The disclosed embodiments of the present invention relate to load devices with linearization technique employed therein, and more particularly, to a load device having tunable capacitive units with different semiconductor structures/threshold voltages and a load device having tunable capacitive units which have the same inherent capacitive characteristic and are directly connected to a supply voltage and a ground voltage, respectively.
Varactor devices are commonly used in a variety of applications which require tunable capacitance. Therefore, linearity of the C-V curve of the varactor device would affect the overall performance of the application. There are several conventional approaches designed to linearize the varactor device's C-V curve. For example, one conventional approach is a resistor DAC (R-DAC) based solution which employs an R-DAC to shift the bias voltages of varactors of the same type to thereby make an equivalent (composite) C-V curve of a combination of the varactors become more linear. However, the R-DAC would consume current, generate undesired noise, degrade the quality factor (Q factor), and require AC grounding capacitors which consume the chip area.
Another conventional approach is an opposite C-V curve based solution which connects varactors with the same type but opposite C-V curves so that an equivalent C-V curve of a combination of the varactors becomes more linear. However, the opposite C-V curve based solution requires a differential control voltage pair which may not be available in certain applications. Additionally, such a connection of varactors would introduce significant parasitic capacitance unavoidably.
Therefore, an innovative and efficient means to linearize a C-V curve of a varactor device is highly demanded.
In accordance with exemplary embodiments of the present invention, a load device having tunable capacitive units with different semiconductor structures/threshold voltages and a load device having tunable capacitive units which have the same inherent capacitive characteristic and are directly connected to a supply voltage and a ground voltage, respectively, are disclosed.
According to a first aspect of the present invention, an exemplary load device has a plurality of tunable capacitive units, including at least a first tunable capacitive unit and a second tunable capacitive unit with different inherent capacitive characteristics, respectively. Each of the first tunable capacitive unit and the second tunable capacitive unit has a first node and a second node. The first nodes of the first tunable capacitive unit and the second tunable capacitive unit are coupled to a first voltage. The second node of the first tunable capacitive unit is coupled to a second voltage, and the second node of the second tunable capacitive unit is coupled to a third voltage.
According to a second aspect of the present invention, an exemplary load device has a plurality of tunable capacitive units, including at least a first tunable capacitive unit and a second tunable capacitive unit with substantially the same inherent capacitive characteristic. Each of the first tunable capacitive unit and the second tunable capacitive unit has a first node and a second node. The first nodes of the first tunable capacitive unit and the second tunable capacitive unit are coupled to a control voltage configured for tuning capacitive values of the first tunable capacitive unit and the second tunable capacitive unit. The second node of the first tunable capacitive unit is directly connected to a supply voltage, and the second node of the second tunable capacitive unit is directly connected to a ground voltage.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Certain terms are used throughout the description and following claims to refer to particular components. As one skilled in the art will appreciate, manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following description and in the claims, the terms “include” and “comprise” are used in an open-ended fashion, and thus should be interpreted to mean “include, but not limited to . . . ”. Also, the term “couple” is intended to mean either an indirect or direct electrical connection. Accordingly, if one device is coupled to another device, that connection may be through a direct electrical connection, or through an indirect electrical connection via other devices and connections.
To avoid ambiguity of the terminology used throughout the detailed description and following claims, the term “inherent capacitive characteristic” is defined here. The intended meaning of the term “inherent capacitive characteristic” is to encompass any capacitive characteristic owned by an electronic component at the time the electronic component was made. For example, an inherent capacitive characteristic of an electronic component was determined or known at the time the electronic component was made. Therefore, prior to the electronic component is in operation and affected by any external operating condition and/or any controlling/adjusting/calibrating means, a capacitive characteristic owned by the electronic component may be termed as the inherent capacitive characteristic. One exemplary inherent capacitive characteristic is a capacitance versus voltage curve (C-V curve) inherently owned by the electronic component (e.g., a semiconductor device). However, this is for illustrative purposes only, and is not meant to be taken as a limitation.
