The present invention relates to a load device for planar solid oxide fuel cell (SOFC) stack, and more particularly, to a load device capable of exerting a pressure uniformly on a cell stack for measuring and recording the relationship between the performance of the cell stack and variation of the loading pressure with respect to time so as to be used in an analysis for understanding the affection of the loading pressure can have upon the performance of the cell stack and the characteristic of the glass cement used in the stack while using the analysis as basis for improving the design of the cell stack.
The scope of solid oxide fuel cell (SOFC) applications to industry had been widen rapidly in recent years. This is because it can provide many advantages over traditional energy conversion systems including: tolerant to high temperature, high energy conversion efficiency, environmental friendly, and so on. As the SOFC is usually operating at extremely high temperatures, the contact resistance between the parts composing the SOFC can be a significant factor affecting its performance. Thus, for designing an efficient SOFC stack, it is required to perform a test for understanding the affection of load variation on a SOFC stack can have upon the contact resistances in the SOFC stack as well as its performance.
Conventionally, after the assembling of a SOFC stack is completed, it is being subjected to a load, like a carbon steel block or a stainless steel block, for stabilizing the same from tipping over and preparing the same to be move into a high-temperature furnace where it is heated to its designated operating temperature for sintering the glass cement in the cell stack; and then, after performing a performance test upon the heated SOFC stack, it is cooled down and then moved out of the furnace for changing the amount of load exerting upon the SOFC stack so as to be prepared for another performance test. Thus, by the data obtained from the aforesaid process, the affection of load variation upon the performance of the SOFC stack can be analyzed. However, it is noted that by the aforesaid process, not only the relationship between a load and a SOFC stack can not be inferred, but also there is no way of knowing how a glass cement used in the SOFC stack is to react to the load variation and there is no way to adjust the amount of load that is exerting on the SOFC stack in a real-time manner for responding to the resulting SOFC performance or the glass cement reaction. Not to mention that it is not only difficult and time consuming for obtaining any numerical measurement from the aforesaid process, but also it is difficult to adjust the load for the SOFC stack. Thus, such conventional process might not have any practical usage in real SOFC applications.
Therefore, it is in need of a load device for SOFC stack and a high-temperature furnace using the same that are capable of solving the aforesaid shortcomings.
In view of the disadvantages of prior art, the primary object of the present invention is to provide a load device for planar SOFC stack, capable of adjusting the load of a SOFC stack in a real time manner so as to enable a performance test to be performed upon the SOFC stack while the SOFC is operating in a high-temperature furnace.
Another object of the invention is to provide a high-temperature furnace for SOFC stack, adapted for performing a performance test upon a SOFC stack as the SOFC stack is loaded in a load device and operating in the high-temperature furnace, and thereby, enhancing the flexibility to the usage of the high-temperature furnace.
To achieve the above objects, the present invention provides a load device for planar solid oxide fuel cell (SOFC) stack is disclosed, which comprises: a balance plate, a high-temperature compressed column, a load cell, an elastic member, an equalizing ring, and an actuator. The balance plate is abutted exactly against the top of the fuel cell stack, and the high-temperature compressed column is disposed on top of the balance plate, while disposing the load cell and the elastic member at a top portion of the high-temperature compressed column. As the actuator is placed on top of the equalizing ring, the actuator is used for providing a load to the equalizing ring, the load cell, the elastic member and the high-temperature compressed column in a manner that the high-temperature compressed column is driven to press on the balance plate for enabling the same to exert a pressure on the fuel cell stack. When the aforesaid load device for SOFC stack is applied in a high temperature furnace, the load exerted by the actuator can be detected from the measurement of the load cell while the relationship between the load variation and performance of the SOFC stack can be read directly or transmitted to an external device for display.
Further scope of applicability of the present application will become more apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given herein below and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention and wherein:
For your esteemed members of reviewing committee to further understand and recognize the fulfilled functions and structural characteristics of the invention, several exemplary embodiments cooperating with detailed description are presented as the follows.
As shown in
The balance plate 1 is configured to abut against the top of the cell stack 20, as shown in
In addition, there is a constant-temperature compressed column 10 mounted on top of the high-temperature compressed column 3 in a coaxial manner while enabling the same to pass through the centers of the load cell 4, the lower press ring 5, the elastic member 6, the upper press ring 7, the equalizing ring 8 and the actuator 9, by that the load cell 4, the lower press ring 5, the elastic member 6, the upper press ring 7, the equalizing ring 8 and the actuator 9 can all be fixed and positioned. As the constant-temperature compressed column 10 is disposed outside the high-temperature furnace, it can be made of a common steel whichever is strong enough to withstand the heat transmitted from the high-temperature compressed column 3, such as SS 304, SS 310, etc. Moreover, the constant-temperature compressed column 10 can be integrally formed with the high-temperature compressed column 3.
As shown in
As shown in
To sum up, the present invention provides a load device capable of exerting a pressure uniformly on a cell stack for measuring and recording the relationship between the performance of the cell stack and variation of the loading pressure with respect to time so as to be used in an analysis for understanding the affection of the loading pressure can have upon the performance of the cell stack and the characteristic of the glass cement used in the stack while using the analysis as basis for improving the design of the cell stack.
With respect to the above description then, it is to be realized that the optimum dimensional relationships for the parts of the invention, to include variations in size, materials, shape, form, function and manner of operation, assembly and use, are deemed readily apparent and obvious to one skilled in the art, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by the present invention.
Number | Date | Country | Kind |
---|---|---|---|
97140409 A | Oct 2008 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
2699060 | Safford | Jan 1955 | A |
3492566 | Gross | Jan 1970 | A |
3975950 | Erdei | Aug 1976 | A |
4475403 | Lentz | Oct 1984 | A |
4762003 | Cioletti | Aug 1988 | A |
4793047 | Curtis et al. | Dec 1988 | A |
5251498 | Nakatsukasa et al. | Oct 1993 | A |
5435187 | Ewy et al. | Jul 1995 | A |
5448168 | Hirano et al. | Sep 1995 | A |
5456118 | Hines et al. | Oct 1995 | A |
5461928 | Azzolini et al. | Oct 1995 | A |
5659140 | Jakob et al. | Aug 1997 | A |
5712431 | Vilendrer | Jan 1998 | A |
5986221 | Stanley | Nov 1999 | A |
6536098 | Luo et al. | Mar 2003 | B1 |
7661184 | Putnam et al. | Feb 2010 | B2 |
20030061883 | Ichiki et al. | Apr 2003 | A1 |
20040192526 | Nakayama et al. | Sep 2004 | A1 |
20060283261 | Hsiao | Dec 2006 | A1 |
20070196704 | Valensa et al. | Aug 2007 | A1 |
20080038622 | Valensa et al. | Feb 2008 | A1 |
20080280178 | Spink et al. | Nov 2008 | A1 |
20100096607 | Lin et al. | Apr 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20100098984 A1 | Apr 2010 | US |