This disclosure relates to load estimation and load management in a cellular communications network, and in particular to methods and systems for load estimation and load management in a Long Term Evolution (LTE) network.
The estimation of the load of a network is an important aspect of LTE, and is relevant in the context of admission control, congestion control, and load balancing. The disclosure is particularly, though not necessarily exclusively, relevant to load estimation and load management in a network comprising basestations in a small cell, or femtocell basestations.
Load management is an important aspect for consideration in a wireless network. If the load of a network is not managed properly (for example, where there are too many user equipments (UEs) in a cell), the quality of service (QoS) experienced by the UEs connected to that network will be poor because many UEs would be forced to share limited resources. The system could manage this by allowing only a small number of UEs to be admitted to the network so that each UE experiences a good quality of service. However, this would result in the network being under-utilised. It is thus important to effectively estimate and manage the load of the system.
In this respect, one key issue to be addressed is the accurate estimation of the load of a particular cell. The simplest way to estimate the load of a cell is to count the number of UEs in the system. This approach roughly reflects the level of input traffic admitted by the system. In particular, a cell that has a higher number of UEs will be supporting a higher load. However, this estimation does not take into account system resource or quality of service requirements. For example, the estimation does not take into account the fact that UEs with relaxed quality of service requirements may occupy fewer system resources than those with more stringent requirements. The estimate is thus not particularly accurate.
For a better understanding of the present disclosure, and to show how it may be put into effect, reference will now be made, by way of example, to the accompanying drawings, in which:
A more refined way to estimate the load of a cell is to compute the average number of resource blocks used relative to the total number of resources blocks available. However, this approach is sensitive to traffic characteristics, and is thus especially not suitable for best effort traffic because the load tends to be overestimated, which would cause inefficient use of resources.
An improved way to estimate the load of a cell is to obtain the required number of resource blocks per UE based on the ratio of the required bit rate and the spectral efficiency per resource block of the UE and to then normalize this quantity by the total number of resource blocks in the system bandwidth, and sum over all active UEs in the system. However, such an estimate is based on the assumption of constant power spectral density, with fixed power allocation across the entire bandwidth. This assumption is only valid when frequency-selective power control is not used. Therefore, this approach could potentially underestimate the load in the presence of power control across the bandwidth, i.e. where each sub-band can potentially take on a different power level. The reason for this is that power is non-uniformly distributed across the sub-bands, and thereby the usability of some sub-bands is reduced. In other words, it is possible that power is concentrated to a subset of the sub-bands for the sake of dynamic frequency reuse. This selective usability of sub-bands may cause a potential under-estimation of the cell load if cell load is based on the frequency utilization. While such an assumption is valid for traditional or early LTE networks, it may not be applicable when dynamic frequency reuse and power adaptation is taken into account.
There is therefore a need for an improved method for estimating the load of a cell.
The load contribution due to each UE of a network can vary considerably due to varying channel qualities as a result of channel fading and mobility. In the case of a macro cell, the total load is averaged over a large number of UEs, thereby allowing a relatively stable load estimation to be made. However, in a small cell (a femto cell), where the number of UEs is more limited, the channel variation of each UE will play a more significant role in the load estimate, and more load variation can be observed. Thus, the system needs to be able to cope with such load fluctuation, and some existing UEs may need to be dropped, if necessary.
Some existing systems perform dynamic load balancing to optimise throughput whereby each cell hands over UEs to a more suitable neighbour cell based on a combination of the knowledge of the local cell throughput and the cell load deviation from the average network load. However, an assumption has to be made that each UE can only be allocated a single resource block at a time within the cell, and that the global load information is available to each cell. In this scheme, the load is estimated as the fraction of occupied resource blocks relative to the total number of resource blocks.
In some systems, load balancing is performed by modifying the cell-specific offsets for neighbour cells. In particular, when the load difference between the serving cell and a specific neighbour cell is smaller than a specific threshold, the neighbour cell offset is increased. When the difference is larger than the same threshold, the neighbour cell offset is decreased. In this scheme, the load is related to the resource blocks utilisation needed to meet a certain required target relative to the overall resource block availability. Once a handover decision is made at the serving cell, it is the responsibility of the neighbour cell to decide whether the admission of a UE from the serving cell to that neighbouring cell can be granted.
The handover decision could be based on a number of factors including: determining whether a subset of neighbour cells have low loads, determining whether a subset of UEs are good candidates for handover to the selected subset of neighbour cells based on their link qualities, information regarding the available resources of the target cell, and estimating the resource blocks that would be required if the selected UE were handed over to the target cell.
The selection of a particular UE for handover from the serving cell to a neighbour cell could include selecting a UE if the path gain between that UE and the neighbour cell is greater than the path gain between any of the other UEs in the serving cell and that neighbour cell. However, the impact of the Signal-to-Interference and Noise Ratio (SINR) of the UE that would occur if handover was carried out is not considered in the handover decision. Therefore, it is possible that the basestation of the serving cell would generate a high interference in the target cell for the UE selected for the handover, which would cause the resulting SINR of the UE to degrade significantly.
Some existing approaches have considered how the SINR of the UE would be affected at the target basestation if the potential handover were to occur. In these approaches, the interference due to the respective basestations is modified accordingly. However, these approaches do not take into account the power-based dynamic frequency reuse, where the downlink transmit power is sub-band specific, i.e. where the power level can vary depending on the location of the sub-band.
There is therefore also the need for an improved method for handover that effectively manages the load of a network (or, more particularly, that balances the loads of a network) and that effectively manages the interference that may be experienced by UEs that are to take part in a handover.
Overview
In accordance with aspects of the disclosure, the above problems are solved by providing mechanisms in which the load of a cell is estimated taking into account the quality of service experienced by the UEs and the actual power utilization. In particular, the load of a cell is defined as the required rate per unit power relative to the actual rate per unit power.
The disclosure provides an improved method for estimating the load of a cell for the purpose of load balancing in general and, more particularly, for the purpose of radio admission control and congestion control for LTE networks. The disclosure balances the load of a cell to ensure that the load is stabilised by quantifying the variation in the load based on an observed load variance, and by adapting a filter coefficient of an averaging filter of the load based on the level of observed variation.
The improved estimation of the load means that radio resources of a cell in the network can be more efficiently allocated, which allows a serving cell to determine the amount of traffic that can be supported. In this way, system performance is improved while a good quality of service for the UEs is maintained.
In view of the way in which the load is estimated by the disclosure in the context of load balancing, it is also possible to estimate any potential increase in the load. Specifically, it is possible to estimate any potential increase in the load that may impact onto the target cell due to the handover of a UE from the serving cell. This enables the serving cell to select the most suitable target cell for a particular UE, thereby improving the overall network efficiency.
Furthermore, the disclosure allows the load to be estimated even when the power allocation is different across the frequency band.
According to a first aspect of the present disclosure, there is provided a method for estimating the load imparted on a cell in a cellular communications network by user equipments in the cell, the method comprising:
calculating the average power of the cell;
calculating the bit rate achieved for each currently scheduled user equipment in the cell;
estimating a current value of the load imparted on the cell as the sum of the required bit rates for each currently scheduled user equipment in the cell divided by the sum of the calculated achieved bit rates for each user equipment in the cell, multiplied by the calculated average power of the cell divided by the maximum power available in the cell.
According to a second aspect of the disclosure, there is provided a method for estimating the load imparted on a cell in a cellular communications network by user equipments in the cell, the method comprising:
calculating the average power of the cell;
calculating the bit rate achieved for each currently scheduled user equipment in the cell;
estimating a current value of the load imparted on the cell as the sum, taken over each user equipment in the cell, of the required bit rate for the user equipment divided by the calculated achieved bit rate for the cell, with the sum multiplied by the calculated average power of the cell divided by the product of the maximum power available in the cell and the number of currently scheduled user equipments in the cell.
According to a third aspect of the disclosure, there is provided a method for estimating the load imparted on a cell in a cellular communications network by user equipments in the cell, the method comprising:
calculating the load imparted on the cell by each user equipment;
calculating a weighted load for each user equipment by multiplying the calculated load by a predetermined weight;
estimating a current value of the load imparted on the cell as the sum of the calculated weighted load for each user equipment.
According to a forth aspect of the disclosure, there is provided a basestation configured to operate in accordance with the method of one of the aspects of the disclosure.
Example Embodiments
The basestations 12, 14, 16 and 18 communicate with user equipment devices (UEs) via wireless links. For example, basestation 12 communicates with UE 20 via a wireless link 22. Signals are transmitted via the wireless link 22 from the basestation 12 to the UE 20 (i.e. downlink) or from the UE 20 to the basestation 12 (i.e. uplink).
A bearer is established between a basestation and a UE for the transmission of data packets. A bearer is an Internet Protocol (IP) packet flow with a defined quality of service (QoS). Multiple bearers can be established for a UE in order to provide different QoS. In this way, a UE could use different applications simultaneously by establishing different bearers for those applications. For example, a UE could establish one bearer for a Voice over IP (VoIP) call while, at the same time, the UE could also establish a separate bearer for Internet browsing. The VoIP bearer would provide the necessary QoS for the voice call, while the Internet bearer would provide the necessary QoS for the Internet browsing.
The load ρk of a cell k is estimated as the required bit rate per unit power relative to the actual bit rate per unit power. More particularly, as disclosed in earlier UK Patent Application No. 1120462.5, the load imparted on a cell k by a user equipment i in the cell k is estimated as the required bit rate for the user equipment i divided by the average bit rate achieved by the user equipment i multiplied by the average power of the user equipment i divided by a predetermined maximum downlink power for the cell k, and the load ρk of the cell k is estimated by summing the estimated load imparted on the cell k by each user equipment i in the cell k.
This can be expressed as:
where {tilde over (R)}k,i is the bit rate required by the specified QoS for UE i in cell k,
Referring to Equation (1), the quantity
can be interpreted as the average bit rate per unit power, which quantifies the power efficiency of the UE i. Thus, the quantity
refers to the power required to achieve the required bit rate. Subsequently, the required power normalized by the total power gives the relative required power contribution of the UE within the system.
In practice, it is possible for a UE or a bearer to achieve a very low bit rate, thereby causing a high load fluctuation. To overcome this high load fluctuation, the load ρk of a cell k is estimated as:
where a predetermined positive constant Ci is used to limit the large bit rate ratio, and reduce the potential instability. In other words, if the required bit rate for the user equipment i divided by the calculated average bit rate achieved by the user equipment i is more than the predetermined positive constant Ci, the load imparted on the cell k by the user equipment i is estimated as the predetermined positive constant Ci multiplied by the calculated average power of the user equipment i divided by a predetermined maximum downlink power for the cell k.
In order to reduce the level of variation in the estimate of the load due to channel variation and traffic variation, some averaging needs to be performed. This averaging is performed at the basestation itself since the basestation has the information required (such as the QoS requirements, power, average bit rate, etc) to perform the averaging. The averaging is achieved by means of an averaging filter. The averaging filter has an associated filter coefficient that can be adjusted in order to reduce the rate of change.
According to one aspect of the disclosure, the load ρk defined in Equations (1) or (2) can be expressed as:
where {tilde over (R)}k,i is the required bit rate for each UE i in the cell k,
For example, Λ(t)={1, 3, 7, 8} refers to the set of user equipments with IDs of 1, 3, 7, and 8. Thus, the size of the set Λ(t)={1, 3, 7, 8} is 4, i.e. 4 user equipments are scheduled. As mentioned above, it is possible for a user equipment to have multiple bearers. Therefore, the set Λ(t) could refer to the set of bearers across the entire cell k. For simplicity, it is assumed that each user equipment has only one bearer such that the set Λ(t) refers to the set of user equipments. However, it should be noted that the term “user equipment” (“UE”) could be replaced with the term “bearer” when considering the case where a user equipment has multiple bearers.
Also, in Equation (3), ρk(t−1) represents a previous value of the load imparted on the cell k and
represents the current value of the load imparted on the cell k.
The value of the predetermined filter coefficient β is normally fixed, if averaging is performed, and is selected by an operator. However, in accordance with the disclosure, the value of β is adjusted according to the amount of variation in the load. The value of β will be between 0 and 1. A value of β that is close to 1 will emphasize the current value of the load and will provide a faster response time. Conversely, a smaller value of β will provide smoother filtering, but the response time will be slower.