The exemplary load device 100 can have a linearized C-V curve by properly configuring the first tunable capacitive unit 102 and the second tunable capacitive unit 104. In one implementation of the exemplary load device 100, the first tunable capacitive unit 102 and the second tunable capacitive unit 104 are semiconductor devices with different threshold voltages and/or different semiconductor structures, thereby satisfying the requirements of making the first tunable capacitive unit 102 and the second tunable capacitive unit 104 have different inherent capacitive characteristics. Therefore, with proper wiring and sizing of the semiconductor devices, a linearized C-V curve can be obtained.
Please refer to
In another implementation of the exemplary load device 100, the first tunable capacitive unit 102 and the second tunable capacitive unit 104 are semiconductor devices with different semiconductor structures, thereby satisfying the requirements of making the first tunable capacitive unit 102 and the second tunable capacitive unit 104 have different inherent capacitive characteristics. Therefore, as long as the semiconductor structures of the first tunable capacitive unit 102 and the second tunable capacitive unit 104 are different, the first tunable capacitive unit 102 may be a bipolar junction transistor (BJT), a heterojunction bipolar transistor (HBT), a high electron mobility transistor (HEMT), a field-effect transistor (FET), a varactor, or a diode, and the second tunable capacitive unit 104 may be a BF, an HBT, an HEMT, an FET, a varactor, or a diode. More specifically, the first tunable capacitive unit 102 is one of the BJT, the HBT, the HEMT, the FET, the varactor, and the diode, whereas the second tunable capacitive unit 104 is another of the BJT, the HBT, the HEMT, the FET, the varactor, and the diode. It should be noted that in an exemplary design which employs above-mentioned semiconductor devices to realize the first tunable capacitive unit 102 and the second tunable capacitive unit 104, the load device 100 has no R-DAC implemented therein. Therefore, the production cost and size of the load device 100 can be reduced, and the performance of the load device 100 can be improved.
In yet another implementation of the exemplary load device 100, the first tunable capacitive unit 102 and the second tunable capacitive unit 104 are semiconductor devices with different semiconductor structures and different thresholds. The same objective of making a load device have a linearized C-V curve is achieved. That is, any means capable of making the first tunable capacitive unit 102 and the second tunable capacitive unit 104 have different inherent capacitive characteristics all obey the spirit of the present invention.
In aforementioned implementations of the load device 100, the first voltage V1 may be a control voltage configured for tuning capacitive values of the first tunable capacitive unit 102 and the second tunable capacitive unit 104, and each of the second voltage V2 and the third voltage V3 is a specific reference voltage. In one design, the voltage level of the second voltage V2 is set identical to that of the third voltage V3. In an alternative design, the voltage level of the second voltage V2 is set different from that of the third voltage V3. Furthermore, the specific reference voltage mentioned above may be a supply voltage or a ground voltage of an application which has the load device 100 employed therein. However, this is for illustrative purposes only, and is not meant to be taken as a limitation of the present invention.
By way of example, the first node N11/N21 of each transistor shown in
Alternatively, in aforementioned implementations of the load device 100, the first voltage V1 is a reference voltage, and the second voltage V2 and the third voltage V3 are control voltages configured for tuning capacitive values of the first tunable capacitive unit 102 and the second tunable capacitive unit 104, respectively. Similarly, the voltage level of the second voltage V2 may be identical to or different from that of the third voltage V3, depending upon design requirements. BY way of example, the specific reference voltage mentioned above may be a supply voltage or a ground voltage of an application which has the load device 100 employed therein. However, this is for illustrative purposes only, and is not meant to be taken as a limitation of the present invention. In addition, the first node N11/N21 of each transistor shown in
Due to the combination of the first tunable capacitive unit 102 and the second tunable capacitive unit 104 with different inherent capacitive characteristics, the equivalent (composite) C-V curve of the load device 100 is more linear. It should be noted that the load device 100 shown in
It should be noted that the naming of the “load device” does not imply that the load device only serves as a load of a circuit; any circuit component having the afore-mentioned load device configuration still falls within the scope of the present invention.
Please refer to
Regarding the exemplary tank circuit 1000 in
Regarding the exemplary tank circuit 1100 in
As a person skilled in the art can readily understand details of the tank circuits 900, 1000, 1100 each having one of the afore-mentioned load device configurations implemented therein after reading above paragraphs directed to the exemplary load device configurations of the present invention, further description is omitted here for brevity.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention.