This description generally relates to concrete floor structures and methods for building or repairing the concrete floor structures.
Generally, precast load-carrying concrete systems are pre-manufactured, for example from prestressed concrete, by building them on pretensioning beds. The precast load-carrying concrete systems can be used for construction such as floor and roof systems, parking structures, and bridges. The precast load-carrying concrete systems can also be used as diaphragms to transfer lateral loads to a structure. Specifically, a precast load-carrying concrete floor structure can include a flange or slab and at least one vertical supporting member (also known as a stem). The flange or slab can be reinforced with a carbon fiber reinforcing grid (“C-Grid”) within the flange or slab.
It has been discovered that a load-carrying concrete floor structure with C-Grid placed inside the flange or slab can lead to catastrophic failure, such as the load-carrying concrete floor structure rupturing or breaking apart abruptly without any warning or with very little warning. The load-carrying concrete floor structure and the method disclosed herein can prevent such failure, and extend the lifespan of the load-carrying concrete floor structure.
In an embodiment, a method for building a load-carrying concrete floor structure includes forming one or more trench(es) at a top surface of the load-carrying concrete floor structure; arranging one or more reinforcement material(s) into each of the trenches; applying a concrete bonding agent to an internal side surface of each of the trenches; and filling each of the trenches with concrete. In an embodiment, the reinforcement material may be or include at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, a stainless steel bar (e.g., a 0.375″ to 0.75″ stainless steel bar or as required by design), and a combination thereof. In an embodiment, the load-carrying concrete floor structure may include a flange and two supporting members that support the flange, and forming the trench may include forming the trench at the top surface of the flange between the two supporting members. In an embodiment, the trench may be at least 1.5 inches deep from the top surface of the load-carrying concrete floor structure. In an embodiment, forming the trench may include forming the trench across a width of the top surface of the flange. In an embodiment, forming the trench may include forming the trench across at least a half of a width of the top surface of the flange. In an embodiment, the trench may be at least 2 inches deep from the top surface of the flange. In an embodiment, the trench extends along the entire length of the flange. In an embodiment, the trench has two depths, a first depth being deeper than a second depth, and the first depth extending from about a position of one of the two supporting members to the other one of the two supporting members, and the second depth extending along the entire length of the flange.
In an embodiment, forming a trench at the top surface of the flange of the load-carrying concrete floor structure includes forming at least two trenches with spacing between them (along a width direction so that the two trenches are substantially parallel to each other) at the top surface of the flange. In an embodiment, the reinforcement material includes a positive moment reinforcement material, and the method may further include, after arranging the reinforcement material, arranging a negative moment reinforcement material over the positive moment reinforcement material. In an embodiment, the method may further include sandblasting or other means of roughening the trench surfaces, prior to filling the trench with concrete. In an embodiment, the load-carrying concrete floor structure includes a flange and a supporting member that supports the flange, and the method may further include arranging a horizontal reinforcement member below a bottom surface of the flange, and connecting an end of the reinforcement member to a side of the supporting member.
In an embodiment, the load-carrying concrete floor structure may include a flange and two supporting members that support the flange, and the method may further include arranging a vertical reinforcement member below a bottom surface of the flange such that an end of the vertical reinforcement member adjoins the bottom surface of the flange; arranging a horizontal reinforcement member below the bottom surface of the flange such that the other end of the vertical reinforcement member adjoins a side of the horizontal reinforcement; connecting an end of the horizontal reinforcement member to a side of one of supporting members; and connecting the other end of the horizontal reinforcement member to a side of the other of the supporting members. In an embodiment, the horizontal reinforcement member may include at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a combination thereof. In an embodiment, the vertical reinforcement member may include at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, a stainless steel bar (e.g., a 0.375″ to 0.75″ stainless steel bar or as required by design), and a combination thereof.
In an embodiment, a method for building a load-carrying concrete floor structure including a flange and at least two supporting members supporting the flange, may include arranging a horizontal reinforcement member below a bottom surface of the flange; connecting an end of the horizontal reinforcement member to a side of a first supporting member; and connecting the other end of the horizontal reinforcement member to a side of a second supporting member. In an embodiment, the horizontal reinforcement material may include at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, a stainless steel bar (e.g., a 0.375″ to 0.75″ stainless steel bar or as required by design), and a combination thereof.
In an embodiment, a method for building a load-carrying concrete floor structure including a flange and two supporting members supporting the flange, may include arranging a vertical reinforcement member below a bottom surface of the flange; connecting an end of the vertical reinforcement member to the bottom surface of the flange; arranging a horizontal reinforcement member below the bottom surface of the flange so that the other end of the vertical reinforcement member adjoins a side of the horizontal reinforcement; connecting the other end of the vertical reinforcement member to the side of the horizontal reinforcement member; connecting an end of the horizontal reinforcement member to a side of a first support member; and connecting the other end of the horizontal reinforcement member to a side of a second supporting member. In an embodiment, the vertical reinforcement member may include at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, a stainless steel bar (e.g., a 0.375″ to 0.75″ stainless steel bar or as required by design), and a combination thereof. In an embodiment, the horizontal reinforcement member may include at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, a stainless steel bar (e.g., a 0.375″ to 0.75″ stainless steel bar or as required by design), and a combination thereof.