The average bit rate
where
The value of α is chosen based on an estimate of the average bit rate for the user. The value of α is normally fixed, if averaging is performed, and is selected by an operator. However, in accordance with the disclosure, the value of α may be adjusted. The value of α will be between 0 and 1. For example, a typical value of α could be 0.01. Unless the value of α is quite large, the value of a does not significantly impact the estimate of the load. Therefore, it is often more effective to adjust the other filter coefficient β.
According to Equation (4), if the user equipment is not currently scheduled (i.e. if i∉Λ(t)), then the bit rate achieved for the user equipment
It can be seen in Equation (4) that the bit rate for UE i reduces if it is not scheduled, and increases if it is scheduled. Subsequently, when the UE i is next scheduled, the load contribution from UE i would be higher.
In another aspect of the disclosure, the load ρk can be expressed as:
Here,
The quantity {tilde over (η)}k is the sum of the required bit rate for each currently scheduled UE i in the cell k divided by the number of currently scheduled UEs per maximum unit of available power in the cell k, i.e. the quantity {tilde over (η)}k is the average bit rate required for the cell k per maximum unit of available power {tilde over (P)}k in the cell k.
The quantity ηk is the sum of the bit rate achieved for each currently scheduled UE i in the cell k divided by the number of currently scheduled UEs per average power of the cell k i.e. the quantity ηk is the average bit rate achieved over all currently scheduled user equipments i in the cell k per average power of the cell k. This achieved bit rate is calculated according to Equation (4).
Therefore, the ratio
in Equation (5) is calculated based on the average bit rates (required/achieved) over all UEs i in the cell k. In fact, the quantity {tilde over (η)}k corresponds to the required power efficiency for cell k, and the quantity ηk corresponds to the efficiency achieved for cell k. The ratio
represents the current value of the load imparted on the cell k.
Also, ρk(t−1) represents a previous value of the load imparted on the cell k and β is a predetermined filter coefficient.
According to Equation (5), a current value of the load imparted on the cell ρk(t) is calculated as the sum of the required bit rates for each currently scheduled user equipment in the cell {tilde over (R)}k(t) divided by the sum of the calculated achieved bit rates for each currently scheduled user equipment in the cell
It is noted that the sum of the required bit rates for each currently scheduled user equipment in the cell {tilde over (R)}k(t) and the sum of the calculated achieved bit rates for each currently scheduled user equipment in the cell
The system generally supports the UEs comfortably when the actual bit rate (i.e. the bit rate that the system can support based on, for example, the channel quality of the UE and the load of the system) per unit power ηk is higher than the required bit rate per unit power {tilde over (η)}k. The more UEs there are in the system, the more the fixed frequency and power resources of the system would need to be shared among these UEs. This means that each UE would be allocated less resources, resulting in a lower bit rate for that UE. However, the fact that the actual bit rate per unit power ηk is higher than the required bit rate per unit power {tilde over (η)}k means that the UE can still enjoy a high bit rate. In particular, a high actual bit rate relative to the required bit rate means that the UE will experience a bit rate that is higher than the required bit rate.
If the actual average bit rate per unit power is high, it means that the current power transmitted in the system would already provide a high bit rate and the power efficiency would be expected to be high. On the other hand, if the required bit rate per total available power is low, the system requires only a low power efficiency compared to that which is actually achieved and so the system could potentially support more traffic.
As an alternative to the load estimation methods of Equations (3) and (5), which estimate the current value of the load based on the number of UEs that are currently scheduled, the current value of the load could instead be estimated based on the number of active UEs in the cell. For example, the load estimation method defined by Equation (3) would then be written as:
where N(t) is the set of UEs that are active at time t, i.e. the number of UEs that are active at time t. An active UE is a UE that has an active radio connection. It should be noted that an active UE is not necessarily a scheduled UE. Rather, an active UE could be a UE that has data to send and that is waiting for a transmission opportunity, but may or may not be scheduled at time instance t due to a scheduling policy.
Similarly, the load estimation method defined by Equation (5) would include alternative definitions for the average bit rate achieved in the cell
respectively.
The load of the cell can be stabilised by introducing a limiting factor, which can be expressed as:
ρk(t)←min(Ck,ρk(t)) (6)
It is said that when the load reaches the maximum (i.e. in the case of a full load), the load achieves unity. However, in practice, it is beneficial to keep the load well below unity in order to take into account variations among the UEs within the cell.
