Load indicators for personal restraint systems and associated systems and methods

Information

  • Patent Grant
  • 10086795
  • Patent Number
    10,086,795
  • Date Filed
    Monday, October 3, 2016
    8 years ago
  • Date Issued
    Tuesday, October 2, 2018
    6 years ago
Abstract
Buckle assemblies having load indicating features and associated systems and methods are disclosed herein. In one embodiment, a buckle assembly includes a tang having an opening that receives a web to secure the buckle assembly to a vehicle or a seat structure. The tang also includes an elongate aperture and one or more deformable protrusions along the edge of the aperture. The tang is operably coupled to a buckle frame via a coupling member that extends through the aperture. Upon the application of a sufficient load to the tang, the coupling member deforms the protrusion(s), allowing the tang to move relative to the frame. Movement of the tang relative to the frame can move a colored load indicating region to a position that is visible through a window in a housing of the buckle assembly.
Description
TECHNICAL FIELD

The following disclosure relates generally to load indicators for use in personal restraint systems and, more particularly, to load indicators and associated systems and methods that can provide an indication that a personal restraint system has sustained a load of a predetermined value.


BACKGROUND

A variety of vehicles include restraint systems that can restrain operators or passengers during crashes or other acceleration/deceleration events. In general, most components used in these restraint systems are relatively robust. Even so, many of these components can be damaged or otherwise compromised by crashes or other load producing events. For example, even relatively minor crashes can subject nylon webbing to loads that may reduce the webbing's performance in a subsequent crash. Additionally, although the forces generated by individual minor crashes may not be significant, the repeated application of these forces via significant numbers of individual minor crashes may damage or compromise the performance of more robust components of the restraint systems (e.g., D-rings, mounting brackets, mounting bolts, etc.).


Some types of vehicles can subject their associated restraint systems to significant forces more frequently than other types of vehicles. For example, off-road recreational utility vehicles (RUVs) are often driven in manners that subject the associated restraint systems to significant loads, including loads sustained during aggressive driving over rough terrain and loads sustained via minor crashes. These loads can damage components of the restraint systems, and a routine visual inspection may not be sufficient to determine whether a component has been compromised. Additionally, damaged or compromised components may be located in positions where they are not visible without the removal or disassembly of other components. Moreover, multi-passenger vehicles that are engaged in accidents may not be fully occupied, and the restraint systems in the unoccupied seats may be unnecessarily replaced because there is no way to determine if they were subjected to a significant load that could compromise their performance. The unnecessary replacement of restraint systems can be particularly expensive in mass-transit vehicles, charter buses, and other high capacity vehicles.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an isometric view of a buckle assembly configured in accordance with an embodiment of the present technology.



FIG. 2 is an exploded isometric view of a buckle assembly and a connector configured in accordance with an embodiment of the present technology.



FIG. 3 is an isometric view of a connector and a portion of a buckle assembly configured in accordance with an embodiment of the present technology.



FIG. 4 is an exploded isometric view of several components of a buckle assembly configured in accordance with an embodiment of the present technology.



FIG. 5 is a top view of a buckle assembly tang configured in accordance with an embodiment of the present technology.



FIGS. 6 and 7 are top views of several components of a buckle assembly, and illustrate operation of a load indicating feature configured in accordance with an embodiment of the present technology.



FIGS. 8A and 8B are isometric and side views, respectively, illustrating several components of a buckle assembly prior to being subjected to a design-level load.



FIGS. 9A and 9B are isometric and side views, respectively, illustrating the buckle assembly of FIGS. 8A and 8B after being subjected to a design-level load.





DETAILED DESCRIPTION

The following disclosure describes various embodiments of load indicators and associated systems and methods. In some embodiments, a buckle assembly for a personal restraint system includes a load indicator. For example, a buckle assembly configured in accordance with one embodiment of the present technology includes a tang having an opening that receives a web to secure the buckle assembly to a vehicle or seat structure. The tang is operably coupled to a buckle frame via a coupling member that extends through a deformable aperture in the tang. In this embodiment, the aperture is generally elongate, and the tang includes one or more protrusions around the edge of the aperture. Upon the application of a sufficient load to the tang, the coupling member deforms the protrusion(s), allowing the tang to move relative to the frame. In several embodiments, the buckle assembly includes a load indicator that is coupled to the tang, and a housing having a window. The load indicator includes a load indicating region, and movement of the tang moves the load indicating region from a first position away from the window to a second position adjacent the window. In the second position, the load indicating region is visible through the window. In other embodiments, the devices, systems and associated methods can have different configurations, components, and/or procedures. Still other embodiments may eliminate particular components and/or procedures. A person of ordinary skill in the relevant art, therefore, will understand that the present technology, which includes associated devices, systems, and procedures, may include other embodiments with additional elements or steps, and/or may include other embodiments without several of the features or steps shown and described below with reference to FIGS. 1 to 9B.