In an embodiment, a method for building a load-carrying concrete floor structure including a flange and at least two supporting member that supports the flange, may include arranging a horizontal reinforcement member below a bottom surface of the flange; connecting an end of the horizontal reinforcement member to a side of a first supporting member and connecting the other end of the horizontal reinforcement member to a side of a second supporting member; arranging a vertical reinforcement member below the bottom surface of the flange and on the side of the horizontal reinforcement member; connecting an end of the vertical reinforcement member to the side of the horizontal reinforcement member; and connecting the other end of the vertical reinforcement member to the bottom surface of the flange with a connector. In an embodiment, the vertical reinforcement member may include at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a combination thereof. In an embodiment, the horizontal reinforcement member may include at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, a stainless steel bar (e.g., a 0.375″ to 0.75″ stainless steel bar or as required by design), and a combination thereof.
In an embodiment, a method for building a combination of a plurality of load-carrying concrete floor structures including a flange and a supporting member that supports the flange, may include arranging a horizontal reinforcement member below bottom surfaces of flanges of a first load-carrying concrete floor structure and a second load-carrying concrete floor structure among a plurality of load-carrying concrete floor structures, wherein the flange of the first load-carrying concrete floor structure adjoins the flange of the second load-carrying concrete floor structure; connecting an end of the horizontal reinforcement member to a side of a supporting member included in a first load-carrying concrete floor structure; and connecting the other end of the horizontal reinforcement member to a side of a supporting member included in a second load-carrying concrete floor structure.
In an embodiment, the method may further include arranging a vertical reinforcement member below a portion, in which the first load-carrying concrete floor structure and the second load-carrying concrete floor structure adjoins each other, and on a side of the horizontal reinforcement member; connecting an end of the vertical reinforcement member to a side of the horizontal reinforcement member; and connecting the other end of the vertical reinforcement member to the bottom surface of the flange of the first load-carrying concrete floor structure with a first connector, and connect the other end of the vertical reinforcement member to the bottom surface of the flange of the second load-carrying concrete floor structure with a second connector.
In an embodiment, a method for building a combination of a plurality of load-carrying concrete floor structures including a flange and a supporting member that supports the flange, may include arranging a first vertical reinforcement member below a bottom surface of a flange of a first load-carrying concrete floor structure and connecting an end of the first vertical reinforcement member to the bottom surface of the flange of the first load-carrying concrete floor structure; arranging a second vertical reinforcement member below a bottom surface of a flange of a second load-carrying concrete floor structure and connecting an end of the second vertical reinforcement member to the bottom surface of the flange of the second load-carrying concrete floor structure, wherein the flange of the second load-carrying concrete floor structure adjoins the flange of the first load-carrying concrete floor structure; arranging a horizontal reinforcement member below bottom surfaces of flanges of the first load-carrying concrete floor structure and second load-carrying concrete floor structure so that both the other ends of the first vertical reinforcement member and second vertical reinforcement member adjoins a side of the horizontal reinforcement member; connecting the other end of the first vertical reinforcement member to the side of the horizontal reinforcement member and connecting the other end of the second vertical reinforcement member to the side of the horizontal reinforcement member; and connecting an end of the horizontal reinforcement member to a side of a supporting member of the first load-carrying concrete floor structure and connecting the other end of the horizontal reinforcement member to a side of a supporting member of the second load-carrying concrete floor structure.
In an embodiment, the first vertical reinforcement member and second vertical reinforcement member may include at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a combination thereof. In an embodiment, the horizontal reinforcement member may include at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, a stainless steel bar (e.g., a 0.375″ to 0.75″ stainless steel bar or as required by design), and a combination thereof.
In an embodiment, a load-carrying concrete floor structure may include a flange and a supporting member that supports the flange. The flange may include a first concrete layer; a carbon fiber grid (“C-Grid”) disposed on the first concreted layer; a reinforcement material disposed over the C-Grid; and a second concrete layer disposed on the reinforcement material. In an embodiment, the flange may further include a third concrete layer disposed between the C-Grid and the reinforcement material. In an embodiment, the flange may further include a bonding agent disposed between the C-Grid and the reinforcement material. In an embodiment, the reinforcement material may include at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, a stainless steel bar (e.g., a 0.375″ to 0.75″ stainless steel bar or as required by design), and a combination thereof. In an embodiment, the load-carrying concrete floor structure may include at least two supporting members that support the flange, and the reinforcement material is disposed over the C-Grid between the at least two supporting members. In an embodiment, the reinforcement material may be disposed 1.5 inches deep from a top surface of the flange. In an embodiment, the reinforcement material may be disposed over the C-Grid across a width of the flange. In an embodiment, the reinforcement material may be disposed over the C-Grid across at least a half of a width of the flange. In an embodiment, the reinforcement material may be disposed at least 2 inches deep from a top surface of the flange. In an embodiment, the reinforcement material may include a positive moment reinforcement material and a negative moment reinforcement material over the positive moment reinforcement material.
In an embodiment, the load-carrying concrete floor structure may further include a reinforcement member disposed below a bottom of the flange, and an end of the reinforcement member is connected to a side of the supporting member. In an embodiment, the reinforcement member may include at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a combination thereof.
In an embodiment, a load-carrying concrete floor structure may include a flange including a C-Grid; a supporting member that support the flange; and a horizontal reinforcement member disposed below a bottom of the flange, and an end of the horizontal reinforcement member is connected to a side of the supporting member. In an embodiment, the horizontal reinforcement member may include at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a combination thereof. In an embodiment, the load-carrying concrete floor structure may include at least two supporting members that support the flange, and the end of the horizontal reinforcement member is connected to a side of a first supporting member, and the other end of the horizontal reinforcement member is connected to a side of a second supporting member.