In another aspect of the disclosure, the load ρk of a cell k is estimated as a weighted sum of the load contribution from the individual bearers or UEs according to their priorities. This can be expressed as:
where ρk,i is the load contribution from UE i, and wk,i is a predetermined positive weight.
If UE i is of a low priority, it is possible to serve the UE on a best-effort basis. In this case, resources may not need to be allocated to the UE when the load of the cell is full. Thus, the load contribution of the UE can potentially be negligible. In such a case, the weight wk,i for UE i is set to a smaller value. This situation is likely to occur in an environment containing femtocells, in which the home evolved Node B (HeNB) has a list of dedicated UEs known as the Closed Subscriber Group (CSG) UEs. The HeNB is dedicated to serve these CSG UEs. However, a HeNB could be in a hybrid mode, in which non-CSG UEs may also be served, but with limited priority or with limited services. In this case, the non-CSG UEs may be associated with a lower weight.
The graphical representation shows results obtained by calculating the load ρk using Equation (3) and results obtained by calculating the load ρk using Equation (5). The results obtained using Equation (3) are labelled as “Method A” and the results obtained using Equation (5) are labelled as “Method B”. It can be seen that the two methods for estimating the load of a cell produce quite similar results.
As expected, when the number of UEs increases from 8 to 12 per cell, the load of the cell increases. Similarly, an increase in the load of the cell is also observed when the required bit rate is increased from 30 Bytes per Transmission Time interval (TTI) to 60 Bytes per TTI. These results are expected because a greater number of UEs or a higher required bit rate naturally means that there would be an increase in the use of limited power, time, and frequency resources, which are shared among UEs.
Ideally, when the load of a cell reaches its maximum (i.e. when the load achieves unity), all UEs should meet the required target bit rate exactly, and full power should be used. However, due to variations in the UE channel qualities, some UEs that experience severely bad channel qualities may not be able to meet the required bit rate, and thereby lower the performance of the entire cell. On the other hand, for UEs with good channel qualities, the system would lower the transmit power in order to increase power efficiency and reduce inter-cell interference. As a natural behaviour of the power adaptation algorithm, no extra power would be allocated if the UE meets the required bit rate. Thus, as expected, the average bit rate performance over all UEs in the system is slightly biased by the UEs that experience bad channel qualities.
It can be seen from the results shown in
As discussed earlier, the load of the cell is subject to the natural variations of the user channel qualities because the estimation of the load depends inversely on the average bit rate achieved. In the case of a macrocell environment, the load variation is more easily averaged out due to the large number of UEs in the system. However, in a femtocell environment, only a limited number of UEs are served, which means that the natural channel quality variation of each UE has a much larger impact on load estimation.
For example, in the case of admission control, a new UE is only admitted to a cell if the estimated load of this UE on the cell would not cause the total load of the cell to exceed a certain limit. If the current estimated load of the cell is not stable, and is sensitive to the instantaneous channel qualities of existing UEs, the admission success rate of the new UE would be unpredictable. Due to the low number of UEs in a femtocell environment (compared to the macrocell environment), the issue of load stability for femtocells is particularly important.
Recalling the definition of the load ρk of a cell k expressed in Equation (3) or (5) above:
ρk(t)=(1−β)ρk(t−1)+β{circumflex over (ρ)}k(t), (8)
where the quantity {circumflex over (ρ)}k(t) is the current load of the cell estimated based on the number of existing bearers. The filter coefficient β of the averaging filter can be adapted in order to achieve the most stable load for the cell and the fastest response. The value of β can be adapted based on the level of variation χk(t) of the load ρk(t), which is explained in more detail below. The value of β is adjusted to ensure that the fluctuation in the averaged load is within a certain quantifiable value. It is important to achieve a stable value for the averaged load to accurately quantify the load of the system for purposes such as self-organizing network (SON) and radio resource management (RRM). If β is set to be too large, the calculated value for the average load of the cell would be unstable. On the other hand, if β is set to be too small, an unnecessarily slow response would result.
