respect to typical linkage arms for industrial machinery, the structure must have a portion at one end with a bore for fastening to a contiguous structure such as another linkage arm or shovel. Prior art designs do not have the strength at each end to support a shaft or fastener imposing a high lateral and torsional forces.


What is needed is a sheet material which overcomes the above and other disadvantages of known folding displacements in high-load applications. In particular, what is needed is a three-dimensional structure with the advantages of a sheet material with folding displacements but the structural integrity of a welded or solid beam.


BRIEF SUMMARY OF THE INVENTION

In summary, one aspect of the present invention is directed to a load-bearing three-dimensional structure including a skeletal structure formed by a sheet of material having a plurality of bend lines, each bend line including a plurality of folding displacements, wherein the sheet of material is bent along the bend lines into a box-section; and a reinforcing member configured for substantially surrounding a portion of the skeletal structure when bent into a box-section to reinforce the structural integrity of the skeletal structure.


Each folding displacement may have a central portion substantially parallel to and offset laterally from a desired bend line and at least one end portion extending away from the bend line. Distal ends of two opposing walls of the skeletal structure may extend beyond the box-section and include concentric bores configured to receive a shaft therethrough.


The reinforcing member is formed by a sheet of material including a plurality of bend lines, each bend line including a plurality of folding displacements. Further, the number of bend lines may correspond to the number of corners of the skeletal structure. The folding displacement may have a central portion substantially parallel to and offset laterally from a desired bend line.


The skeletal structure may be configured to form a flush surface when folded. The reinforcing member further including face portions configured for mutual engagement when the reinforcing member is folded. The reinforcing member may be further configured to form a flush surface when folded.


The three-dimensional structure further including a pair of support plates, the support plates configured for mounting to opposite peripheral faces of one of the reinforcing member and skeletal structure at the distal end. Each support plate may have non-linear inner edge configured for dispersion of stress forces.


A reinforcing plate configured for interconnecting two or more three-dimensional structures may also be provided. Outer edges of the reinforcing plate are shaped for concentrating stress forces away from an interconnecting region of the three-dimensional structures. The bend lines of the three-dimensional structure form four faces and a flange section.


The three-dimensional structure may further include shin members, wherein each shin member is configured for impact resistance and disposed along a corner edge of one of the reinforcing member and skeletal structure. The three-dimensional structure may further include a gusset having peripheral tongue members, the gusset being configured to be wrapped along a peripheral edge by the skeletal structure, wherein the skeletal structure includes grooves for receiving the tongue members.


In one aspect of the present invention the three-dimensional structure is a linkage arm, wherein the linkage arm is part of a digging arm assembly. In another aspect, the three-dimensional structure is a leg, wherein the leg is linkage arm in a digging arm assembly.


In one aspect of the present invention, the skeletal structure and reinforcing member are composed of the same material.


In another aspect of the present invention, a load-bearing three-dimensional structure comprises a skeletal structure formed by a sheet of material having a plurality of slit portions defining bend lines, each slit portion including a plurality of slits, each slit having a central portion substantially parallel to and offset laterally from a desired bend line and with at least one end portion extending away from the bend line, the sheet of material being bent along the bend lines into a box-section, wherein the skeletal structure has at least one flange section, the flange section has a non-linear edge configured for dispersion of stresses along multiple axes or directions in a plane formed by engagement of the flange section with the skeletal structure. The flange section may be affixed by a weld. The skeletal structure has two flange sections, each flange section has a non-linear edge and complementary shape to the edge of the other flange section. One flange section may overlap the other flange section. The first flange section may be affixed to the other along a non-linear edge. The non-linear edge may have a wave-shape.


Yet another aspect of the present invention is directed to a method for fabricating a load-bearing three-dimensional structure, the method comprising the steps of providing a skeletal structure formed by a sheet of material having a plurality of bend lines, each bend line including a plurality of folding displacements; folding the skeletal structure into a three-dimensional structure along the bend lines; fastening a free end of the skeletal structure; providing a reinforcing member having bend lines corresponding to the skeletal structure; folding the reinforcing member around the skeletal structure; and fastening a free end of the reinforcing member.


The three-dimensional structure of the present invention has other features and advantages which will be apparent from or are set forth in more detail in the accompanying drawings, which are incorporated in and form a part of this specification, and the following Detailed Description of the Invention, which together serve to explain the principles of the present invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a folded three-dimensional structure in accordance with the present invention, the structure illustrated as linkage arm on a front hoe.



FIG. 2 is an exploded perspective view of the linkage arm of FIG. 1.



FIG. 3 is a side view of the linkage arm of FIG. 1.



FIG. 4 is a top view of the linkage arm of FIG. 1, the structure shown as a two-dimensional, unfolded sheet.



FIG. 5 is an enlarged side view of the pivot plates of FIG. 2.



FIG. 6 is a top view of a skeletal structure in accordance with another embodiment of the present invention, the structure shown as a two-dimensional, unfolded sheet.



FIG. 7 is a top view of a reinforcing member in accordance with another embodiment of the present invention, the structure shown as a two-dimensional, unfolded sheet detached from the skeletal structure of FIG. 5.



FIG. 8 is a perspective view of the skeletal structure of FIG. 6, the structure shown folded into three-dimensions.



FIG. 9 is a perspective view of the three-dimensional structure of FIG. 5, the reinforcing member of FIG. 7 shown around the skeletal structure of FIG. 6.



FIGS. 10A-10C are perspective views of skeletal structures, optional gussets, and a reinforcing member in conjunction with a linkage arm similar to that of FIG. 1 in accordance with the present invention.



FIG. 11 is a perspective view of optional shin members in conjunction with a linkage arm similar to that of FIG. 1 in accordance with the present invention.



FIG. 12 is a perspective view of another embodiment of a three-dimensional structure in accordance with the present invention, the skeletal structure illustrated in conjunction with the support plates and pivot mounts of FIGS. 1-4 and 5.





DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to the preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to those embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims.


Turning now to the drawings, wherein like components are designated by like reference numerals throughout the various figures, attention is directed to FIG. 1 which illustrates a three-dimensional linkage arm formed from a substantially two-dimensional single sheet of material in accordance with the present invention, which structure is generally designated by the numeral 30. While the illustrated embodiment is a high load-bearing linkage arm for a digging arm assembly, one will appreciate that a number of three-dimensional structures including, but not limited to, load-bearing beams, housings, covers, electronics components, artistic sculptures, chassis, stands, electrical appliances, enclosures, furniture, and electromagnetic shields may be formed in accordance with the present invention. In general, parts and assemblies for use in the automotive, construction, aerospace, packaging, industrial, metal and other fields may also be formed in accordance with the present invention.


In one embodiment, a front hoe or digging shovel, generally designated 32, includes tracks 33, machine body 35, digging arm assembly 37, and shovel 39. The cab body includes a cab 40 and the primary engine and control components.


The digging arm assembly has two linkage arms 30 and 42 connected at pivot mount 44 by a mechanical fastener or other known methods. A first linkage arm 30 is formed by two beam structures joined at an angle and connected to body 35 at one end. A pair of control rods 46 fixed to the top portion of reinforcing plates 47 control the rotation of linkage arm 30. A second pair of control rods 46b fixed to the first linkage arm at one end and an end of the second linkage arm 42 at another end control the rotation of the arm. A third pair of control rods 46c control the rotation of shovel 39 that digs into the earth.


