Claims
- 1. A load driving circuit for controlling the supply of power to a load by directly turning ON and OFF a switching element, which is connected in series with a power supply circuit of the load, according to a load driving instruction signal, comprising a switching power source having an input end electromagnetically coupled with a commercial primary AC power source through a first transformer and an output end electromagnetically coupled with the power supply circuit of the load through a second transformer, to supply a load driving current from the commercial AC power source to the power supply circuit of the load, a semiconductor switching element serving as the switching element, connected in series with the load in the power supply circuit of the load, to close the power supply circuit in response to the load driving instruction signal so that the current from the switching power source is supplied to the load; semiconductor switching element status detection means for detecting an ON/OFF status of the semiconductor switching element and generating a low-level output of logical value 0 if the switching element is ON, as well as if the detection means itself is out of order, and a high-level output of logical value 1 if the switching element is OFF; and power source stoppage decision means for receiving an output of the semiconductor switching element status detection means and the load driving instruction signal, and if the load driving instruction signal is absent and the output of the detection means is at low level, determining that the switching element is abnormal and providing a low-level output to stop the power supplying operation of the switching power source.
- 2. The load driving circuit according to claim 1, wherein the switching power source includes a first rectifier for rectifying an AC output that is produced by a secondary winding of the first transformer according to the output of the commercial AC power source; a transistor connected in series with a primary winding of the second transformer; and a first signal generator for generating an AC signal to turn ON and OFF the transistor when an output of the power source stoppage decision means is at high level.
- 3. The load driving circuit according to claim 1, wherein the semiconductor switching element status detection means includes a second signal generator for generating an AC signal; a magnetic core having a primary winding for receiving the AC signal from the second signal generator through a resistor, a secondary winding for receiving an AC signal from the primary winding, and a power supply line of the power supply circuit of the load; a second amplifier for amplifying the signal received by the secondary winding; and a level tester for providing a high-level output if the amplified AC output from the second amplifier is greater than a predetermined level.
- 4. The toad driving circuit according to claim 1, wherein the power source stoppage decision means includes a fail-safe OR circuit for providing an OR of the load driving instruction signal and the rectified output of the semiconductor switching element status detection means; a fail-safe first AND circuit for providing an AND of the load driving instruction signal and the rectified output of the semiconductor switching element status detection means; and a fail-safe second AND circuit for providing an AND of the outputs of the OR circuit and first AND circuit as a decision output to the switching power source, the second AND circuit having a function of self holding the output of the first AND circuit.
- 5. A load driving circuit for driving an inductive load that shows hysteresis that an operation stop voltage of the load is lower than an operation start voltage of the load, the load driving circuit rectifying an AC signal prepared from a load driving AC instruction signal and supplying the rectified signal to the load to thereby drive the load, the load driving circuit comprising first output supply means for supplying a first rectified output to the load in response to the load driving instruction signal, the level of the first rectified output being higher than the operation stop voltage and lower than the operation start voltage; and second output supply means for supplying a second rectified output only for a predetermined period in response to the-load driving instruction signal, the second rectified output overlapping the first rectified output and being supplied to the load, the level of the overlapping first and second rectified outputs being higher than the operation start voltage of the load.
- 6. The load driving circuit according to claim 5, wherein the second output supply means includes a second rectifier for rectifying the amplified input signal; a differential circuit having a predetermined time constant and differentiating the rectified output of the second rectifier; a fail-safe AND oscillator for providing an AND of the differentiated output of the differential circuit and providing no oscillation output if the AND oscillator itself is out of order; a second amplifier for amplifying the oscillation output of the AND oscillator; a third transformer for generating an AC output from a secondary winding thereof according to the amplified output of the second amplifier provided to a primary winding thereof; and a third rectifier for rectifying the AC output of the third transformer and providing the second rectified output to the load.
- 7. The load driving circuit according to claim 5, further comprising a zener diode disposed in the power supply circuit of the load, oriented in a direction to block a discharge current due to a counter-electromotive force generated by the load when the load driving instruction signal is stopped; and zener diode status monitor means for monitoring whether or not the zener diode is normal, and if it is abnormal, stopping the supply of the load driving instruction signal to the first output supply means.
- 8. The load driving circuit according to claim 7, wherein the monitor means includes a fourth rectifier for rectifying the load driving instruction signal; a fail-safe window comparator having an input terminal for receiving a rectified output voltage from the fourth rectifier and another input terminal for receiving a voltage from a node between the load and the cathode of the zener diode in the power supply circuit of the load through a resistor, providing an output only when the rectified output voltage is present and the voltage from the power supply circuit of the load is within a predetermined range, and stopping the output if the window comparator itself is out of order; an ON delay circuit for providing an output to the first output supply circuit a predetermined delay time after receiving the output of the window comparator; a fourth transformer for generating an AC output from a secondary winding thereof according to the load driving instruction signal provided to a primary winding thereof; and a fifth rectifier for rectifying the AC output of the fourth transformer and providing a third rectified output, which is lower than the operation stop voltage of the load, to a node between the load and the anode of the zener diode in the power supply circuit, the same voltage as the power source voltage of the window comparator being applied to a node between the anode of the zener diode and the fifth rectifier.
- 9. The load driving circuit according to claim 8, wherein the zener diode status monitor means includes, instead of applying the same voltage as the power source voltage of the window comparator to the node between the anode of the zener diode and the fifth rectifier, an oscillator to be driven according to a terminal voltage of the zener diode; a fifth transformer for generating an AC output from a secondary winding thereof according to the oscillation output of the oscillator applied to a primary winding thereof; and a sixth rectifier for rectifying the AC output of the fifth transformer, a rectified output of the sixth rectifier being applied to the window comparator.
Priority Claims (2)
Number |
Date |
Country |
Kind |
4-5128 |
Jan 1992 |
JPX |
|
4-149402 |
Jun 1992 |
JPX |
|
Parent Case Info
This application is a division of application Ser. No. 08/108,579, filed as PCT/JP93/00048 Jan. 4, 1993, now U.S. Pat. No. 5,519,598.
US Referenced Citations (4)
Foreign Referenced Citations (11)
Number |
Date |
Country |
418 665 A1 |
Mar 1991 |
EPX |
1235421 |
Jun 1959 |
DEX |
4010198A1 |
Mar 1990 |
DEX |
57-4764 |
Jun 1955 |
JPX |
57-15708 |
Apr 1982 |
JPX |
59-228703 |
Dec 1984 |
JPX |
59-229806 |
Dec 1984 |
JPX |
60-227326 |
Nov 1985 |
JPX |
60-223445 |
Nov 1985 |
JPX |
62-111519 |
May 1987 |
JPX |
3-14206 |
Jan 1991 |
JPX |
Divisions (1)
|
Number |
Date |
Country |
Parent |
108579 |
Sep 1993 |
|