As discussed above, personal restraint systems can be subjected to loads that can damage or compromise various components without causing readily apparent signs of such damage. Although some devices have been developed to provide an indication of a high-load event, these devices often include complex components that are susceptible to failure when exposed to harsh conditions, or only provide an indication after a very high load, e.g., a head-on collision at 45 miles per hour. For example, many existing load indicating devices do not provide any indication of loads that may be relatively high, e.g., a head-on collision at 10 miles per hour. Single occurrences of such loads are unlikely to compromise any components, and many vehicles (including street legal automobiles), are generally not repeatedly subjected to such relatively high loads. However, other types of vehicles may subject their restraint systems to repeated applications of relatively high loads. Military vehicles and RUVs, for example, are often driven and utilized in manners that repeatedly produce relatively high loads on the restraint systems.


The present technology includes several embodiments of buckle assemblies and restraint system components that can provide an indication that an associated restraint system has experienced a load that could compromise the function and performance of the restraint system. Such a load may result from, e.g., a crash. Moreover, the embodiments disclosed herein can include load indicating components that can be tailored for specific load values. For example, buckle assembly components (including tangs and/or frames) and other restraint system components can include features that can be constructed to be deformed or crushed at a particular load value or design-level load. As used herein, the term “design-level load” refers to the load value at which the components are designed to provide the associated indication. The deformation or crushing of the features that results from the application of a design-level load can provide for relative motion between components of the restraint system, and provide an associated indication that the system has sustained a design-level load.


Certain details are set forth in the following description and FIGS. 1 to 9B to provide a thorough understanding of various embodiments of the disclosure. To avoid unnecessarily obscuring the description of the various embodiments of the disclosure, other details describing well-known structures and systems often associated with buckle assemblies, personal restraint systems, and the components or devices associated with the manufacture of buckle assemblies and personal restraint systems are not set forth below. Moreover, many of the details and features shown in the Figures are merely illustrative of particular embodiments of the disclosure. Accordingly, other embodiments can have other details and features without departing from the spirit and scope of the present disclosure. In addition, the various elements and features illustrated in the Figures may not be drawn to scale. Furthermore, various embodiments of the disclosure can include structures other than those illustrated in the Figures and are expressly not limited to the structures shown in the Figures.



FIG. 1 is an isometric view of a buckle assembly 100 configured in accordance with an embodiment of the present disclosure. In the illustrated embodiment, the buckle assembly 100 includes a housing 102 having a window 104, a first opening 106 and a second opening 108. A connector 110 having a web opening 112 can be inserted into the first opening 106 to couple the connector 110 to the buckle assembly 100. A tang 114 having a web opening 116 extends outwardly from the housing 102 through the second opening 108. The connector web opening 112 and the tang web opening 116 can each be coupled to a corresponding web or other restraint system component to secure an occupant of a vehicle in his or her seat. For example, a first portion of a lap belt (not shown) can be fastened to the connector web opening 112, and a second portion of a lap belt can be fastened to the tang web opening 116. As described in more detail below, when the vehicle experiences a crash or other event that produces a load above certain magnitude, the window 104 can display an indication that the buckle assembly 100 has been subjected to a design-level load.



FIG. 2 is an exploded isometric view of the buckle assembly 100 and the connector 110 configured in accordance with an embodiment of the present technology. FIG. 3 is an isometric view of the connector 110 and a portion of the buckle assembly 100 configured in accordance with an embodiment of the present technology. As shown in FIG. 2, the housing 102 contains or at least partially contains several internal components of the buckle assembly 100. Several of the buckle's internal components, however, are not shown in FIG. 3 for ease of illustration.


Referring to FIGS. 2 and 3 together, the housing 102 includes an upper portion 202 and a lower portion 204. The upper portion 202 is removably secured to the lower portion 204 via a pair of fasteners (e.g., screws) 206. The buckle assembly 100 includes a frame 208 having a pair of first openings 210 and a pair of second openings 212. A pawl 214 having a pair of opposing tabs 216 and a latch 218 can be pivotally coupled to the frame 208. For example, the tabs 216 can be received in the first openings 210, and the pawl 214 can pivot about the tabs 216 to releasably position the latch 218 within a latch opening 219 in the connector 110, and thereby releasably couple the connector 110 to the buckle assembly 100. A locking pin 220 can be received in the second openings 212 and can retain the pawl 214 in the latched position.


