Work machines, such as fork lifts, wheel loaders, track loaders, excavators, backhoes, bull dozers, and telehandlers are known. Work machines can be used to move material, such as pallets, dirt, and/or debris. The work machines typically include a work implement (e.g., a fork) connected to the work machine. The work implements attached to the work machines are typically powered by a hydraulic system. The hydraulic system can include a hydraulic pump that is powered by a prime mover, such as a diesel engine. It is common in such machines for the hydraulic pump to provide fluid power to a variety of valves within the hydraulic system. Improvements are desired. For example, many systems are configured such that pumping power must be increased in order to lower a load supported by the work implement.
A hydraulic circuit for lifting and lowering a load is disclosed. The hydraulic circuit may include a hydraulic pump, a fluid reservoir, a load-sense valve, and a hydraulic actuator having a first chamber and a second chamber. The hydraulic circuit may also include a first control valve assembly disposed between the hydraulic pump and the hydraulic actuator. A second control valve assembly may also be provided that is disposed between the first control valve assembly and the first chamber of the hydraulic actuator. In one embodiment, the second control valve assembly has a first position and a second position. In the first position, hydraulic fluid is blocked from exiting the first chamber, but is allowed to flow into the first chamber. In the second positions, hydraulic fluid is allowed to enter or exit the first chamber of the hydraulic actuator. The first control valve assembly is also movable to a first lowering position wherein the second control valve assembly is in fluid communication with the fluid reservoir through the first control valve assembly, the second chamber of the hydraulic actuator is blocked from flowing through the first control valve assembly, and the hydraulic pump is placed in fluid communication with the load-sense valve. In one embodiment, the load can be selectively lowered by the hydraulic circuit without requiring the hydraulic pump to provide output pressure and/or fluid flow when the first control valve assembly is in the first lowering position and the second control valve assembly is in the second position. An electronic controller and algorithms for operating the first and second control valve assemblies is also disclosed.
A method of operating a hydraulic circuit is also disclosed. In one step of the method, a first control valve assembly in fluid communication with a hydraulic actuator and a hydraulic pump is provided. In one embodiment, the first control valve has a first lowering position and a second lowering position. Another step in the method can be providing a second control valve assembly disposed between the first control valve assembly and the hydraulic actuator. In further steps, a user indication that a load lowering operation is desired is received and it is determined whether a pressure in the hydraulic cylinder is greater than a load-sense pressure associated with the first control valve assembly by a pressure margin value. In one embodiment, the comparison is alternatively made between the hydraulic cylinder pressure and a pressure near a first outlet port of the first control valve assembly. Where the pressure in the hydraulic cylinder is greater than the load-sense pressure by a pressure margin, the first control valve assembly can be actuated to the first lowering position and the second control valve assembly can be proportionally controlled to maintain a pressure differential set point such that the load is selectively lowered by gravity without requiring the hydraulic pump to provide an output, such as flow or pressure. Where the pressure in the hydraulic cylinder is lower than the load-sense pressure by a pressure margin, the first control valve assembly can be actuated to the second lowering position and the second control valve assembly can be controlled to maintain a pressure at the hydraulic cylinder such that the load can be lowered with power from the hydraulic pump.
Non-limiting and non-exhaustive embodiments are described with reference to the following figures, which are not necessarily drawn to scale, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
Various embodiments will be described in detail with reference to the drawings, wherein like reference numerals represent like parts and assemblies throughout the several views. Reference to various embodiments does not limit the scope of the claims attached hereto. Additionally, any examples set forth in this specification are not intended to be limiting and merely set forth some of the many possible embodiments for the appended claims.
As depicted at
Work machine 10 is also shown as including at least one drive wheel 14 and at least one steer wheel 16. In certain embodiments, one or more drive wheels 14 may be combined with one or more steer wheels 16. The drive wheels are powered by an engine 18. Engine 18 is also configured to power a work circuit 100 and a steering circuit (not shown) of the work machine 10 via at least one hydraulic pump 32. In one embodiment, pump 32 is mechanically coupled to the engine 18, such as by an output shaft or a power take-off. In one embodiment, pump 32 is powered indirectly by the engine 18 via a hydraulic system. The work circuit 100 actuates the work attachment 12 by operation of the pump in cooperation with a number of hydraulic actuators 40 and control valves 20, 50. In one embodiment, the work machine includes hydraulic actuators and valves for effectuating lifting, extending, tilting, and sideways motions of the work attachment 12.
Referring to
As shown, work circuit 100 includes a first valve assembly 20 for enabling a work function, such as an attachment lift function. Work circuit 100 may also include a plurality of additional sections 100X including valves and/or fluid power consuming components for enabling other functions in the hydraulic system. In the particular embodiment shown, first valve assembly 20 is a proportional valve having a body 22 (shown in
The first valve assembly 20 is configured and arranged to selectively provide pressurized fluid from pump 32 to one or more hydraulic lift or work cylinders 40 which are mechanically coupled to the work attachment 12. Although cylinders 40 are characterized in this disclosure as being lift cylinders, it should be understood that cylinders 40 may be any type of work cylinder, and that the disclosure is not limited to only applications involving lift cylinders. The operation of first valve assembly 20 causes the work attachment 12 to be selectively raised or lowered in a lifting function. The lifting speed of the lift cylinder 40 is a result of the flow through the first valve assembly 20.