Referring now to FIGS. 2-5, linkage arm 30 generally includes two three-dimensional structures 49, reinforcing plates 47, and pivot mounts 44 at each end. Three-dimensional structures 49 are positioned back-end to back-end and reinforced with the reinforcing plates 47 (best seen in FIG. 3). The three-dimensional structures are bonded by welding, fasteners, brazing, adhesives, or other means known in the art.


Structures 49 may include additional support members such as cross-braces, corners braces, support or spot welds, integral support structures, gussets and the like. Further, FIGS. 10 and 11 illustrate gussets and shin members used in conjunction with the three-dimensional structure in accordance with the present invention. Likewise, the dimensions and configuration of the reinforcing plates may be varied to modify the structural and dimensional characteristics of the assembled three-dimensional linkage arm as desired for a particular application.


The reinforcing plate is fixed to the structures 49 in the same manner and provides additional support to the junction between the two structures. Reinforcing plate 47 has a non-linear edge configured for dispersion of stress forces. In the illustration, the reinforcing plate has rounded serifs or pointed regions for concentrating stress forces away from the central junction area. One will appreciate that the reinforcing plate can have a variety of shapes to advantageously disperse stress forces away from the junction region. Additionally, one will appreciate that structures 49 and reinforcing plate 47 can be joined by methods other than welding including, but not limited to, adhesives, fasteners, and interlocking members. In one embodiment, the thicknesses of the sheets of material forming the structure reinforcing plate are substantially equal. However, one will appreciate that the thickness of the reinforcing plate may be less than or greater than that of the structure. Preferably, the thickness of the sheets of material is between ⅛″ and ½″.


One will appreciate that the configuration and assembly of the three-dimensional structure may vary depending on application requirements. Other configurations include, but are not limited to, various-shaped supporting structures and plates, interior supports members, and modification of the skeletal structure shape.


Three-dimensional structures 49 are formed from a two-dimensional monolithic sheet of material 51 shown in FIG. 4. In one embodiment, the sheet of material has nine planar segments, wherein each adjoining planar segment is separated by a respective bend line 53 populated by one or more folding displacements 54. The planar segments include four faces 56, a flange section 58, three front faces 60, and a back face 61. One will appreciate that three, four, five or more planar segments may be provided depending upon the desired overall geometry of the resulting three-dimensional structure.


In forming the three-dimensional structure, the sheet of material is bent along the bend lines. In one embodiment, flange section 63 folds over a face section. In one embodiment, the flange section engages with an opposing flange section to form a flush face thereby forming a mid-plane closure 100 (best seen in FIG. 2).


The folding displacements, bend-controlling structures, and other principles which control precise sheet material folding are set forth in more detail in Applicant's prior U.S. patent application Ser. Nos. 11/411,440 filed Apr. 25, 2006, 11/384,216 filed Mar. 16, 2006, 11/374,828 filed Mar. 13, 2006, 11/357,934 filed Feb. 16, 2006, 11/290,968 filed Nov. 29, 2006, 11/180,398 filed Jul. 12, 2005, 11/080,288 filed Mar. 14, 2005, 10/985,373 filed Nov. 9, 2004, 10/952,357 filed Sep. 27, 2004, 10/931,615 filed Aug. 31, 2004, 10/861,726 filed Jun. 4, 2004 (now U.S. Pat. No. 7,032,426), 10/821,818 filed Apr. 8, 2004, 10/795,077 filed Mar. 3, 2004, 10/672,766 filed Sep. 26, 2003, 10/256,870 filed Sep. 26, 2002 (now U.S. Pat. No. 6,877,349); and 09/640,267 filed Aug. 17, 2000 (now U.S. Pat. No. 6,481,259), the entire content of which applications and patents is incorporated herein by this reference. In one embodiment, the depths of folding displacements 54 in structure 49 and reinforcing plate 47 are substantially equal. In one embodiment, the width of the folding displacements in structure 49 and reinforcing plate 47 are substantially equal. One skilled in the art will appreciate that the width and depth of the folding displacements and thickness of the sheets may vary depending on the application.


As described below, such an industrial arm may require mounting holes, particular bends, and the like that may interfere with the spacing and orientation of the folding displacements. Thus, the method described in U.S. application Ser. No. 10/931,615 referenced above may, among other things, be used to vary the position and orientation of each folding displacement to accommodate load-bearing junctions, bends, holes, mounting plates and similar structures in the sheets of material. Such variation has particular applicability to industrial arms and the like where the formed three-dimensional structure will be placed in operational configuration with other structures.


As the sheet of material is provided with folding displacements 54, the sheet of material may be precisely bent along bend line 53 in a manner that is described in great detail in Applicant's above-mentioned prior applications. Sheet 51 may be folded along the bend lines by hand or with the assistance of a grip, press, or similar conventional tools.


As best seen in FIG. 5, front faces 60 fold up to provide additional reinforcement for pivot mounts 44. Front faces 60 abut optional tabs 65 and also partially close the end of the structure. As best seen in FIG. 2, back face 61 folds to provide an optional mounting face for structure 49 to a complementary three-dimensional structure.


In another embodiment, additional support plates 67 may optionally be provided at the ends of the three-dimensional structure to increase the strength of pivot mounts 44 (shown in FIG. 12). Such support plates may be necessary where the loads at the pivot ends of the three-dimensional structure are especially high.


When the sheet is folded into a three-dimensional structure, faces 56 form a box section. “Box section” shall mean a three-dimensional structure having a polygonal cross-section or a polyhedron. Thus, although the illustrated three-dimensional structure is shown with a rectangular box section, other shapes and cross-sections may be used in accordance with the present invention. The box section may also be formed with a large number of edges, curvilinear portions, or spherical portions. In one embodiment, the structure is formed by the folding along four bend lines formed by folding displacements 54. Alternatively, one or more of the bend lines may be preformed or formed by welding. The shape dimensions, and configuration of the box section will vary depending upon the application.


Once the faces are folded along the bend lines, flange section 58 encloses the box section and may be bonded to a first face by a weld or other known bonding or fastening methods. In one embodiment, an edge of flange section 58 has a wavy shape. In the case of welding or bonding, the wavy edge provides for dispersion of stress forces on structure 49 by reducing corners and straight edges. One will appreciate that other edge shapes may be used, including but not limited to, arcuate shapes or shapes for concentrating stress forces away from the weld. Additionally, the flange section and an opposite engaging face may be configured to interlock with each other or to fold together to form a flush surface.


At distal ends of three-dimensional structures 49, the pivot mounts fastened to opposite faces of the three-dimensional structures 49 provide location points for attachment to the machine body 35 or other linkage arms 42. The pivot mounts extend beyond ends of structure 49 and have bores dimensioned for insertion of a shaft or fastener therethrough. Similar to reinforcing plate 47, the pivot mounts are shaped for dispersion of stresses. The pivot mounts can be mounted to three-dimensional structures 49 by fasteners or other methods known in the art. Given the high loads exerted by the digging action on the pivot mounts, the pivot mounts are preferably greater than approximately 2″ steel and may be thicker than 3″. The thickness and dimensions of the pivot mounts will vary by application.


Turning now to FIGS. 6-8, in another embodiment of the present invention, three-dimensional structure 49a is similar to three-dimensional structure 49 described above but includes reinforcing member 68 with integral pivot holes. Like reference numerals have been used to describe like components.