The buckle assembly 100 also includes a pawl extension 222 that can be coupled to the pawl 214. The pawl extension 222 has a contact feature 224 and a spring mount 226. A release button 228 having a spring mount 230 can be positioned to release the connector 110 by acting on the pawl 214 via the pawl extension 222. For example, the release button 228 can be positioned to extend into the housing 102 through the first opening 106 and engage a first biasing member or first spring 232. The first spring 232 extends between the pawl extension spring mount 222 and the release button spring mount 230, biasing the release button 228 toward the first opening 106 in the housing 102. A release button insert 233 is positioned between the housing upper portion 202 and the release button 228. The release button 228 slidably straddles the frame 208, and the release button insert 233 engages slots on the frame 208 to provide a hard stop when the release button 228 is fully depressed into the first opening 106.


The release button 228 can be actuated to release the connector 110 with the assistance of an ejector 234. The ejector 234 is slidably coupled to the frame 208 and biased toward the first opening 106 by a second biasing member or second spring 236. Depressing the release button 228 releases the locking pin 220, and rotates the latch 218 out of the latch opening 219. With the latch 218 released, the second spring 236 urges the ejector 234 against the connector 110, ejecting the connector 110 from the buckle assembly 100.


The tang 114 can be coupled to the frame 208 via a coupling member 238. In the illustrated embodiment, the coupling member 238 includes a first head portion 240, a central portion 242 and a second head portion 244. As described in more detail below, the second head portion 244 can be formed via swedging that is performed after the coupling member has been inserted through apertures in the frame 208 and the tang 114. A load indicator 246 having an upper portion 248 and an indicating region 250 can be coupled to the tang 114; and a switch 252 having an actuator 254 can be coupled to the indicator 246 so that the contact feature 224 on the pawl extension 222 can contact the actuator 254 to operate the switch 252, as described further below. A majority of the upper portion 248 of the load indicator 246 can have a first color (e.g., grey), and the load indicating region 250 can have a second color (e.g., bright red).



FIG. 4 is an exploded isometric view of the frame 208, the coupling member 238 and the tang 114 configured in accordance with an embodiment of the present technology. In the illustrated embodiment, the frame 208 includes a first aperture 402 and the tang 106 includes a second aperture 404. The first aperture 402 and the second aperture 404 are shaped to receive the coupling member 238 to couple the tang 114 to the frame 208. As described in more detail further below, the first aperture 402 can be an anchor aperture that maintains the coupling member 238 in a fixed position relative to the frame 208, even when the buckle assembly 100 is subjected to a design-level load. As also described further below, the second aperture 404 can be a “load” aperture that provides for relative motion between the coupling member 238 and the frame 208 when the buckle assembly 100 is subjected to a design-level load. In several embodiments, the tang 114, the frame 208, the coupling member 238 and/or other components of the buckle assembly 100 can be made from a metal or a metal alloy. In other embodiments, these and/or other components can be made from composite materials, plastics, and/or other materials.



FIG. 5 is a top view of the tang 114 configured in accordance with an embodiment of the present technology. In the illustrated embodiment, the second aperture 404 is a non-circular opening (e.g., an elongated or slightly figure-8 shaped opening). More specifically, the tang 114 includes a pair of slight, inwardly facing protrusions 502 (identified individually as a first protrusion 502a and a second protrusion 502b) on opposing edges of the second aperture 404. The protrusions 502 at least partially define the second aperture 404, which includes a first end portion 504 and a second end portion 506. The second aperture 404 can be formed in a variety of manners. For example, the second aperture 404 can be formed by drilling or stamping the tang 404 with a drill bit or a circular stamp in two locations (identified as location A and location B) that are separated by a distance that is less than the diameter of the drill bit or stamp. In the illustrated embodiment, the width WA,B of the second aperture 404 at the locations A and B is slightly larger than the diameter of the central portion 242 of the coupling member 248. Accordingly, the central portion 242 of the coupling member 238 can extend through the first end portion 504 of the second aperture 404. Additionally, the second aperture 404 can be shaped such that a width WP at the protrusions 502 is less than the diameter of the central portion 242 of the coupling member 238. Accordingly, when the coupling member 238 extends through the first end portion 504 of the second aperture 404, the protrusions 502 can prevent the coupling member 238 from moving to the second end portion 506.


Referring to FIGS. 3-5 together, the tang 114 can be operably coupled to the frame 208 by extending the coupling member 238 through the first aperture 402 and the second aperture 404. In particular, prior to forming the swedged second head portion 244, the coupling member 238 can be inserted through the first aperture 402 with the second head portion 240 adjacent an underside of the frame 208. The tang 114 can then be positioned over the coupling member 238 such that the central portion 242 extends upwardly through the first end portion 504 of the second aperture 404. The second head portion 244 can then be formed via e.g., swedging to secure the tang 114 to the frame 208. Formation of the second head portion 244 secures the coupling member 238 within the first aperture 402 and within the first end portion 504 of the second aperture 404. In several embodiments, the tang 114 and the frame 208 can be aligned, and the coupling member 238 can be a rivet that is shot through the first aperture 402 and the first end portion 504 of the second aperture 404.