The work circuit further includes a second valve assembly 50. As shown, the first valve assembly 50 is a two-position, two-way valve in fluid communication with a first chamber 40A of the hydraulic cylinder 40 and the first control valve assembly 20. In one embodiment, the second control valve assembly 50 is spring biased by a spring 51 into a first position 50A and powered into a second position 50B via a solenoid actuator 508 in communication with a control system 500, discussed later, via a control line 508a. When the second control valve assembly 50 is in the first position 50A, hydraulic fluid is prevented from flowing through the valve assembly 50 from the first chamber 40A of the hydraulic actuator 40 by operation of an internal check valve 53. Accordingly, the second valve assembly 50, when in the first position, prevents the hydraulic cylinder 40 from lowering. In the second position 50B, hydraulic fluid may flow from the first chamber 40A through the second control valve assembly 50 from the first chamber 40A of the hydraulic actuator 40. In one embodiment, the second valve assembly 50 may be bi-directional.
In the embodiment shown, the first valve assembly 20 is pilot operated with pressurized fluid generated by pump 32, but at a controlled pressure, as determined by pressure reducing or relief valves 58. In one embodiment, pilot pressure may be supplied by an alternate source. As shown, a pair of solenoid operated valves 46, 48 are provided downstream of the valve 58. The valves 46, 48 selectively provide pilot pressure to either end of the spool 24 to actuate the first valve assembly 20. As shown, the valves 46, 48 are spring biased into a closed position and are powered to an open position by a pair of solenoid actuators 502, 504, respectively. The solenoid actuators 502, 504 are in electronic communication with the control system 500 via control lines 502a and 504a, respectively. It is noted that the spool 24 of first valve assembly 20 may be configured to be directly acted upon by solenoid actuators 502, 504 as well.
As shown, the first valve assembly 20 is a four-position, five-way valve in fluid communication with the pump 32, a tank or fluid reservoir 34, and the hydraulic actuator 40. In the embodiment shown, first valve assembly 20 is movable from a lifting position 20A, to a closed or neutral position 20B, to a first lowering position 20C, and to a second lowering position 20D. As shown, the first valve assembly is spring biased to the closed position 20B by spring(s) 21. In one embodiment, a single capture spring may be used while in another embodiment a pair of springs 21 may be used.
Referring to
In the lifting position 20A, the first valve assembly 20 is positioned such that ports 28A and 29A are placed in fluid communication with each other. The spool 24 of the first valve assembly 20 is shown as being in the lifting position 20A in
In the closed position 20B, ports 26B, 28B, 29B, and 30B are closed such that the pump 32 and fluid reservoir 34 are both isolated from the lifting cylinder 40. The spool 24 of the first valve assembly 20 is shown as being in the closed position 20B in
In the first lowering position 20C, the first valve assembly 20 is positioned such that ports 29C, 26C and 27C are placed in fluid communication with each other. The spool 24 of the first valve assembly 20 is shown as being in the first lowering position 20C in
In the second lowering position, ports 26D and 29D are placed in fluid communication with each other, as are ports 27D, 28D and 30D, in a similar arrangement to that shown and described for the first lowering position 20C. The spool 24 of the first valve assembly 20 is shown as being in the second lowering position 20D in
Referring specifically to
Referring back to
The work circuit 100 is further shown as having additional control components. For example, a first pressure sensor 510 disposed between the lifting cylinder 40 second chamber 40B and the second valve assembly 50. This sensor is placed in communication with the electronic controller 500 via control line 510a. First pressure sensor 510 provides the controller 500 with an input for the pressure in the hydraulic lifting cylinder 40 on the second chamber 40B. Another pressure sensor 516 is shown as being disposed between the lifting cylinder 40 first chamber 40A and the A port of the first valve assembly 20. This sensor 516 is placed in communication with the electronic controller 500 via control line 516a. Pressure sensor 516 is an optional sensor that can provide the controller 500 with an input for the pressure in the hydraulic lifting cylinder 40 on the first chamber 40A when the second valve assembly 50 is in the open position 50B for improved flow control.
The work circuit 100 is further shown as having a pump controller 512 in communication with electronic controller 500 via control lines 512a. The work circuit 100 is further shown as having a position sensor 506 on the first valve assembly spool 24 that is in communication with the controller 500 via control line 506A. Additionally, the control system 500 can also be configured to receive a lever position input 518 such that it can be determined whether the operator desires to lower or raise the load 44. Additional control components are possible.
The hydraulic system 100 operates in various modes depending on demands placed on the work machine 10 (e.g., by an operator). The electronic control system monitors various sensors and other inputs, and allows for the various modes to be initiated at appropriate times. The modes include a lifting mode, a work stand-by mode, and a lowering mode.
