A more complete understanding of the method and system of the present invention may be had by reference to the following detailed description when taken in conjunction with the accompanying drawings wherein:
The load control equipment consists of one CCD camera 5 and at least two of a plurality of optical transmitters 8, and/or 9. Optical transmitters 8 and 9 are of different size or light intensity. The CCD camera 5 is mounted under the boom preferably on the trolley, and the optical targets are mounted on the spreader. Thus an optical target (comprising at least two optical targets) aligned with the spreader moves as the container moves, and is arranged in a clear line of sight from camera 5. Measurements from camera 5 are taken continuously and distances calculated between the trolley and the spreader. For example when the spreader has a skew error and is rotated around its vertical axis V in the direction S of
Preferably in of a pair of actuators 16 and 17, (or 19 and 18) the load line is reeled in by one actuator and reeled out by the other actuator by the same amount, same distance, to correct a linear error due to skew. The distance from the trolley to each of the optical targets on the spreader is measured, and the position of the optical targets relative an orthogonal axis is measured, so that one or more linear errors of position in an X or Y direction are calculated. When a linear error, such as a skew-type error, has been determined by measurement the actuators are moved a calculated distance in a linear direction to lengthen and/or shorten load lines arranged at one or more corners 4a-4d of the spreader. In this way the spreader is directly moved in a chosen linear direction by a measured amount by controlling the actuators, in order to minimize a measured or a measured and calculated linear error of spreader position.
In order to provide accurate error and fast correction the relative position of the spreader must be determined accurately and continuously. A continuous measurement means on one or more actuators is used to determine the position of each actuator at all times. An optical absolute encoder is preferred, such as the type in which the measuring system consists of a light source, a code disc mounted in a precision bearing and an opto-electronic scanning device. A light source, preferably an LED, illuminates the code disc and projects a pattern known as a track on the code disk onto the opto-array. At every position as the code disk rotates disk the opto-electronic array is partially covered by the dark track markings on the code disk. The light source transmitted through the code disk is interrupted and the code on the disc is transformed in the opto array into electronic signals. If necessary, fluctuations in the intensity of the light source may measured by additional components and/or photo-transistors. The electronic signals are then amplified, converted and output for evaluation. One or more single turn encoder suitably positioned may be used, and a best mode may be practiced using a multi-turn encoder. The multi-turn encoder may be used because more than one turn of the actuator shaft may be expected during an adjustment of the length of the load rope or load line. A multi-turn encoder may comprise several single turn encoders coupled together using a means such as a reduction gear.
In contrast to the opposed movement of specific actuators for a skew error, above, a list error for a container is corrected by application of each actuator pair parallel with the same long side moving (reeling out or reeling in) in the same direction:
A trim error is remedied by applying each actuator pair corresponding to each short side moving (reeling out or reeling in) in the same direction:
The corrections for errors of any of a skew, trim or list type may be applied together of subsequently. Preferably the trim or list correction is applied at a slower rate, using a lesser signal amplification in a proportional P-type loop.
In the preferred embodiment, at least one camera member is a CCD camera. However other optical instruments may also be used, such as a laser scanner or laser range finder. In the preferred embodiment at least one optical target is an Infra Red (IR) transmitter. However other optical targets may be provided, such as: LCD diodes, fluorescent lamps or reflective targets such as reflectors, markings, patterns or high contrast surfaces on the spreader.
In another preferred embodiment the light source 7 comprises optical targets arranged in two directions. A T-shaped or even cross shaped arrangement of light sources may be used. In particular for measuring a list error, one part of the arrangement, such as 7′ of
In another embodiment an incremental encoder may be used as a simpler and cheaper sensor for finding actuator position. Preferably an incremental encoder or a combination of incremental encoders are used in situations where re-starts or re-configurations due, for example, to unexpected power loss or error situations are extremely rare.
One or more microprocessors (or processors or computers) comprise a central processing unit CPU performing the steps of the methods according to one or more aspects of the invention, as described for example with reference to
The computer program comprises computer program code elements or software code portions that make the computer, processor or other device perform the methods using equations, algorithms, recursive algorithms, wireless communications parameter data, stored values, calculations and statistical or pattern recognition methods previously described, for example in relation to
A part of the program may be stored in a processor, but also or instead in a ROM, RAM, PROM, EPROM or EEPROM chip or similar memory means. The program in part or in whole may also be stored locally (or centrally) on, or in, other suitable computer readable medium such as a magnetic disk, CD-ROM or DVD disk, hard disk, magneto-optical memory storage means, in volatile memory, in flash memory, as firmware, or stored on a data server. Other known and suitable media, including removable memory media such as Sony memory stick (TM) and other removable flash memories, hard drives etc. may also be used. The program may also in part be supplied from a data network, including a public network such as the Internet. The computer programs described may also be arranged in part as a distributed application capable of running on several different computers or computer systems at more or less the same time.
A graphical user interface (GUI) may be used to display one or more of the values obtained using the system and methods described above during the calculation of the position of the load of the crane. In a simple form, one or more readouts of parameters for the present container load such as speed in an X (or Y) horizontal direction, speed in a vertical direction are displayed on a screen in numerical and/or graphical representations. In particular, one or more such GUIs may be used to display relative positions of crane 1, load 15 and landing or lifting target relative to a real or graphical representation of the crane, load, landing position, truck etc in a part of a freight yard or container port. A selection action such as right-click with a computer mouse, or other computer input/selection member, on parts of the representation of the GUI may result in a display of any of: live real-time values for displacement errors of trim, list or skew type, or list or trim or visual representation of container orientation; stored values for errors in load position; configuration screens where it is possible to set or change predetermined values used in the determination of a position error, determination of a skew or list or trim error, calculation of load position. In one development of the GUI, one or more parts of the GUI may be combined on a screen together with a display of part of the operations provided by a video camera. Thus one or more parts of the GUI may be provided to give a visual readout which is superimposed over live pictures of the lifting or landing operations. In other words one or more graphical and/or numerical values for load position, trim error, list or skew error etc. may be superimposed on a live video picture while the load is being handled.
It should be noted that while the above describes exemplifying embodiments of the invention, there are several variations and modifications which may be made to the disclosed solution without departing from the scope of the present invention as defined in the appended claims.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP06/05843 | Jun 2006 | US |
Child | 11511502 | US |