In one embodiment, the sheet material is 10-gauge sheet steel but other suitable thickness material may be used. One will appreciate that other sheet materials of different materials including other metals, composites, and plastics can be utilized in accordance with the present invention. For example, materials that may be used include, but are not limited to, stainless steel, aluminum, titanium, magnesium, and other suitable metals and alloys. The material type and thickness primarily depends on the specific application.


Turning to FIG. 6, a monolithic sheet of material 51a is shown. The sheet of material includes five planar segments, wherein each adjoining planar segment is separated by a respective bend line 53a populated by one or more folding displacements 54a. Upon folding the sheet of material, a skeletal structure 70 is formed wherein the planar segments form four faces 56a and a flange section 58a. One will appreciate that three, four, five or more planar segments may be provided depending upon the desired overall geometry of the resulting three-dimensional structure.


In contrast to the first embodiment, pivot holes 72 are integrally formed with sheet of material 51a. As best seen in FIG. 8, when the sheet material is in a folded configuration, a box-section 74 is formed. Extending portions 75, which oppose each other, have additional face length such that concentric pivot holes 72 lie beyond the box-section. This extending portion of the faces having pivot holes 72 serve a similar function to pivot mounts 44.


In one embodiment the folding displacements are slits; however, one will appreciate that any of the folding displacements and bend-controlling elements disclosed in the above-mentioned applications and other suitable means may be utilized. Folding displacements 54a and other bend-controlling structures may be formed by various processes including stamping, punching, cutting, roll forming, embossing, and other suitable means.


As sheet of material 51 is provided with folding displacements 54a, the sheet of material may be precisely bent along bend line 53a in a manner that is described in great detail in Applicant's above-mentioned prior applications. In one embodiment, the folding displacements each have a central portion 77 substantially parallel to and laterally offset from bend line 53a. End portions 79 of the central portion extend away from the bend line in an arcuate shape.


A first face 81 of the sheet of material is configured to engage with a flange section 58a in a folded position. As best seen in FIG. 8, the first face and flange section have complementary edge shapes such that they form a flush face on the bottom of the three-dimensional structure. Spot welds or other fastening methods bond the faces together and lock the three-dimensional structure. The non-linear shape of the engagement-region serves to disperse stress forces between flange section 58a and first face 81.


Turning now to FIGS. 7-8, a reinforcing member 68 is shown as a monolithic sheet of material. In one embodiment, the reinforcing member is the same material as the skeletal structure. One will appreciate, however, that other suitable materials may be utilized including, but not limited to, metals, plastics, composites, and alloys.


Similar to skeletal structure 70, in one embodiment folding displacements 54b of reinforcing member 68 are slits; however, one will appreciate that other suitable means may be utilized. In the illustration, the reinforcing member additionally includes alternatively-shaped folding displacements in a neck region 82.


As the sheet of material 51b is provided with folding displacements 54b, the sheet of material may be precisely bent along bend lines 53b in a manner that is described in great detail in Applicant's above-mentioned prior applications. In the illustration, the reinforcing member has two end portions 84 configured for mutual engagement. The faces 56b with pivot holes 72b fold to the sides of a central face 86, and the end portions engage each other to form a bottom face. Neck region 82 folds around an end of the structure thereby sealing off the end and adding to the overall structural integrity of the member.


When the reinforcing member is folded, a spot weld or other bonding method secures the two end portions and locks the structure. One will appreciate that other configurations may be used including, but not limited to, key-and-hole shapes for locking the member without the use of welding or adhesives. FIG. 8 depicts reinforcing member 68 in a folded, three-dimensional shape.


As shown in FIG. 9, the folded reinforcing member 68 is subsequently placed over skeletal structure 70. The reinforcing member includes a pair of pivot holes 72b configured to align with pivot holes 72 when the reinforcing member is wrapped around skeletal structure 70, thus reinforcing the pivot connection of the three-dimensional structure 49. In the illustration, the number of bend lines and resulting corners in the three-dimensional reinforcing member correspond to the number of corners of skeletal structure 70 such that the reinforcing member fits the skeletal structure. In this configuration, the reinforcing member substantially reinforces the outer shape of the skeletal structure. One will appreciate, however, that other cross-sectional shapes may be utilized including, but not limited to, rounded or arcuate shapes, polygons, and star shapes. Moreover, the three-dimensional geometries of the skeletal structure and reinforcing member may be different. For example, the skeletal structure can be a box section and the reinforcing member a cylinder having a diameter substantially equal to the diagonal width of the skeletal structure. A portion of an inner surface of the reinforcing member generally should contact a portion of the exterior surface of the skeletal structure.


In the illustration, reinforcing member 68 is positioned over an end of the skeletal structure. In this position, the reinforcing member acts similar to support plate 67 and also provides greater structural integrity to the entire distal region of the skeletal structure where the load force is being applied. One will appreciate that the reinforcement member may have other geometries and positions including, but not limited to, fully covering the skeletal structure or a band shape wrapping the junction region of two structures.


The addition of the reinforcing member enhances the structural integrity of the assembled three-dimensional structure 49a sufficient to support loads typical of heavy-manufacturing and industrial applications. Further, it has been found that use of wrapping reinforcing members, reinforcing plates, and the like allow for a structure with high load capacity and economical material use. The reinforcing member increases the structures resistance to torquing, wobbling, skewing, sagging, and collapse under loading.


As shown in FIG. 10A, a gusset 88 can optionally be folded in skeletal structure 70 and/or reinforcing member 68. The faces 56c of either structure fold around gusset 88. The gusset includes tongues 89 along peripheral edges, and the faces 56c include grooves 91. The tongues and grooves correspond to each other such that gusset 88 locks into place when the structure is folded. The gusset provides additional strength to the structure inside of which it is wrapped, especially in resisting torsional forces and wobbling.


As shown in FIGS. 10B-10C, a gusset 93′ may also be optionally folded in a skeletal structure 70′ which is wrapped with a reinforcing member 68′. Reinforcing member 68′ wraps skeletal structure 70′ in the same manner as that of reinforcing member 68 and skeletal structure 70 described above and shown in FIGS. 6-7. In one embodiment, at least one gusset is configured as an end cap of a linkage arm. The combination of gussets and at least one reinforcing member provides significant improvements in the physical properties of the resulting three-dimensional structure. One will appreciate from the foregoing that other members and configurations may be employed to increase the strength and utility of the structure.


Turning now to operation and use, three-dimensional structure 49 is folded from a two-dimensional sheet into a three-dimensional geometry and fastened with a single weld or other bonding method. Additional members may then be applied as necessary depending on the application. When used as a machinery component, the resulting structure can then be inserted as a replacement part on-site. In the alternative, when used in new machine assembly, the part can be assembled directly and added to the machine assembly in-line.


One will appreciate that the present invention can be used for any number of applications including, but not limited to, building engineering, civil engineering, and machinery components. The three-dimensional structure can be used as a load beam, component part, or other industrial part. Although the present invention has particular strength characteristics advantageous for high-load applications, it is foreseeable that the present invention can be used in other sheet-folding applications. For example, the present invention can be used to maintain structural integrity while decreasing overall material usage of enclosures, boxes, and the like.