In an embodiment, the load-carrying concrete floor structure may further include a vertical reinforcement member between the bottom surface of the flange of the load-carrying concrete floor structures and the horizontal reinforcement member. An end of the vertical reinforcement member may be connected to the bottom surface of the flange of the load-carrying concrete floor member, and the other end of the vertical reinforcement member is connected to a side of the horizontal reinforcement member. In an embodiment, the vertical reinforcement member may include at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a combination thereof. In an embodiment, the end of the vertical reinforcement member may be connected to the bottom surface of the flange of the load-carrying concrete floor member with a connector.
In an embodiment, a construction structure comprising a plurality of load-carrying concrete floor structures, may include a first load-carrying concrete floor structure including a first flange and a supporting member supporting the second flange; a second load-carrying concrete floor structure including a second flange and a supporting member supporting the second flange; and a horizontal reinforcement member disposed below bottom surfaces of the first flange and second flange. An end of the horizontal reinforcement member may be connected to a side of the first load-carrying concrete floor structure, and the other end of the horizontal reinforcement member is connected to a side of the second load-carrying concrete floor structure.
In an embodiment, the construction structure may further include a vertical reinforcement member disposed below a portion in which the first flange adjoins the second flange. An end of the vertical reinforcement member may be connected to the bottom surface of the first flange and the bottom surface of the second flange with connectors, and the other end of the vertical reinforcement member may be connected to a side of the horizontal reinforcement member. In an embodiment, the construction structure may further include a first vertical reinforcement member disposed below a bottom surface of the first flange; and a second vertical reinforcement member disposed below a bottom surface of the second flange. An end of the first vertical reinforcement member may be connected to the bottom surface of the first flange, and the other end of the first vertical reinforcement member may be connected to a side of the horizontal reinforcement member. An end of the second vertical reinforcement member may be connected to the bottom surface of the second flange and the other end of the second vertical reinforcement member may be connected to a side of the horizontal reinforcement member. In an embodiment, the horizontal reinforcement member may include at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a combination thereof. In an embodiment, the vertical reinforcement material may include at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a combination thereof. In an embodiment, the first and second vertical reinforcement material may include at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a combination thereof.
Reference is now made to the drawings in which like reference numbers represent corresponding parts throughout.
The present disclosure may be further understood with reference to the following description and the appended drawings, wherein like elements are referred to with the same reference numerals.
Prestressed concrete component had been used commonly as a load-carrying concrete floor structure in construction industries. Typically, flanges/slabs of the prestressed concrete component are reinforced with welded steel wire mesh, reinforcing bars, and/or C-Grid. Recently, the C-Grid has replaced the welded wire mesh as a reinforcement material because the C-Grid has better corrosion properties.
However, compared to weld steel reinforced concrete products, C-Grid reinforced concrete products have problems in longer-term cyclical loading due to non-ductile/brittle type failures such as fatigue. The non-ductile/brittle type failures occur suddenly and abruptly in the C-Grid reinforced concrete product, contrary to ductile/yielding type failures that may happen in in welded steel wires. The American Concrete Institute (ACI) code provides design characteristics of reinforced concrete products. Carbon normally ruptures at even approximately 1% strain while reinforcing steel usually ruptures at 8% to 10% or greater strain. Thus, ACI 440 governing the design of carbon products requires much greater safety factors than steel bars and fibers.
Furthermore, even a few cyclical loads or microcracks may aggravate fatigue in the carbon reinforced concrete product because of stress concentrations, rupture fatigue (e.g., static fatigue), etc. These properties may cause sudden ruptures and collapses in C-Grid reinforced concrete products without warning signs after completion of a construction. For example, highway bridges comprising C-Grid reinforced concrete product may fail suddenly due to fatigue years after they were put in service. Generally, these failures often occur six years or more after the C-Grid enhanced concrete was used in construction and became a part of the construction structure. As such, these failures threaten public safety.
The present disclosure provides methods for enhancing or repairing a load-carrying concrete floor structure before the load-carrying concrete floor structure is abruptly destroyed without warning signs. The present disclosure also provides methods for enhancing or repairing a load-carrying concrete floor structure without separating the load-carrying concrete floor structure from the construction structure, e.g., a bridge or a parking building, after the load-carrying concrete floor structure became a part of the construction structure. In an embodiment, the method for enhancing or repairing a load-carrying concrete floor structure may include forming a trench at a top surface of a load-carrying concrete floor structure; arranging a reinforcement material into the trench; applying a concrete bonding agent to an internal side surface of the trench; and filling the trench with concrete.
Further, the present disclosure provides load-carrying concrete floor structures with at least one additional reinforcement component. In an embodiment, a load-carrying concrete floor structure may include a flange and at least one supporting member supporting the flange. The flange may include a first concrete layer; a C-Grid disposed on the first concreted layer; a reinforcement material disposed over the C-Grid; and a second concrete layer disposed on the reinforcement material. The flange may further include a third concrete layer disposed between the C-Grid and the reinforcement material. The flange may further include a bonding agent disposed between the C-Grid and the reinforcement material. The reinforcement material may be a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, or a combination thereof.
The methods for enhancing or repairing the load-carrying concrete floor structure and the load-carrying concrete floor structure according to the present disclosure improve the safety of the constructed structure for the public by preventing or reducing sudden rupture or collapse failures in the load-carrying concrete floor structure in advance.