Referring to
Computer readable storage media includes volatile and nonvolatile, removable and non-removable media implemented in any device configured to store information such as computer readable instructions, data structures, program modules or other data. Computer readable storage media includes, but is not limited to, random access memory, read only memory, electrically erasable programmable read only memory, flash memory or other memory technology, compact disc read only memory, digital versatile disks or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store the desired information and that can be accessed by the processor 500A.
Computer readable communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” refers to a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, computer readable communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, radio frequency, infrared, and other wireless media. Combinations of any of the above are also included within the scope of computer readable media.
Still referring to
Still referring to
The electronic controller 500 may also include a number of maps or algorithms to correlate the inputs and outputs of the controller 500. For example, the controller 500 may include an algorithm to control the pump output pressure and the position of the first valve assembly 20 based on the measured pressures at sensor 510 and load-sense valve 62 via sensor 514. In one embodiment, the controller 500 includes an algorithm to control the system in a lifting mode and a lowering mode, as described further in the Method of Operation section below.
The electronic controller 500 may also store a number of predefined and/or configurable parameters and offsets for determining when each of the modes is to be initiated and/or terminated. As used herein, the term “configurable” refers to a parameter or offset value that can either be selected in the controller (i.e. via a dipswitch) or that can be adjusted within the controller.
Referring to
The hydraulic circuit 100 can be operated in a lifting mode of operation 1000, as shown in
In a second step 1004, the controller 500 commands the first control valve assembly 20 into the lifting position 20A. In the embodiment shown, this is achieved by actuating valve 46 via solenoid actuator 502. In a third step 1006, the controller 500 commands the second control valve assembly 20 to open once the load-sense pressure sensor 514 is near cylinder pressure 510.
The hydraulic circuit may also be operated in a lowering mode of operation 2000, as shown in
In a second step 2004, the hydraulic cylinder pressure, as measured at sensor 510, is compared to the load-sense pressure, as measured at valve 62 via sensor 514. It is noted that step 2004 may also include a comparison between the measured values for pressure sensors 516 and 514 instead of or in addition to a comparison between the measured values for pressure sensors 510 and 514. If the hydraulic cylinder pressure is greater than the load-sense pressure by a pressure margin, then the method proceeds to step 2006. Otherwise, the method proceeds to step 2010. In one embodiment, the pressure margin is 5 bar. At step 2006, the first control valve assembly 50 is positioned into the first lowering position 20C. At step 2008, proportional flow control is then used for the second control valve assembly 20 to control the speed of the load 44. At step 2010, the first control valve assembly 50 is positioned into the second lowering position 20D. At step 2012, the second control valve assembly 20 is actuated to control to a pressure at the hydraulic cylinder 40, as measured by sensor 510. As shown in
Referring to
The first control valve assembly 20′ may be utilized in circumstances where anti-cavitation valves 52, 54 are not provided in the hydraulic circuit and a fluid path from the fluid reservoir 34 to the hydraulic actuator 40 must be provided through the valve assembly 20′. To accomplish this functionality, the valve assembly 20′ is provided with a modified first lifting position 20C and with a delayed timing. Referring to
In the first lowering position 20C for valve assembly 20′ the spool 24 is positioned such that ports 29C and 26C are placed in fluid communication with each other. This is the same arrangement as shown for the first valve assembly 20. However, valve assembly 20′ is configured such that ports 28C and 30C are in fluid communication with each other instead of being blocked off. Accordingly, the hydraulic pressure from the first chamber 40A of the hydraulic cylinder 40 provides an input into the load-sense valve 62 for control valve assembly 20′ which introduces a timing delay into the system for better control.
Referring to
Referring specifically to
As should be appreciated, the above described process and related disclosures allow for the system to operate the pump in a more economical manner by only commanding the pump to greater output when it can be ascertained beforehand that the pump is actually needed to lower the load 44. As such, significant operating savings can be achieved by allowing the pump to remain at stand-by pressure and no flow when lowering with gravity alone, as compared to systems including pilot check valves or counterbalance valves. Accordingly, one will appreciate that horsepower and fuel savings for the vehicle result from using an approach in accordance with the concepts presented herein.
The various embodiments described above are provided by way of illustration only and should not be construed to limit the claims attached hereto. Those skilled in the art will readily recognize various modifications and changes that may be made without following the example embodiments and applications illustrated and described herein, and without departing from the true spirit and scope of the disclosure.
This application claims the benefit of U.S. Provisional Application No. 61/645,435, filed May 10, 2012, and titled “Load Energy Assist and Horsepower Management System,” the disclosure of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4542678 | Kochendörfer et al. | Sep 1985 | A |
4733600 | Masano | Mar 1988 | A |
5442912 | Hirata et al. | Aug 1995 | A |
7487707 | Pfaff et al. | Feb 2009 | B2 |
7562615 | Abe et al. | Jul 2009 | B2 |
7905088 | Stephenson et al. | Mar 2011 | B2 |
20050051024 | Nielsen et al. | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
2 351 778 | Jan 2001 | GB |
Entry |
---|
International Search Report and Written Opinion for PCT/US2013/040297 mailed Aug. 5, 2013. |
Number | Date | Country | |
---|---|---|---|
20130298541 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
61645435 | May 2012 | US |