The level of variation χk(t) of the load ρk(t) can be monitored by observing the standard deviation of the load σk(t) relative to the average of the load
where the estimated variance (i.e. the square of the standard deviation) is given by:
and where the mean of the averaged load computed by Equation (8) is given by:
The level of variation χk(t) of the load ρk(t) as defined in Equation (9) can also be referred to as the variability ratio. The time period over which the average of the load
In Equation (10), β2 is a filter coefficient for the estimated variance of the averaged load and, in Equation (11), β1 is a filter coefficient for the mean of the averaged load, which is itself defined in Equation (8). In Equation (8), the load is an average based on the filter coefficient β. The other filter coefficients β1 and β2 are separate filter coefficients that are introduced to account for further variations because even if the load is averaged according to Equation (8) using the filter coefficient β, this value of the load still fluctuates due to the channel quality of the UEs, bit rate allocations, etc. Preferably, the values of the filter coefficients β1 and β2 are fixed, whereas the value of the filter coefficient β is adjusted depending on the mean of the averaged load and the variance of the averaged load, i.e. depending on the level of variation χk(t) of the load. However, alternatively, each filter coefficient ρ, β1, and β2 could be adaptive.
As the estimate of the variance in Equation (10) involves the mean of the averaged load which is computed by Equation (11), an offset factor δ is required to ensure that the variance is un-biased. Therefore, a quantity δ is introduced to ensure that the variance is un-biased. The quantity δ is given by:
as disclosed in “Estimation of Variance by a recursive equation”, by M. M. Bruce, National Aeronautics and Space Administration (NASA), technical report TN D-5465, October 1969.
In the case where β1<<1, which is often assumed for smooth filtering, δ≈1. Without much loss of generality, and for the sake of simplicity, it can be assumed that β1 and β2 have the same value β′, i.e. that β1=β2=β′.
Thus, Equations (10) and (11) respectively reduce to:
σk2(t)=(1−β)σk2(t−1)+β′(ρk(t)−
In order to address the issue of load variability, a reasonable value of β is selected such that it is small enough to ensure that the load variability is acceptable while large enough to ensure that the system response time is acceptable. This is achieved by ensuring that the level of variation χk(t) of the load ρk(t) is maintained at (or around) a certain target value by adapting β appropriately. The target value is chosen by an operator based on the level of fluctuation of the load and the level of response time due to the changing load that is required.
The method starts at time t=0 (step 30). In step 32, the load ρk(t) of cell k is measured according to Equation (8). In step 34, the average of the measured load
The average of the measured load
where Round is a round-off function. For example, Round(10.2)=10.
In step 36, it is checked whether a predetermined period of time has expired, i.e. it is checked whether the time t is equal to a predetermined time T. If the predetermined period of time has not expired, the time t continues to increase (step 38) and the process of steps 32 to 36 is repeated, i.e. the load ρk(t) of cell k is again measured, the average of the load
Once the time t reaches the predetermined time T, it is determined whether the level of variation χk(t) of the load of cell k at time t is less than {tilde over (χ)}k (which is a target value that quantifies the level of fluctuation of the load ρk(t) of cell k) minus a hysteresis value Δχk(1).
If the level of variation χk(t) of the load of cell k at time t is less than the target value {tilde over (χ)}k minus the hysteresis value Δχk(1), then β is adapted by dividing it by a predetermined constant α (step 42), the time is reset to zero (step 44), and the process is repeated, starting with measuring the load ρk(t) of cell k at step 32. The predetermined constant α is a value that is less than one, i.e. α<1, such that when β/α, the new value of β is larger than the original value of β, i.e. β is increased. The fact that β is increased means that a smaller fraction will be taken of the previous value of the load and a larger fraction will be taken of the estimated current value of the load, in Equations (3) and (5).
If the level of variation χk(t) of the load of cell k at time t is not less than the target value {tilde over (χ)}k minus the hysteresis value Δχk(1), it is determined whether the level of variation χk(t) of the load of cell k at time t is greater than the target value {tilde over (χ)}k plus a hysteresis value Δχk(2).
If the level of variation χk(t) of the load of cell k at time t is not greater than the target value {tilde over (χ)}k plus the hysteresis value Δχk(2), the time is reset to zero (step 44) and the process is repeated, starting with measuring the load ρk(t) of cell k at step 32.