The process for building a load-carrying concrete floor structure 100, shown in
The trench 240 is formed by cutting into the top surface 221. For example, the trench 240 is at least 1.5 inches deep from the top surface 221 of the flange 220, or otherwise as required by design. In an embodiment, the trench 240 may be formed by cutting into the top surface 221 of the flange 220 so that the trench 240 is at least 2 inches deep from the top surface 221 of the flange 220.
The depth of the trench 240 accommodates a reinforcement material (e.g., bar) with a negative moment resistance, a reinforcement material (e.g., bar) with a positive moment resistance, or both the reinforcement material with negative moment resistance and the reinforcement material with positive moment resistance.
These trenches may be formed in a variety of ways including saw cutting and breaking out the pieces, hydro-demolition, etc. The trench 240 may be formed across at least a half of a width of the top surface of the flange 220. The trench 240 may also be formed across a width of the top surface 221 of the flange 220. Alternatively, at the top surface 221 of the flange 220, at least two trenches may be formed at any appropriate spacing. For example, in a case that a full width of the flange 220 is about 60 feet, the spacing may be 12-48 inches. In an embodiment, the spacing is at least 12 inches. In an embodiment, the spacing is at least 16 inches. In an embodiment, the spacing is at most 24 inches. In an embodiment, the spacing is at most 48 inches.
The resulting load-carrying concrete floor structure 210 in
Therefore,
In an embodiment of the load-carrying concrete floor structure 300, as shown in
To accomplish the load-carrying concrete floor structure shown in
The process 500 includes connecting 520 an end of the horizontal reinforcement member 670 to a side of a stem 630 of the load-carrying concrete floor structure 610 with a connector 680 and connecting the other end of the horizontal reinforcement member 670 to a side of the other stem 630 of the load-carrying concrete floor structure 610 with a connector 680.
Then, the process includes filling 530 a space between the bottom surface 622 and the horizontal reinforcement member 670 with a reinforcement material 690.
The horizontal reinforcement member 670 may include a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, a stainless steel bar (e.g., a 0.375″ to 0.75″ stainless steel bar or as required by design), or a combination thereof. Examples of the reinforcement material 690 include grout, polymers, cement, or other material that has sufficient hardness properties to provide sufficient upward reinforcement to the bottom surface 622.
The horizontal reinforcement member 670 and the reinforcement material 690 can prevent or reduce the sudden collapse of the load-carrying concrete floor structure 610 due to cyclical loadings or stress concentration.
Further, a horizontal reinforcement member 670′, which can be similar to or identical to the horizontal reinforcement member 670, can be positioned between two load-carrying concrete floor structures 610, 610′. The horizontal reinforcement member 670′ is arranged between the stem 630 of one of the two load-carrying concrete floor structures 610 and a stem 630′ of the adjacent load-carrying concrete floor structures 610′. The horizontal reinforcement member 670′ is connected to a side of the stem 630 of the load-carrying concrete floor structure 610 with a connector 680′ and to a side of the stem 630′ of the load-carrying concrete floor structure 610′ with a connector 680′. A space between the bottom surfaces 622, 622′ and the horizontal reinforcement member 670′ is filled with a reinforcement material 690′, which is similar to the reinforcement material 690.
Referring back to
Further, another horizontal reinforcement member 770′, which can be similar to or identical to the horizontal reinforcement member 770, can be positioned between two load-carrying concrete floor structures 710, 710′. The horizontal reinforcement member 770′ is arranged between the stem 730b of one of the two load-carrying concrete floor structures 710 and a stem 730′ of the adjacent load-carrying concrete floor structures 710′. A space between the bottom surfaces and the horizontal reinforcement member 770′ is filled with a reinforcement material 790′, which is similar to the reinforcement material 790.
The vertical reinforcement member 990 may include a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, a stainless steel bar (e.g., a 0.375″ to 0.75″ stainless steel bar or as required by design), or a combination thereof. The process 800 includes connecting 820 an end of the vertical reinforcement member 990 to the bottom surface 922 of the flange 920 of the load-carrying concrete floor structure 910. A plurality of vertical reinforcement members may also be arranged below the bottom surface 922 to provide the flange 920 with further reinforcement. Then, the process 800 includes arranging 830 a horizontal reinforcement member 970 below the bottom surface 922 of the flange 920 so that the other end of the vertical reinforcement member 990 adjoins a side of the horizontal reinforcement member 970. The horizontal reinforcement member 970 may include a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, a stainless steel bar (e.g., a 0.375″ to 0.75″ stainless steel bar or as required by design), or a combination thereof. The process 800 includes connecting 840 the other end of the vertical reinforcement member 990 to the side of the horizontal reinforcement member 970. Then, the process 800 includes connecting 850 an end of the horizontal reinforcement member 970 to a side of one stem 930 of the load-carrying concrete floor structure 910 and connecting the other end of the horizontal reinforcement member 970 to a side of the other stem 930 of the load-carrying concrete floor structure 910.
Further, another horizontal reinforcement member 970′, which can be similar to or identical to the horizontal reinforcement member 970, can be positioned between two load-carrying concrete floor structures 910, 910′. The horizontal reinforcement member 970′ is arranged between the stem 930 of one of the two load-carrying concrete floor structures 910 and a stem 930′ of the adjacent load-carrying concrete floor structures 910′. One or more vertical reinforcement member 990′, which is similar to the vertical reinforcement member 990, can be positioned in a space between the bottom surfaces 922, 922′ and the horizontal reinforcement member 970′.