In industrial applications, shin members 95 are optionally provided at corners of the three-dimensional structure 49d as shown in FIG. 11. In applications where the structure may be abraded, bumped, or otherwise subjected to contact, shin members 95 provide protection for the folding displacements 54d on the bended corners of the structure. One will appreciate from the foregoing that other protective measures may be utilized to protect the folding displacements.


The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the Claims appended hereto and their equivalents.

Claims
  • 1. A load-bearing structure comprising: a three dimensional structure formed from a sheet of material having a plurality of bend lines, each bend line including a plurality of folding displacements, slits, or displacements and slits, the sheet of material bent along its bend lines into a box-section;a reinforcing member formed by a sheet of material having a plurality of bend lines, each bend line including a plurality of folding displacements, slits, or displacements and slits, the reinforcing member configured for substantially surrounding a portion of the three dimensional structure to reinforce the structural integrity of the three dimensional structure; anda gusset having peripheral tongue members, the gusset being configured to be wrapped along a peripheral edge by the three dimensional structure, wherein the three-dimensional structure includes grooves for receiving the tongue members, an inner surface of the reinforcing member contacts an exterior surface of the three dimensional structure, the reinforcing member substantially reinforces an outer shape of the three-dimensional structure, bend lines of the reinforcing member correspond to corners of the three-dimensional structure such that the reinforcing member fits the three-dimensional structure, and the sheet of material from which the reinforcing member is formed is bent along its bend lines to form a box section.
  • 2. A load-bearing structure comprising: a three dimensional structure formed from a sheet of material having a plurality of bend lines, each bend line including a plurality of folding displacements, slits, or displacements and slits, the sheet of material bent along its bend lines into a box-section;a reinforcing member formed by a sheet of material having a plurality of bend lines, each bend line including a plurality of folding displacements, slits, or displacements and slits, the reinforcing member configured for substantially surrounding a portion of the three dimensional structure to reinforce the structural integrity of the three dimensional structure; anda gusset having peripheral tongue members, the gusset being configured to be wrapped along a peripheral edge by the three dimensional structure, wherein the three-dimensional structure includes grooves for receiving the tongue members and wherein the sheet of material from which the reinforcing member is formed is bent along its bend lines to form a box section.
  • 3. A load-bearing structure comprising: a three dimensional structure formed from a sheet of material having a plurality of bend lines, each bend line including a plurality of folding displacements, slits, or displacements and slits, the sheet of material bent along its bend lines into a box-section;a reinforcing member formed by a sheet of material having a plurality of bend lines, each bend line including a plurality of folding displacements, slits, or displacements and slits, the reinforcing member configured for substantially surrounding a portion of the three dimensional structure to reinforce the structural integrity of the three dimensional structure; anda gusset having peripheral tongue members, the gusset being configured to be wrapped along a peripheral edge by the three dimensional structure, wherein the three-dimensional structure includes grooves for receiving the tongue members.
  • 4. The load bearing structure of claim 2, wherein an inner surface of the reinforcing member contacts an exterior surface of the three dimensional structure.
  • 5. The load bearing structure of claim 2, wherein the reinforcing member substantially reinforces an outer shape of the three-dimensional structure.
  • 6. The load bearing structure of claim 2, wherein bend lines of the reinforcing member correspond to corners of the three-dimensional structure such that the reinforcing member fits the three-dimensional structure.
  • 7. The load bearing structure of claim 3, wherein an inner surface of the reinforcing member contacts an exterior surface of the three dimensional structure.
  • 8. The load bearing structure of claim 3, wherein the reinforcing member substantially reinforces an outer shape of the three-dimensional structure.
  • 9. The load bearing structure of claim 3, wherein bend lines of the reinforcing member correspond to corners of the three-dimensional structure such that the reinforcing member fits the three-dimensional structure.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 60/889,262 filed Feb. 9, 2007. This application is also related to U.S. patent application Ser. No. 11/411,440 filed Apr. 25, 2006, U.S. patent application Ser. No. 10/861,726 filed Jun. 4, 2004 (now U.S. Pat. No. 7,032,426), U.S. patent application Ser. No. 10/672,766 filed Sep. 26, 2003 (now U.S. Pat. No. 7,152,449), U.S. patent application Ser. No. 10/256,870 filed Sep. 26, 2002 (now U.S. Pat. No. 6,877,349), and U.S. patent application Ser. No. 09/640,267 filed Aug. 17, 2000 (now U.S. Pat. No. 6,481,259). This application is also related to U.S. patent application Ser. No. 11/180,398 filed Jul. 12, 2005 and to U.S. Provisional Patent Application No. 60/587,470 filed Jul. 12, 2004. This application is also related to U.S. patent application Ser. No. 11/384,216 filed Mar. 16, 2006 and to U.S. Provisional Patent Application No. 60/663,392 filed Mar. 17, 2005. This application is also related to U.S. patent application Ser. No. 10/952,357 filed Sep. 27, 2004. This application is also related to U.S. patent application Ser. No. 11/842,932 filed Aug. 21, 2007, U.S. patent application Ser. No. 10/931,615 filed Aug. 31, 2004 (now U.S. Pat. No. 7,263,869), and U.S. patent application Ser. No. 10/795,077 filed Mar. 3, 2004 (now U.S. Pat. No. 7,152,450). The entire content of the above-mentioned applications for patents are incorporated herein by this reference.