If the level of variation χk(t) of the load of cell k at time t is greater than the target value {tilde over (χ)}k plus the hysteresis value Δχk(2), then β is adapted by multiplying it by the predetermined constant α (step 42), the time is reset to zero (step 44) and the process is repeated, starting with measuring the load ρk(t) of cell k at step 32. Here, the predetermined constant α is used to reduce the value of β in case the fluctuation is larger than the target value {tilde over (χ)}k (plus a hysteresis value Δχk(2)). In other words, the predetermined constant α is simply a multiplicative constant having a value less than 1, which is used to reduce the value of β. The fact that β is reduced means that a larger fraction will be taken of the previous value of the load and a smaller fraction will be taken of the estimated current value of the load, in Equations (3) and (5).
If the filter coefficient β is greater than a predetermined maximum value, i.e. if β>βmax, then the filter coefficient β is capped to the predetermined maximum value βmax, if necessary. Similarly, if the filter coefficient β is less than a predetermined minimum value, i.e. if β<βmin, then the filter coefficient β is capped to the predetermined minimum value βmin, if necessary. This avoids the filter coefficient β being set to potentially extreme values.
As can be seen in
As can be seen in
With reference to
The approach for handover provided by the disclosure involves estimating the Signal-to-Interference and Noise Ratio (SINR) of the UE that would result if the handover were carried out, taking into account sub-band specific power allocation when making this estimation, and then estimating the corresponding load of the cell. The estimations are carried out by a downlink scheduler of an eNB.
Let Pk=(Pk,1, Pk,2, . . . , Pk,j) be a vector of downlink power for the eNB of a cell k, where Pk,j is the power allocated to sub-band j by the eNB of cell k, and where
Let γn,j(k) be the downlink Signal-to-Interference and Noise Ratio (SINR) at the j-th sub-band of UE n, which is served by the eNB of cell k. The SINR at the j-th sub-band of UE n can be expressed as:
where the quantity N0 is the background noise power, Pk′,j is the power allocated to sub-band j by the eNB of an interfering cell k′ to UE n, gk′,n is the average downlink long-term path gain between the eNB of the interfering cell k′ and the UE n, and gk,n is the average downlink long-term path gain between the eNB of the serving cell k (which is the serving eNB) and the UE n. The background noise power N0 is assumed to be common for all UEs and could be measured, for example, via a Network Listen Mode (NLM).
The average downlink long-term path gain gk,n between the serving eNB of cell k and the UE n can be expressed as:
where
Assuming that the average downlink long-term path gain gk,n between the serving eNB of cell k and the UE n, the average downlink long-term path gain gk′,n between the eNB of interfering cell k′ and the UE n, and the background noise power N0 are known, the calculation of γn,j(k) requires knowledge of the power Pk,j allocated to sub-band j by the eNB of serving cell k and knowledge of the power Pk,j allocated to sub-band j by the eNB of interfering cell k′.
As mentioned previously, the UE n can measure the RSRP and can report the RSRP back to the serving eNB of cell k. However, the UE n does not have the capability to measure the sub-band specific received power, nor does the broadcast channel provide the sub-band specific transmit power information.
It is possible to obtain sub-band specific information of neighbouring cells via the interface that connects the basestations of those cells (the X2 interface). The sub-band specific information could be sent as part of a Relative Narrowband Transmit Power (RNTP) information element that is included in a Load Indication message sent by the basestations of the neighbouring cells. Essentially, the sub-band specific information consists of a bitmap of T bits, which correspond to T physical resource blocks (PRBs). A zero at PRB index i corresponds to a transmit power that is below a specified threshold Pth, and a one at PRB index i corresponds to a transmit power that is above the specified threshold Pth.
The downlink scheduler operates at a frequency resolution of a sub-band, which consists of a multiple of PRBs. Also, it is assumed that the algorithm used to adapt power operates in a resolution of sub-bands. Therefore, for the sake of simplicity without the loss of generality, a bitmap of J sub-bands instead of T PRBs is assumed.
Furthermore, it is assumed that the system is operating under a dynamic frequency reuse scheme which has the flexibility to allocate a low power level Pk(l) and a high power level Pk(h) for cell k to different sub-bands within a total of J sub-bands, where
0≦Pk(l)≦Pth≦Pk(h)≦Pk. (17)
Then, the ratio of the high power level to the low power level is defined as
and the RNTP bitmap is given by:
ηk=(ηk,1,ηk,2, . . . ,ηk,j) (18)
From Equation (18), the power Pk′,j allocated to sub-band j by the eNB of interfering cell k′ can be expressed as:
where |ηk′| is the magnitude of the vector ηk′.