Further, another horizontal reinforcement member 1170′, which can be similar to or identical to the horizontal reinforcement member 1170, can be positioned between two load-carrying concrete floor structures 1110, 1110′. The horizontal reinforcement member 1170′ is arranged between one of the stems 1130 of one of the two load-carrying concrete floor structures 1110 and a stem 1130′ of the adjacent load-carrying concrete floor structures 1110′. A vertical reinforcement member assembly includes vertical reinforcement member 1190′, a connector 1191′, and a fixing member 1192′, which are respectively similar (or respectively same) to the vertical reinforcement member 1190, the connector 1191, and the fixing member 1192. The vertical reinforcement member assembly is positioned in a space between the bottom surfaces 1122, 1122′ and the horizontal reinforcement member 1170′.
The process 1600 includes arranging 1630 a vertical reinforcement member 1790 below the joint portion 1723 and on the side of the horizontal reinforcement member 1770. The process 1600 includes connecting 1640 an end of the vertical reinforcement member 1790 to the side of the horizontal reinforcement member 1770. The process 1600 includes connecting 1650 the other end of the vertical reinforcement member to the bottom surface 1722 of the flange 1720 of the first load-carrying concrete floor structure 1710 with a first connector 1791, and to the bottom surface 1722′ of the flange 1720′ of the second load-carrying concrete floor structure 1710′ with a second connector 1791′. The first and second connectors 1791, 1791′ are fixed to the vertical reinforcement member 1790 with fixing members 1793, 1793′. The horizontal reinforcement member 1770 and the vertical reinforcement member 1790 may include a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, a stainless steel bar (e.g., a 0.375″ to 0.75″ stainless steel bar or as required by design), or a combination thereof.
In addition, if a shear stress required for the load-carrying concrete floor structure is high, the shear stress should also be considered in building the load-carrying concrete floor structure. According to an embodiment, the flange of the load-carrying concrete floor structure may include a diaphragm (not shown) in a lateral system thereof for resisting wind loads, seismic loads, or any other lateral load such as lateral earth loads or hydrostatic loads. The diaphragm is a structural element that transmits the lateral load to vertical resisting elements of the load-carrying concrete floor structure. The diaphragm forces are transferred to the vertical resisting elements primarily through in-plane shear stress.
The terminology used in this specification is intended to describe particular embodiments and is not intended to be limiting. The terms “a,” “an,” and “the” include the plural forms as well unless clearly indicated otherwise. The terms “comprise” and/or “comprising,” when used in this specification, indicate the presence of the stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, and/or components. It should be understood that spatial description (e.g., “above,” “below,” “up,” “down,” “left,” “right,” “top,” “bottom,” “vertical,” “horizontal”) used herein are for purposes of illustration only, and that practical implementations of the structures described therein can be spatially arranged in any orientation or manner.
Aspects:
It is to be understood that any of aspects 1-16, 17-18, 19-21, 22-24, 25-26, 27-29, 30-41, 42-47 and/or 48-52 may be combined.
Aspect 1. A method for building a load-carrying concrete floor structure, comprising:
forming a trench at a top surface of a flange of the load-carrying concrete floor structure;
arranging a reinforcement material into the trench;
applying a concrete bonding agent to an internal side surface of the trench; and
filling the trench with concrete.
Aspect 2. The method according to aspect 1, wherein the reinforcement material includes at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a stainless steel bar.
Aspect 3. The method according to any of aspects 1-2, wherein the load-carrying concrete floor structure includes a flange and two supporting members that support the flange, and forming the trench includes forming the trench at the top surface of the flange between the two supporting members.
Aspect 4. The method according to any of aspects 1-3, wherein the trench is at least 1.5 inches deep from the top surface of the load-carrying concrete floor structure.
Aspect 5. The method according to any of aspects 1-4, wherein forming the trench includes forming the trench across a width of the top surface of the flange.
Aspect 6. The method according to any of aspects 1-5, wherein forming the trench includes forming the trench across at least a half of a width of the top surface of the flange.
Aspect 7. The method according to any of aspects 1-6, wherein the trench is at least 2 inches deep from the top surface of the flange.
Aspect 8. The method according to any of aspects 1-7, further comprising forming a second trench at the top surface of the flange, wherein the trench and the second trench have a spacing between them.
Aspect 9. The method according to any of aspects 1-8, wherein the reinforcement material includes a positive moment reinforcement material, the method further comprising, after arranging the reinforcement material, arranging a negative moment reinforcement material over the positive moment reinforcement material.
Aspect 10. The method according to any of aspects 1-9, further comprising:
roughening a surface of the trench.
Aspect 11. The method according to any of aspects 1-10, wherein the load-carrying concrete floor structure includes a flange and a supporting member that supports the flange, the method further comprising:
arranging a horizontal reinforcement member below a bottom surface of the flange, and
connecting an end of the reinforcement member to a side of the supporting member.
Aspect 12. The method according to aspect 11, wherein the load-carrying concrete floor structure includes a flange and two supporting members that support the flange, the method further comprising:
arranging a vertical reinforcement member below a bottom surface of the flange such that a first end of the vertical reinforcement member adjoins the bottom surface of the flange;
arranging a horizontal reinforcement member below the bottom surface of the flange such that a second end of the vertical reinforcement member adjoins a side of the horizontal reinforcement; and
connecting a first end of the horizontal reinforcement member to a side of one of supporting members and connecting a second end of the horizontal reinforcement member to a side of the other of the supporting members.
Aspect 13. The method according to aspect 12, wherein the vertical reinforcement member includes at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a combination thereof.
Aspect 14. The method according to any of aspects 11-13, wherein the horizontal reinforcement member includes at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a combination thereof.