US Referenced Citations (389)
Number Name Date Kind
387651 Maxim Aug 1888 A
624144 Wilmot May 1899 A
649387 Wright et al. May 1900 A
649762 Saltzkorn et al. May 1900 A
800365 Ebert Sep 1905 A
975121 Carter Nov 1910 A
1295769 Kux Feb 1919 A
1405042 Kraft Jan 1922 A
1468271 Bechtel Sep 1923 A
1557066 Krantz Oct 1925 A
1698891 Overbury Jan 1929 A
1699693 Eisenhauer Jan 1929 A
1810842 Moecker, Jr. Sep 1929 A
1746429 Kelleweay Feb 1930 A
2127618 Riemenschneider Aug 1938 A
2158972 Weindel, Jr. Fred May 1939 A
2339355 Rutten Jan 1944 A
2423863 Wales Jul 1947 A
2480034 Lapp Aug 1949 A
2484398 Bell et al. Oct 1949 A
2512118 Snow Jul 1950 A
2515067 Wright et al. Jul 1950 A
2560786 Wright et al. Jul 1951 A
2577588 Paige Dec 1951 A
2625290 Kice et al. Jan 1953 A
2638643 Olson May 1953 A
2771851 McGregor Nov 1956 A
2825407 Widell Mar 1958 A
2869694 Breckheimer Jan 1959 A
2880032 Bareenyl Mar 1959 A
2882990 Mustoe Apr 1959 A
2901155 Vines Aug 1959 A
2916181 Pfister et al. Dec 1959 A
2926831 Strange Mar 1960 A
2947436 Kappen Aug 1960 A
2948624 Watson et al. Aug 1960 A
2976747 Schatzschock et al. Mar 1961 A
3039414 Rosanes Jun 1962 A
3090087 Miller May 1963 A
3094158 Reid Jun 1963 A
3094229 Johnson et al. Jun 1963 A
3095134 Jacke Jun 1963 A
3107041 Wagner, Jr Oct 1963 A
3107807 Bergh et al. Oct 1963 A
3120257 Webers et al. Feb 1964 A
3129524 Hayslett Apr 1964 A
3135527 Knapp Jun 1964 A
3156232 Pollock et al. Nov 1964 A
3159156 Incledon Dec 1964 A
3191564 Fraze Jun 1965 A
3204849 Vinney Sep 1965 A
3205600 Snyder Sep 1965 A
3216644 Harrison et al. Nov 1965 A
3217437 Cobb Nov 1965 A
3228710 Chodorowski Jan 1966 A
3234704 Burgess et al. Feb 1966 A
3246796 Englander et al. Apr 1966 A
3258380 Fischer et al. Jun 1966 A
3313080 Gewiss Apr 1967 A
3318301 Schibley May 1967 A
3341395 Weber Sep 1967 A
3353639 Andriussi Nov 1967 A
3357078 Moltchan Dec 1967 A
3361320 Bobrowski Jan 1968 A
3455018 Collins Jul 1969 A
3474225 Leedy Oct 1969 A
3521536 Waldbauer et al. Jul 1970 A
3538982 Fiori Nov 1970 A
3590759 Hendrie, Jr. et al. Jul 1971 A
3626604 Pierce Dec 1971 A
3638465 Lickliter et al. Feb 1972 A
3638597 Brown Feb 1972 A
3666607 Weissman May 1972 A
3688385 Brown Sep 1972 A
3717022 DuBois Feb 1973 A
3731514 Deibele, Jr. May 1973 A
3756499 Giebel et al. Sep 1973 A
3774434 Bock Nov 1973 A
3776015 Chartet et al. Dec 1973 A
3779282 Klees Dec 1973 A
3788934 Coppa Jan 1974 A
3851912 Grosseau Dec 1974 A
3854859 Sola Dec 1974 A
3862562 Kruger Jan 1975 A
3867829 Bock Feb 1975 A
3878438 Weisman Apr 1975 A
3879240 Wall Apr 1975 A
3882653 Ollman May 1975 A
3890869 Van Cleave Jun 1975 A
3907193 Heller Sep 1975 A
3914974 De Vore Oct 1975 A
3938657 David Feb 1976 A
3943744 Marsh et al. Mar 1976 A
3952574 Speidel Apr 1976 A
3963170 Wood Jun 1976 A
3994275 Williams Nov 1976 A
4004334 Greenley Jan 1977 A
4011704 O'Konski Mar 1977 A
4027340 Hadtke Jun 1977 A
4058813 Risko Nov 1977 A
4102525 Albano Jul 1978 A
4120084 Wallman Oct 1978 A
4132026 Dodds Jan 1979 A
4133198 Huda et al. Jan 1979 A
4133336 Smith Jan 1979 A
4141525 Miller Feb 1979 A
4145801 Schrecker et al. Mar 1979 A
4166565 Webinger Sep 1979 A
4170691 Rogers Oct 1979 A
4190190 Halonen Feb 1980 A
4215194 Shepherd Jul 1980 A
4230058 Iwaki et al. Oct 1980 A
4245615 Moss Jan 1981 A
4289290 Miller Sep 1981 A
4305340 Iwaki et al. Dec 1981 A
4327835 Leger May 1982 A
4352843 Eckert Oct 1982 A
4362519 Gault Dec 1982 A
4383430 Klaus May 1983 A
4401341 Hirabayashi et al. Aug 1983 A
4421232 Konaka Dec 1983 A
4428599 Jahnle Jan 1984 A
4457555 Draper Jul 1984 A
4468946 Driear Sep 1984 A
4469273 Smith Sep 1984 A
4469727 Loew Sep 1984 A
4479737 Bergh et al. Oct 1984 A
4489976 Flaherty Dec 1984 A
4491362 Kennedy Jan 1985 A
4510785 Triouleyre et al. Apr 1985 A
4515004 Jaenson May 1985 A
4542933 Bischoff Sep 1985 A
4557132 Break Dec 1985 A
4558582 Meinig Dec 1985 A
4559259 Cetrelli Dec 1985 A
4596356 Chaussadas Jun 1986 A
4597374 Igarashi Jul 1986 A
4628661 St. Louis Dec 1986 A
4645701 Zarrow Feb 1987 A
4650217 Ehrlund Mar 1987 A
4672718 Schlueter et al. Jun 1987 A
4676545 Bonfilio et al. Jun 1987 A
4735077 Döring et al. Apr 1988 A
4760634 Rapp et al. Aug 1988 A
4792082 Williamson Dec 1988 A
4792085 Waring, III et al. Dec 1988 A
4803879 Crawford Feb 1989 A
4819792 Christian Apr 1989 A
4831711 Rapp May 1989 A
4837066 Quinn et al. Jun 1989 A
4869539 Cassese Sep 1989 A
4887862 Bassi Dec 1989 A
4898326 Edwards et al. Feb 1990 A
4950026 Emmons Aug 1990 A
4951967 Michalik Aug 1990 A
5022804 Peterson Jun 1991 A
5077601 Hatada et al. Dec 1991 A
5105640 Moore et al. Apr 1992 A
5148600 Chen et al. Sep 1992 A
5148900 Mohan Sep 1992 A
5157852 Patrou et al. Oct 1992 A
5195644 Schmid Mar 1993 A
5205476 Sorenson Apr 1993 A
5211047 Kaneyuki May 1993 A
5211330 Frey May 1993 A
5225799 West et al. Jul 1993 A
5227176 McIntyre-Major Jul 1993 A
5234246 Henigue et al. Aug 1993 A
5234727 Hoberman Aug 1993 A
5239741 Shamos Aug 1993 A
5255969 Cox et al. Oct 1993 A
5259100 Takahashi Nov 1993 A
5262220 Spriggs et al. Nov 1993 A
5284043 Hayashi Feb 1994 A
5292027 Lueke Mar 1994 A
5297836 Parry-Williams Mar 1994 A
5302435 Hashimoto Apr 1994 A
5316165 Moran, Jr. May 1994 A
5333519 Holliday et al. Aug 1994 A
5362120 Cornille, Jr. Nov 1994 A
5372026 Roper Dec 1994 A