The same procedure applies to compute the power Pk,j allocated to sub-band j by the eNB of serving cell k, except that the vector ηk is known internally by the eNB of serving cell k, which means that extra transmissions over the X2 interface are unnecessary.
If the target eNB of a neighbour cell k* decides to serve the UE selected for handover using the low and high power sub-bands, the average bit rate Rk* for neighbour cell k* per low power sub-band l and per high power sub-band h can respectively be expressed as:
where Ωk*(l) corresponds to the set of sub-band indices allocated with the low power level Pk*(l) for neighbour cell k* and Ωk*(h) corresponds to the set of sub-band indices allocated with the high power level Pk*(h) for neighbour cell k*. The term α(l) corresponds to an estimate of the number of sub-bands used for UEs transmitting at the low power level for neighbour cell k* and the term α(h) corresponds to an estimate of the number of sub-bands used for UEs transmitting at the high power level for neighbour cell k*. If it is not possible to estimate the number of sub-bands used for UEs transmitting at the low and high power levels, the estimates can simply be set to 1.
One example of the function ƒ(γn,j(k*))=ƒ(x) could be the Shannon's formula, which is given by:
where the constant C models the gap from a theoretical maximum information transfer rate of a channel (known as the Shannon limit), for a particular noise level.
Subsequently, the approximation of the potential load contribution of the UE to the target eNB of the neighbour cell k* is given by:
In a typical scenario, the target eNB would normally allocate sub-bands with a higher power to UEs at the edge of the cell (cell-edge UEs). Thus, the potential load contribution may be reduced to:
If the sum of current total load at the target neighbour cell k* plus the potential load contribution due to UE n is below a certain threshold, the serving cell k would then handover UE n to target neighbour cell k*. It is noted that the target neighbour cell k* is assumed to perform its own admission control before user n is admitted officially. However, this load contribution at the serving cell k would reduce the potentially unnecessary signalling by eliminating unrealistic handovers.
Number | Date | Country | Kind |
---|---|---|---|
1221519.0 | Nov 2012 | GB | national |
This application is a continuation (and claims the benefit of priority under 35 U.S.C. §120) of U.S. application Ser. No. 14/088,165, filed Nov. 22, 2013, entitled “LOAD ESTIMATION AND LOAD MANAGEMENT IN A CELLULAR COMMUNICATIONS NETWORK,” Inventors Raymond Kwan et al., which claims priority from the patent application filed in the United Kingdom on Nov. 29, 2012, having Application Serial No. GB 1221519.0 entitled “LOAD ESTIMATION AND LOAD MANAGEMENT IN A CELLULAR COMMUNICATIONS NETWORK,” which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
9374726 | Kwan et al. | Jun 2016 | B2 |
20020077111 | Spaling et al. | Jun 2002 | A1 |
20040053630 | Ramos et al. | Mar 2004 | A1 |
20050265299 | Franceschini et al. | Dec 2005 | A1 |
20070127522 | Lundh et al. | Jun 2007 | A1 |
20090245329 | Bocquet | Oct 2009 | A1 |
20120270593 | Park | Oct 2012 | A1 |
20120302244 | Sridhar | Nov 2012 | A1 |
20140148149 | Kwan et al. | May 2014 | A1 |
20160150442 | Kwan et al. | May 2016 | A1 |
Number | Date | Country |
---|---|---|
2496908 | May 2013 | GB |
2508381 | Jun 2014 | GB |
WO2008135583 | Nov 2008 | WO |
Entry |
---|
UKIPO May 14 2013, Patents Act 1977: Search Report under Section 17, GB Application No. GB1221519.0, 1 page. |
Nov. 12, 2015 Notice of Allowance from U.S. Appl. No. 14/088,165. |
Bruce, M. Melvin, “Estimation of Variance by a Recursive Equation,” Langley Research Center Langley Station, Hampton, VA, National Aeronautics and Space Administration Washington, D.C., Oct. 1969; 31 pages. |
USPTO Sep. 29, 2016 Non-Final Office Action from U.S. Appl. No. 15/012,148. |
Number | Date | Country | |
---|---|---|---|
20160165485 A1 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14088165 | Nov 2013 | US |
Child | 15012016 | US |