Aspect 15. The method according to any of aspects 1-14, wherein forming the trench at a top surface of a flange of the load-carrying concrete floor structure comprises:
cutting a first trench portion having a first depth and a first length; and
cutting a second trench portion having a second depth and a second length,
wherein the first depth is deeper than the second depth, and
the first length is shorter than the second length.
Aspect 16. The method according to aspect 15, wherein arranging the reinforcement material into the trench includes arranging the reinforcement material into the first portion; and
arranging another reinforcement material into the second portion.
Aspect 17. A method for building a load-carrying concrete floor structure, wherein a load-carrying concrete floor structure includes a flange and at least two supporting members supporting the flange, comprising:
arranging a horizontal reinforcement member below a bottom surface of the flange;
connecting a first end of the horizontal reinforcement member to a side of a first supporting member; and
connecting a second end of the horizontal reinforcement member to a side of a second supporting member.
Aspect 18. The method according to aspect 17, wherein the horizontal reinforcement material includes at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a combination thereof.
Aspect 19. A method for building a load-carrying concrete floor structure, wherein the load-carrying concrete floor structure includes a flange and two supporting members supporting the flange, the method comprising:
arranging a vertical reinforcement member below a bottom surface of the flange;
connecting a first end of the vertical reinforcement member to the bottom surface of the flange;
arranging a horizontal reinforcement member below the bottom surface of the flange so that a second end of the vertical reinforcement member adjoins a side of the horizontal reinforcement;
connecting the second end of the vertical reinforcement member to the side of the horizontal reinforcement member; and
connecting a first end of the horizontal reinforcement member to a side of a first support member and connecting the second end of the horizontal reinforcement member to a side of a second supporting member.
Aspect 20. The method according to aspect 19, wherein the vertical reinforcement member includes at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a combination thereof.
Aspect 21. The method according to any of aspects 19-20, wherein the horizontal reinforcement member includes at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a stainless steel bar.
Aspect 22. A method for building a load-carrying concrete floor structure, wherein a load-carrying concrete floor structure includes a flange and at least two supporting member that supports the flange, the method comprising:
arranging a horizontal reinforcement member below a bottom surface of the flange;
connecting a first end of the horizontal reinforcement member to a side of a first supporting member and connecting a second end of the horizontal reinforcement member to a side of a second supporting member;
arranging a vertical reinforcement member below the bottom surface of the flange and on the side of the horizontal reinforcement member;
connecting a first end of the vertical reinforcement member to the side of the horizontal reinforcement member; and
connecting a second end of the vertical reinforcement member to the bottom surface of the flange with a connector.
Aspect 23. The method according to aspect 22, wherein the vertical reinforcement member includes at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a stainless steel bar.
Aspect 24. The method according to any of aspects 22-23, wherein the horizontal reinforcement member includes at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a stainless steel bar.
Aspect 25. A method for building a combination of load-carrying concrete floor structures, wherein each load-carrying concrete floor structure includes a flange and a supporting member that supports the flange, the method comprising:
arranging a horizontal reinforcement member below bottom surfaces of flanges of a first load-carrying concrete floor structure and a second load-carrying concrete floor structure of the load-carrying concrete floor structures, wherein the flange of the first load-carrying concrete floor structure adjoins the flange of the second load-carrying concrete floor structure;
connecting a first end of the horizontal reinforcement member to a side of a supporting member included in a first load-carrying concrete floor structure; and
connecting a second end of the horizontal reinforcement member to a side of a supporting member included in a second load-carrying concrete floor structure.
Aspect 26. The method according to aspect 25, further comprising:
arranging a vertical reinforcement member below a portion, in which the first load-carrying concrete floor structure and the second load-carrying concrete floor structure adjoins each other, and on the side of the horizontal reinforcement member;
connecting a first end of the vertical reinforcement member to a side of the horizontal reinforcement member; and
connecting a second end of the vertical reinforcement member to the bottom surface of the flange of the first load-carrying concrete floor structure with a first connector, and connecting the second end of the vertical reinforcement member to the bottom surface of the flange of the second load-carrying concrete floor structure with a second connector.
Aspect 27. A method for building a combination of load-carrying concrete floor structures, wherein each load-carrying concrete floor structure includes a flange and a supporting member that supports the flange, the method comprising:
arranging a first vertical reinforcement member below a bottom surface of a flange of a first load-carrying concrete floor structure of the load-carrying concrete floor structures and connecting a first end of the first vertical reinforcement member to the bottom surface of the flange of the first load-carrying concrete floor structure;
arranging a second vertical reinforcement member below a bottom surface of a flange of a second load-carrying concrete floor structure of the load-carrying concrete floor structures and connecting a first end of the second vertical reinforcement member to the bottom surface of the flange of the second load-carrying concrete floor structure, wherein the flange of the second load-carrying concrete floor structure adjoins the flange of the first load-carrying concrete floor structure;
arranging a horizontal reinforcement member below bottom surfaces of flanges of the first load-carrying concrete floor structure and second load-carrying concrete floor structure so that a second end of the first vertical reinforcement member and a second end of the second vertical reinforcement member adjoin a side of the horizontal reinforcement member;
connecting the second end of the first vertical reinforcement member to the side of the horizontal reinforcement member and connecting the second end of the second vertical reinforcement member to the side of the horizontal reinforcement member; and
connecting a first end of the horizontal reinforcement member to a side of a supporting member of the first load-carrying concrete floor structure and connecting a second end of the horizontal reinforcement member to a side of a supporting member of the second load-carrying concrete floor structure.