5377519 Hayashi Jan 1995 A
5378172 Roberts Jan 1995 A
5390782 Sinn Feb 1995 A
5392629 Goss et al. Feb 1995 A
5415021 Folmer May 1995 A
5427732 Shuert Jun 1995 A
5432989 Turek Jul 1995 A
5440450 Lau et al. Aug 1995 A
5452799 Sutherland Sep 1995 A
5460773 Fritz et al. Oct 1995 A
5466146 Fritz et al. Nov 1995 A
5475911 Wells et al. Dec 1995 A
5496067 Stolll et al. Mar 1996 A
5497825 Yu Mar 1996 A
5524396 Lalvani Jun 1996 A
5533444 Parks Jul 1996 A
5545026 Fritz et al. Aug 1996 A
5568680 Parker Oct 1996 A
5571280 Lehrer Nov 1996 A
5587914 Conradson et al. Dec 1996 A
5592363 Atarashi et al. Jan 1997 A
5615795 Tipps Apr 1997 A
5619784 Nishimoto et al. Apr 1997 A
5620623 Baker Apr 1997 A
5630469 Butterbaugh et al. May 1997 A
5640046 Suzuki et al. Jun 1997 A
5660365 Glick Aug 1997 A
5679388 Fritz et al. Oct 1997 A
5692672 Hunt Dec 1997 A
5701780 Ver Meer Dec 1997 A
5704212 Erler et al. Jan 1998 A
5709913 Andersen et al. Jan 1998 A
5725147 Ljungstrom et al. Mar 1998 A
5737226 Olson et al. Apr 1998 A
5740589 Dominguez Apr 1998 A
5789050 Kang Aug 1998 A
5828575 Sakai Oct 1998 A
5855275 Hunter et al. Jan 1999 A
5882064 Emmons Mar 1999 A
5885676 Lobo et al. Mar 1999 A
5932167 Fritz et al. Aug 1999 A
6021042 Anderson et al. Feb 2000 A
6055788 Martin et al. May 2000 A
6065323 Arduino et al. May 2000 A
6071574 Weder Jun 2000 A
6132349 Yokoyama Oct 2000 A
6144896 Kask et al. Nov 2000 A
6158652 Ruiz et al. Dec 2000 A
6194653 McMiller et al. Feb 2001 B1
6210037 Brandon, Jr. Apr 2001 B1
6210623 Fritz et al. Apr 2001 B1
6220654 Sommer Apr 2001 B1
6233538 Gupta et al. May 2001 B1
6279288 Keil Aug 2001 B1
6296300 Sato Oct 2001 B1
6296301 Schroeder et al. Oct 2001 B1
6299240 Schroeder et al. Oct 2001 B1
6330153 Ketonen et al. Dec 2001 B1
6373696 Bolognia et al. Apr 2002 B1
6386009 Ni et al. May 2002 B1
6391424 Suzuki May 2002 B1
6400012 Miller et al. Jun 2002 B1
6412325 Croswell Jul 2002 B1
6467475 Leutner et al. Oct 2002 B2
6467624 Lofgren et al. Oct 2002 B1
6481259 Durney Nov 2002 B1
6490498 Takagi Dec 2002 B1
6558775 Suzuki May 2003 B1
6588244 Chevalier Jul 2003 B2
6592174 Rollin et al. Jul 2003 B1
6599601 Fogle et al. Jul 2003 B2
6626560 Caferro et al. Sep 2003 B1
6631630 Pourboghrat et al. Oct 2003 B1
6640599 Persson Nov 2003 B1
6640605 Gitlin et al. Nov 2003 B2
6643561 Torvinen Nov 2003 B1
6647693 Bromberg Nov 2003 B2
6648159 Prutkin et al. Nov 2003 B2
6658316 Mehta et al. Dec 2003 B1
6677562 Oshima et al. Jan 2004 B2
6688043 Feder et al. Feb 2004 B1
6722013 Rapp Apr 2004 B1
6728114 Serjack et al. Apr 2004 B2
6745608 Miura Jun 2004 B2
6761502 Bishop et al. Jul 2004 B2
6805566 Chia-Chen Oct 2004 B2
6821606 Suzuki Nov 2004 B2
6831255 Levi et al. Dec 2004 B1
6837334 Le Prevost Jan 2005 B1
6844050 Noilhan Jan 2005 B2
6868708 Carlsson et al. Mar 2005 B2
6877349 Durney et al. Apr 2005 B2
6917017 Moon et al. Jul 2005 B2
6936795 Moon et al. Aug 2005 B1
6940716 Korinsky et al. Sep 2005 B1
6941786 Cooper et al. Sep 2005 B1
6986273 Rager Jan 2006 B2
7000978 Messano Feb 2006 B1
7014174 Roberts et al. Mar 2006 B2
7032426 Durney et al. Apr 2006 B2
7051768 Takahashi May 2006 B2
7069758 Kariakin et al. Jul 2006 B2
7099154 Ishiyama Aug 2006 B2
7099160 Ice Aug 2006 B1
7126819 Liang Oct 2006 B2
7140672 Chernoff et al. Nov 2006 B2
7152449 Durney et al. Dec 2006 B2
7152450 Durney et al. Dec 2006 B2
7156200 Dershem et al. Jan 2007 B2
7167380 Ice Jan 2007 B2
7185934 Saeki Mar 2007 B2
7222511 Durney et al. May 2007 B2
7225542 Chernoff et al. Jun 2007 B2
7243519 Chuang Jul 2007 B1
7263869 Durney et al. Sep 2007 B2
7264304 Carcioffi Sep 2007 B2
7275403 Meyer Oct 2007 B2
7281754 Behr Oct 2007 B2
7296455 Durney Nov 2007 B2
7331505 Holley, Jr. Feb 2008 B2
7350390 Durney et al. Apr 2008 B2
7354639 Durney et al. Apr 2008 B2
7374810 Durney et al. May 2008 B2
7412865 Durney Aug 2008 B2
7440874 Durney et al. Oct 2008 B2
7464574 Durney et al. Dec 2008 B2
7503623 Favaretto Mar 2009 B2
7534501 Durney May 2009 B2
7560155 Durney et al. Jul 2009 B2
7640775 Durney Jan 2010 B2
8092529 Malaviya et al. Jan 2012 B2
8114524 Durney Feb 2012 B2
8377566 Durney et al. Feb 2013 B2
8438893 Durney et al. May 2013 B2
20010010167 Leek Aug 2001 A1
20020153371 Oshima et al. Oct 2002 A1
20020163173 Ruehl et al. Nov 2002 A1
20020184936 Gitlin et al. Dec 2002 A1
20020185892 Rima et al. Dec 2002 A1
20030037586 Durney et al. Feb 2003 A1
20030062739 Bock Apr 2003 A1
20030104916 Suzuki Jun 2003 A1
20040035175 Karhumaki Feb 2004 A1
20040076800 Noilhan Apr 2004 A1
20040079353 Dimitrios Apr 2004 A1
20040103707 Winters Jun 2004 A1
20040130182 Bangle et al. Jul 2004 A1
20040134250 Durney et al. Jul 2004 A1
20040206152 Durney et al. Oct 2004 A1
20040207228 Gebreselassie et al. Oct 2004 A1
20050005670 Durney et al. Jan 2005 A1
20050042432 Jones et al. Feb 2005 A1
20050061049 Durney et al. Mar 2005 A1
20050064138 Durney et al. Mar 2005 A1
20050088014 Woodson et al. Apr 2005 A1
20050097937 Durney et al. May 2005 A1
20050117300 Prasher et al. Jun 2005 A1
20050120766 Friedman et al. Jun 2005 A1
20050126110 Durney et al. Jun 2005 A1
20050161979 Chernoff et al. Jul 2005 A1
20050167459 Storer Aug 2005 A1
20050168014 Chernoff et al. Aug 2005 A1
20050174732 Lin Aug 2005 A1
20050189790 Chernoff et al. Sep 2005 A1