Aspect 28. The method according to aspect 27, wherein the first vertical reinforcement member and second vertical reinforcement member include at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a stainless steel bar.
Aspect 29. The method according to any of aspects 27-28, wherein the horizontal reinforcement member includes at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a stainless steel bar.
Aspect 30. A load-carrying concrete floor structure, comprising:
a flange; and
a supporting member that supports the flange; and
wherein the flange includes:
Aspect 31. The load-carrying concrete floor structure according to aspect 30, wherein the flange further includes a third concrete layer disposed between the carbon fiber grid and the reinforcement material.
Aspect 32. The load-carrying concrete floor structure according to any of aspects 30-31, wherein the flange further includes a bonding agent disposed between the carbon fiber grid and the reinforcement material.
Aspect 33. The load-carrying concrete floor structure according to any of aspects 30-32, wherein the reinforcement material includes at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a stainless steel bar.
Aspect 34. The load-carrying concrete floor structure according to any of aspects 30-33, wherein the load-carrying concrete floor structure includes at least two supporting members that support the flange, and
the reinforcement material is disposed over the carbon fiber grid between the at least two supporting members.
Aspect 35. The load-carrying concrete floor structure according to any of aspects 30-34, wherein the reinforcement material is disposed 1.5 inches deep from a top surface of the flange.
Aspect 36. The load-carrying concrete floor structure according to any of aspects 30-35, wherein the reinforcement material is disposed over the carbon fiber grid across a width of the flange.
Aspect 37. The load-carrying concrete floor structure according to any of aspects 30-36, wherein the reinforcement material is disposed over the carbon fiber grid across at least a half of a width of the flange.
Aspect 38. The load-carrying concrete floor structure according to any of aspects 30-37, wherein the reinforcement material is disposed at least 2 inches deep from a top surface of the flange.
Aspect 39. The load-carrying concrete floor structure according to any of aspects 30-38, wherein the reinforcement material includes a positive moment reinforcement material and a negative moment reinforcement material over the positive moment reinforcement material.
Aspect 40. The load-carrying concrete floor structure according to any of aspects 30-39, further comprising:
a reinforcement member disposed below a bottom of the flange,
wherein an end of the reinforcement member is connected to a side of the supporting member.
Aspect 41. The load-carrying concrete floor structure according to any of aspects 30-40, wherein the reinforcement member includes at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a stainless steel bar.
Aspect 42. A load-carrying concrete floor structure comprising:
a flange including a carbon fiber grid;
a supporting member that support the flange; and
a horizontal reinforcement member disposed below a bottom of the flange, and
wherein an end of the horizontal reinforcement member is connected to a side of the supporting member.
Aspect 43. The load-carrying concrete floor structure according to aspect 42, wherein the horizontal reinforcement member includes at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a stainless steel bar.
Aspect 44. The load-carrying concrete floor structure according to any of aspects 42-43, wherein the load-carrying concrete floor structure includes at least two supporting members that support the flange,
a first end of the horizontal reinforcement member is connected to a side of a first supporting member of the at least two supporting members, and
a second end of the horizontal reinforcement member is connected to a side of a second supporting member of the at least two supporting members.
Aspect 45. The load-carrying concrete floor structure according to any of aspects 42-44, further comprising:
a vertical reinforcement member between the bottom surface of the flange of the load-carrying concrete floor structures and the horizontal reinforcement member,
wherein a first end of the vertical reinforcement member is connected to the bottom surface of the flange of the load-carrying concrete floor member and a second end of the vertical reinforcement member is connected to a side of the horizontal reinforcement member.
Aspect 46. The load-carrying concrete floor structure according to any of aspects 43-45, wherein the vertical reinforcement member includes at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a stainless steel bar.
Aspect 47. The load-carrying concrete floor structure according to any of aspects 43-46, wherein the end of the vertical reinforcement member is connected to the bottom surface of the flange of the load-carrying concrete floor member with a connector.
Aspect 48. A construction structure comprising a plurality of load-carrying concrete floor structures, including:
a first load-carrying concrete floor structure including a first flange and a supporting member supporting the second flange;
a second load-carrying concrete floor structure including a second flange and a supporting member supporting the second flange; and
a horizontal reinforcement member disposed below bottom surfaces of the first flange and second flange,
wherein a first end of the horizontal reinforcement member is connected to a side of the first load-carrying concrete floor structure, and
a second end of the horizontal reinforcement member is connected to a side of the second load-carrying concrete floor structure.
Aspect 49. The construction structure according to aspect 48, further comprising:
a vertical reinforcement member disposed below a portion in which the first flange adjoins the second flange,
wherein a first end of the vertical reinforcement member is connected to the bottom surface of the first flange and the bottom surface of the second flange with connectors, and
a second end of the vertical reinforcement member is connected to a side of the horizontal reinforcement member.
Aspect 50. The construction structure according to any of aspects 48-49, further comprising:
a first vertical reinforcement member disposed below a bottom surface of the first flange; and
a second vertical reinforcement member disposed below a bottom surface of the second flange,
wherein a first end of the first vertical reinforcement member is connected to the bottom surface of the first flange and a second end of the first vertical reinforcement member is connected to a side of the horizontal reinforcement member, and
a first end of the second vertical reinforcement member is connected to the bottom surface of the second flange and a second end of the second vertical reinforcement member is connected to a side of the horizontal reinforcement member.