20050189791 Chernoff et al. Sep 2005 A1
20050257589 Durney et al. Nov 2005 A1
20050284088 Heath Dec 2005 A1
20060021413 Durney et al. Feb 2006 A1
20060044755 Ishiyama Mar 2006 A1
20060053857 Durney Mar 2006 A1
20060059807 Zimmerman et al. Mar 2006 A1
20060061966 Korinsky et al. Mar 2006 A1
20060075798 Durney et al. Apr 2006 A1
20060096100 Stol et al. May 2006 A1
20060130551 Durney et al. Jun 2006 A1
20060175871 Eipper et al. Aug 2006 A1
20060181846 Farnsworth et al. Aug 2006 A1
20060207212 Durney Sep 2006 A1
20060213245 Durney Sep 2006 A1
20060232052 Breed Oct 2006 A1
20060232934 Kusamoto et al. Oct 2006 A1
20060237996 Eipper et al. Oct 2006 A1
20060261139 Durney Nov 2006 A1
20060277965 Durney Dec 2006 A1
20070113614 Durney et al. May 2007 A1
20070117502 Kim May 2007 A1
20070123113 Durney May 2007 A1
20070146988 Yamagishi et al. Jun 2007 A1
20070206353 Boone et al. Sep 2007 A1
20070231062 Durney Oct 2007 A1
20070241587 Fleming Oct 2007 A1
20070262128 Durney Nov 2007 A1
20070271793 Mellis et al. Nov 2007 A1
20070286722 Lan Dec 2007 A1
20080016937 Durney et al. Jan 2008 A1
20080048366 Durney Feb 2008 A1
20080054683 Takeda Mar 2008 A1
20080063834 Durney et al. Mar 2008 A1
20080098787 Durney May 2008 A1
20080121009 Durney et al. May 2008 A1
20080187427 Durney Aug 2008 A1
20080193714 Durney et al. Aug 2008 A1
20080250837 Durney Oct 2008 A1
20080271511 Durney et al. Nov 2008 A1
20080276682 Durney Nov 2008 A1
20090297740 Durney Dec 2009 A1
20100201158 Miyashita Aug 2010 A1
20110287228 Durney et al. Nov 2011 A1
Foreign Referenced Citations (120)
Number Date Country
1233304 Mar 1988 CA
2419225 Jun 2009 CA
1206371 Jan 1999 CN
1292106 Apr 2001 CN
3642208 Jun 1987 DE
3906958 Sep 1990 DE
298 18 909 Feb 1999 DE
29818909 Feb 1999 DE
19746931 Jun 1999 DE
19951850 Jan 2001 DE
0873858 Oct 1998 EP
1529575 May 2005 EP
590720 Jul 1947 GB
740933 Nov 1955 GB
955666 Apr 1964 GB
2054690 Jun 1979 GB
2 129 339 May 1984 GB
2 174 781 Nov 1986 GB
2197457 May 1988 GB
2427399 Dec 2006 GB
52-068848 Jun 1977 JP
53-070069 Jun 1978 JP
55-022468 Feb 1980 JP
55-055222 Apr 1980 JP
59-006116 Jan 1984 JP
60061237 Apr 1985 JP
62094474 Apr 1987 JP
63134381 Jun 1988 JP
63263175 Oct 1988 JP
63263176 Oct 1988 JP
1-136612 May 1989 JP
02-065416 May 1990 JP
02-065416 May 1990 JP
02-165817 Jun 1990 JP
02-192821 Jul 1990 JP
02-258116 Oct 1990 JP
02-258116 Oct 1990 JP
02-258117 Oct 1990 JP
04-033723 Feb 1992 JP
04-091822 Mar 1992 JP
04-91822 Mar 1992 JP
05-261442 Oct 1993 JP
05-261442 Oct 1993 JP
05-278634 Oct 1993 JP
5-337580 Dec 1993 JP
6063756 Mar 1994 JP
07-148528 Jun 1995 JP
7178463 Jul 1995 JP
08-224619 Sep 1996 JP
8-252879 Oct 1996 JP
09-141333 Jun 1997 JP
10-085837 Apr 1998 JP
11-123458 May 1999 JP
11-188426 Jul 1999 JP
11-319952 Nov 1999 JP
2000-198153 Jul 2000 JP
2004-505780 Feb 2004 JP
05003149 Jun 2005 MX
8900776 Oct 1990 NL
159771 Jun 1991 TW
167516 Sep 1991 TW
422735 Feb 2001 TW
431422 Apr 2001 TW
451893 Aug 2001 TW
451896 Aug 2001 TW
544356 Aug 2003 TW
WO 9406710 Mar 1994 WO
WO 9724221 Jul 1997 WO
WO 9724221 Jul 1997 WO
WO 9838073 Sep 1998 WO
WO 0213991 Feb 2002 WO
WO 02051688 Jul 2002 WO
WO 2004028937 Apr 2004 WO
WO 2004098810 Nov 2004 WO
WO 2005082112 Sep 2005 WO
WO 2005099925 Oct 2005 WO
WO2006017290 Feb 2006 WO
WO2006017290 Feb 2006 WO
WO2006031553 Mar 2006 WO
WO2006031553 Mar 2006 WO
WO 2006036462 Apr 2006 WO
WO2006053197 May 2006 WO
WO2006053197 May 2006 WO
WO2006055776 May 2006 WO
WO2006055776 May 2006 WO
WO2006057844 Jun 2006 WO
WO2006065568 Jun 2006 WO
WO2006065568 Jun 2006 WO
WO2006957844 Jun 2006 WO
WO2006089090 Aug 2006 WO
WO2006089090 Aug 2006 WO
WO2006099420 Sep 2006 WO
WO2006099420 Sep 2006 WO
WO2006102089 Sep 2006 WO
WO2006102089 Sep 2006 WO
WO2006104789 Oct 2006 WO
WO2006104789 Oct 2006 WO
WO 2007038154 Apr 2007 WO
WO2007078822 Jul 2007 WO
WO 2007134114 Nov 2007 WO
WO 2007134114 Nov 2007 WO
WO2008027921 Mar 2008 WO
WO2008027921 Mar 2008 WO
WO2008030821 Mar 2008 WO
WO2008030821 Mar 2008 WO
WO2008052174 May 2008 WO
WO2008052174 May 2008 WO
WO2008098217 Aug 2008 WO
WO2008098217 Aug 2008 WO
WO2008128217 Oct 2008 WO
WO2008128226 Oct 2008 WO
WO2009039526 Mar 2009 WO
WO2009039526 Mar 2009 WO
WO2009039528 Mar 2009 WO
WO2009039529 Mar 2009 WO
WO2009086317 Jul 2009 WO
WO2009086329 Jul 2009 WO
WO2009103071 Aug 2009 WO
WO2009103071 Aug 2009 WO
WO2010093710 Aug 2010 WO
Non-Patent Literature Citations (70)
Entry
Derwent Abstract Accession No. 1995-280162/37, M21, JP 3474242, Dec. 8, 2003 (Amada Co Ltd).
Derwent Abstract Accession No. 80-C6243C/12, FR 2428372 A, Feb. 8, 1980 (Merlin & Gerin).
Derwent Abstract Accession No. 83-G2401K/19, FR 2514103 A, Apr. 8, 1983 (Grun).
Derwent Abstract Accession No. 97-345802/32, P52, JP 9 141333 A, Jun. 3, 1997 (Kokusai Denki KK).
EasyBend™—Complex Bending Made Easy, © 2004 Mate Precision Tooling Inc., Anoka, Minnesota.
Publication “Office dA” by Contemporary World Architects, 2000, pp. 15, 20-35, Rockport Publishers, Inc., Gloucester, Massachusetts.
PCT/US2008/053494 (WO2008098217) International Preliminary Report on Patentability (1 page) dated Aug. 11, 2009; Written Opinion of the International Searching Authority (5 pages) dated Jul. 18, 2008; pp. 1-6. (for the PCT application corresponding to the present application 12/028,713).
PCT/US2008/053494 (WO2008098217) International Search Report dated Jul. 18, 2008, 1 page. (for the PCT application corresponding to the present application 12/028,713).
“Hold the Press”, Eureka Magazine, Aug. 2007, vol. 27, No. 8, Findlay Publications Ltd., Darford Kent UK, pp. 12-13.
Derwent Abstract Accession No. 1999-340844/29, P52, JP 11 123458 A (Meiji Nat Kogyo KK) May 11, 1999. cited by other.
Derwent Abstract Accession No. 98-265616/24, P52, JP 10 085837 A (Mitsubishi Electric Corp) Apr. 7, 1998. cited by other.
Patent Abstracts of Japan, vol. 004, No. 053 (M-008), Apr. 19, 1980 (JP 55-022468 A).
Patent Abstracts of Japan, vol. 015, No. 006 (M-1066), Jan. 8, 1991 (JP 02-258116 A). cited by other.
Singh, H., “Sheet Metal Hydroforming”, Fundamentals of Hydroforming, Society of Manufacturing Engineers, Dearborn, Michigan (2003), pp. 29-35.
Snap to it, International Sheet Metal Review, Sep./Oct. 2005, pp. 40-42.
SnapLock™—Fabricated Joints Without Welding, © 2002 Mate Precision Tooling Inc., Anoka, Minnesota.
U.S. Appl. No. 09/640,267, filed Aug. 17, 2000, Durney.
U.S. Appl. No. 10/256,870, filed Sep. 26, 2002, Durney.
U.S. Appl. No. 10/672,766, filed Sep. 26, 2003, Durney, et al.
U.S. Appl. No. 10/795,077, filed Mar. 3, 2004, Durney, et al.
U.S. Appl. No. 10/821,818, filed Apr. 8, 2004, Durney, et al.
U.S. Appl. No. 10/827,818, filed Apr. 8, 2004, Fiean Liem.
U.S. Appl. No. 10/861,726, filed Jun. 4, 2004, Durney, et al.
U.S. Appl. No. 10/931,615, filed Aug. 31, 2004, Durney, et al.
U.S. Appl. No. 10/938,170, filed Sep. 10, 2004, Durney.
U.S. Appl. No. 10/952,357, filed Sep. 27, 2004, Durney.
U.S. Appl. No. 10/985,373, filed Nov. 9, 2004, Durney, et al.
U.S. Appl. No. 11/016,408, filed Dec. 16, 2004, Durney, et al.
U.S. Appl. No. 11/080,288, filed Mar. 14, 2005, Durney, et al.
U.S. Appl. No. 11/180,398, filed Jul. 12, 2005, Durney, et al.
U.S. Appl. No. 11/290,968, filed Nov. 29, 2005, Durney, et al.
U.S. Appl. No. 11/357,934, filed Feb. 16, 2006, Durney.
U.S. Appl. No. 11/374,828, filed Mar. 13, 2006, Durney.
U.S. Appl. No. 11/384,216, filed Mar. 16, 2006, Durney.
U.S. Appl. No. 11/386,463, filed Mar. 21, 2006, Durney.
U.S. Appl. No. 11/411,440, filed Apr. 25, 2006, Durney, et al.
U.S. Appl. No. 11/533,355, filed Sep. 19, 2006, Durney.
U.S. Appl. No. 11/611,100, filed Dec. 14, 2006, Durney.
U.S. Appl. No. 11/746,375, filed May 9, 2007, Durney.
U.S. Appl. No. 11/754,344, filed May 28, 2007, Durney, et al.
U.S. Appl. No. 11/842,932, filed Aug. 21, 2007, Holman, et al.
U.S. Appl. No. 11/849,481, filed Sep. 4, 2007, Durney.
U.S. Appl. No. 11/925,195, filed Oct. 26, 2007, Durney, et al.
U.S. Appl. No. 11/927,341, filed Oct. 29, 2007, Durney, et al.
U.S. Appl. No. 11/927,608, filed Oct. 29, 2007, Durney.
U.S. Appl. No. 11/927,626, filed Oct. 29, 2007, Durney, et al.
U.S. Appl. No. 11/927,666, filed Oct. 29, 2007, Durney, et al.
U.S. Appl. No. 11/928,074, filed Oct. 30, 2007, Durney.
U.S. Appl. No. 11/928,433, filed Oct. 30, 2007, Durney, et al.
U.S. Appl. No. 11/928,504, filed Oct. 30, 2007, Durney, et al.
U.S. Appl. No. 11/928,596, filed Oct. 30, 2007, Durney.
U.S. Appl. No. 11/929,094, filed Oct. 30, 2007, Durney, et al.
U.S. Appl. No. 11/929,201, filed Oct. 30, 2007, Durney.
U.S. Appl. No. 11/929,747, filed Oct. 30, 2007, Durney.
U.S. Appl. No. 11/929,780, filed Oct. 30, 2007, Durney, et al.
U.S. Appl. No. 11/930,035, filed Oct. 30, 2007, Durney, et al.
U.S. Appl. No. 11/930,058, filed Oct. 30, 2007, Durney, et al.
U.S. Appl. No. 12/028,713, filed Feb. 8, 2008, Durney.
U.S. Appl. No. 12/103,547, filed Apr. 15, 2008, Durney.
U.S. Appl. No. 12/235,551, filed Sep. 22, 2008, Durney, et al.
U.S. Appl. No. 12/235,571, filed Sep. 22, 2008, Durney, et al.
U.S. Appl. No. 12/235,586, filed Sep. 22, 2008, Durney, et al.
U.S. Appl. No. 12/250,515, filed Oct. 13, 2008, Durney, et al.
U.S. Appl. No. 12/341,951, filed Dec. 22, 2008, Durney, et al.
U.S. Appl. No. 12/372,493, filed Feb. 17, 2009, Durney, et al.
U.S. Appl. No. 12/468,654, filed May 19, 2009, Durney.
U.S. Appl. No. 12/703,654, filed Feb. 10, 2010, Durney.
U.S. Appl. No. 60/799,215, filed May 9, 2006, Durney.
U.S. Appl. No. 60/799,217, filed May 9, 2006, Durney.
CN200880011194.8 Office Action mailed Dec. 31, 2011 (Chinese and English translation).
Related Publications (1)
Number Date Country
20080187427 A1 Aug 2008 US
Provisional Applications (3)
Number Date Country
60889262 Feb 2007 US
60587470 Jul 2004 US
60663392 Mar 2005 US
Divisions (4)
Number Date Country
Parent 10861726 Jun 2004 US
Child 11411440 US
Parent 10672766 Sep 2003 US
Child 10861726 US
Parent 10256870 Sep 2002 US
Child 10952357 US
Parent 10931615 Aug 2004 US
Child 11842932 US
Continuation in Parts (11)
Number Date Country
Parent 11411440 Apr 2006 US
Child 12028713 US
Parent 10256870 Sep 2002 US
Child 10672766 US
Parent 09640267 Aug 2000 US
Child 10256870 US
Parent 11180398 Jul 2005 US
Child 12028713 US
Parent 10672766 Sep 2003 US
Child 11180398 US
Parent 11384216 Mar 2006 US
Child 12028713 US
Parent 10672766 Sep 2003 US
Child 11384216 US
Parent 10952357 Sep 2004 US
Child 12028713 US
Parent 11842932 Aug 2007 US
Child 12028713 US
Parent 10795077 Mar 2004 US
Child 10931615 US
Parent 10672766 Sep 2004 US
Child 10795077 US