Aspect 51. The construction structure according to aspect 50, wherein the horizontal reinforcement member or the vertical reinforcement material includes at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a stainless steel bar.
Aspect 52. The construction structure according to any of aspects 50-51, wherein the first and second vertical reinforcement material include at least one selected from a group consisting of a steel reinforcing bar, an epoxy-coated reinforcing bar, a carbon fiber bar, a carbon fiber epoxy-based reinforcing bar, and a stainless steel bar.
About the preceding description, it is to be understood that changes may be made in detail, especially in matters of the construction materials employed and the shape, size, and arrangement of parts without departing from the scope of the present disclosure. The word “embodiment” as used within this specification may, but does not necessarily, refer to the same embodiment. This specification and the embodiments described are exemplary only. The scope of the invention is not limited to the disclosed embodiment(s). Other and further embodiments may be devised without departing from the basic scope thereof, with the true scope and spirit of the disclosure being indicated by the claims that follow. Thus, the breadth and scope of the present disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
856371 | Scammell | Jun 1907 | A |
3071836 | Tumey | Jan 1963 | A |
3670504 | Hayes et al. | Jun 1972 | A |
4685264 | Landis | Aug 1987 | A |
4889666 | Kawasaki | Dec 1989 | A |
5044139 | Mills | Sep 1991 | A |
5185013 | Martin | Feb 1993 | A |
5226279 | Rendon-Herrero | Jul 1993 | A |
5540030 | Morrow | Jul 1996 | A |
5894003 | Lockwood | Apr 1999 | A |
5941035 | Purse | Aug 1999 | A |
6291368 | Lee | Sep 2001 | B1 |
6416693 | Lockwood | Jul 2002 | B1 |
6532714 | Ferm et al. | Mar 2003 | B1 |
7021014 | Wolfe | Apr 2006 | B1 |
7658797 | Guevara et al. | Feb 2010 | B2 |
8056291 | diGirolamo | Nov 2011 | B1 |
9963870 | Merlob | May 2018 | B2 |
20020157344 | Dean | Oct 2002 | A1 |
20040182027 | Bonacci | Sep 2004 | A1 |
20120073231 | Hemphill | Mar 2012 | A1 |
20130168041 | Teron | Jul 2013 | A1 |
20150167332 | Shiota | Jun 2015 | A1 |
20150300033 | Weber | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
2818676 | Jun 2002 | FR |
Entry |
---|
Harry A. Gleich, Carbon Fiber Reinforcing: Making Double Tees in Parking Structures Lighter and Stronger, Structure Magazine (Jul. 2006). |
J. Gustavo Tumialan, et al., Case Study: Strengthening of Parking Garage Decks with Near-Surface-Mounted CFRP Bars, Journal of Composites for Construction, 11(5): 523-530, (Sep./Oct. 2007). |
SikaTop® 123 Plus Product Data Sheet (Edition 8.2003;Identification No. 188). |
Sika Armatec® 110 EpoCem® Product Data Sheet (Edition 8.2003; Identification No. 182). |
Excerpts from: Response to Freedom of Information Request No. 12238 for Port Authority Bus Terminal, Port Authority of NY & NJ (Aug. 18, 2011) (available at: https://corpinfo.panynj.gov/files/uploads/documents/freedom-of-information/foi-fulfilled-requests/12238-C.pdf). |
E. M. Reis, et al., Non-Destructive Radiographic Evaluation and Repairs to Pre-Stressed Structure Following Partial Collapse, Forensic Engineering 2012: Gateway to a Safer Tomorrow (ASCE 2013). |
ASCE Library Webpage for Forensic Engineering 2012: Gateway to a Safer Tomorrow, available at https://ascelibrary.org/doi/book /10.1061/9780784412640. |
Dustin B. Ward, et al., Prestress losses of double-tee girders cast with lightweight self-consolidating concrete, 7 Journal of Building Engineering 133-142 (Jun. 2016). |
D. B. Thatcher, et al., Structural Lightweight Concrete Prestressed Girders and Panels, Research Report 1852-1, Center for Transportation Research—The University of Texas at Austin (Jan. 2002), pp. 1-2, 16, 28-29 (Excerpt). |
P. Kumar Mehta, et al., Concrete: Microstructure, Properties and Materials, McGraw Hill 3rd ed. (Oct. 20, 2001), pp. 1, 34-42, (Excerpt). |
Paul J. Burke, et al., Effects of elevated temperature on near surface mounted and externally bonded FRP strengthening systems for concrete, 35 Cement & Concrete Composites 190-199 (2013). |
ICRI Technical Guideline No. 310.2R-2013, Selecting and Specifying Concrete Surface Preparation for Sealers, Coatings, Polymer Overlays, and Concrete Repair (Oct. 2013). |
Sika Refurbishment: ICRI Award Winning Projects 1998-2013, available at https://usa.sika.com/content/dam/dms/us01/w/Refurbishment-ICRI-Award-Winning-Projects-1998-2013.pdf. |
John M. Carson, Carbon fibre grid improves precast concrete, JEC Magazine #38 (Jan./Feb. 2008), available at http://www.jeccomposites.com/print/knowledge/internationalcomposites-news/carbon-fibre-grid-improves-precast-concrete. |
AltusGroup joins PCI as supplier associate member, Press Release (Mar. 5, 2014), available at https://altusprecast.com/altusgroup-joins-pci-as-supplierassociate-member/. |
Number | Date | Country | |
---|---|---|---|
20190277048 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
62481176 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15945318 | Apr 2018 | US |
Child | 16420365 | US |