FIGS. 6 and 7 are top views of the buckle assembly 100 illustrating operation of the load indicating feature in accordance with an embodiment of the present technology. FIG. 6 depicts the buckle assembly 100 prior to exposure to a design-level load, and FIG. 7 depicts the buckle assembly 100 subsequent to exposure to a design-level load. Some of the components of the buckle assembly 100 have been omitted from FIGS. 6 and 7 for purposes of clarity. Referring to FIGS. 6 and 7 together, application of a design-level load to the buckle assembly 100 results in relative movement between the tang 114 and the frame 208, moving these components away from one another (as shown by arrows L1 and L2) and from a first position to a second position. Specifically, when loads in the directions of L1 and L2 are applied to the buckle assembly 100 (via the tang 114 and the frame 208), the protrusions 502 provide the only obstructions initially preventing the coupling member 238 from moving from the first end portion 504 of the second aperture 404 to the second end portion 506. If the load is equal to or greater than a design-level load, then the tension forces acting in opposite directions on the tang 114 and the frame 208 cause the coupling member 238 to deform the protrusions 502, and force them outwardly. The tang 114 and the frame 208 then pull away from one another in the direction of L1 and L2, moving from the first position in which the coupling member 238 is positioned in the first end portion 504 of the second aperture 404 (as shown in FIG. 6), to the second position in which the coupling member 238 is positioned in the second end portion 506 (as shown in FIG. 7).



FIGS. 8A to 9B are isometric and side views of several components of the buckle assembly 100 configured in accordance with an embodiment of the present technology. In particular, FIGS. 8A and 8B are isometric and side views, respectively, illustrating several components of the buckle assembly 100 prior to being subjected to a design-level load, and FIGS. 9A and 9B are isometric and side views, respectively, illustrating these same components after being subjected to a design-level load.


Referring to FIGS. 1, 6, 8A and 8B together, prior to application of a design-level load, the tang 114 is in the first position with respect to the frame 208. In the first position, the coupling member 238 extends through the first end portion 504 of the second aperture 404, the load indicating region 250 is not adjacent the window 104 (FIG. 1), and the contact feature 224 of the pawl extension 222 engages the switch actuator 254. Referring to FIGS. 1, 7, 9A and 9B together, after application of a design-level load to the buckle assembly 100, the tang 114 and the frame 208 move away from one another, and the coupling member 238 moves from the first end portion 504 of the second aperture 404 to the second portion 506, as described above. As shown in FIGS. 9A and 9B, after the application of the design level load and the associated movement of the tang 114 relative to the frame 208, the load indicating region 250 has translated in the direction of L1 with respect to the frame 208, and the contact feature 224 is spaced apart from the switch actuator 254. Additionally, the load indicating region 250 is adjacent the window 104 (FIG. 1), and the color of the load indicating region 250 (e.g., bright red) is visible through the window 104. Accordingly, application of the design-level load changes the color visible through the window 104 from the first color (e.g., grey) to the second color (e.g., bright red). The change of color provides an indication to a user of the associated restraint system that the restraint system has been subjected to a design-level load, and that components need to be repaired or replaced.


In some embodiments, the switch 252 can provide an additional notification to a user of the restraint system that the system has sustained a design-level load. For example, in one embodiment, depressing the switch actuator 254 deactivates a seatbelt warning system that includes, e.g., one or more lights that illuminate and/or a buzzer that sounds when the associated vehicle is running and the connector 110 is not inserted in the buckle assembly 100. In normal operations, insertion of the connector 110 into the buckle assembly 100 causes the contact feature 224 to depress the actuator 254 and deactivate the seatbelt warning system. Application of a design-level load, however, moves the tang 114 relative to the frame 208, thereby moving the switch actuator 254 and the contact feature 224 away from one another and preventing deactivation of the seatbelt warning system. Specifically, prior to the application of a design-level load to the buckle assembly 100, the tang 114 is in the first position with respect to the frame 208 (FIGS. 8A and 8B). In the first position, insertion of the connector 110 into the buckle assembly 100 causes the contact feature 224 to engage the actuator 254. After the application of a design-level load, the tang 114 is in the second position with respect to the frame 208 (FIGS. 9A and 9B). In the second position, insertion of the connector 110 into the buckle assembly 100 does not actuate the switch 252 because the contact feature 224 is spaced apart from the actuator 254 and cannot reach the actuator 254. Accordingly, after a design-level load, insertion of the connector 110 into the buckle assembly 100 will not deactivate the seatbelt warning system. This provides another indication to a user of the restraint system that components need to be repaired or replaced.


Embodiments configured in accordance with the present technology can absorb and dissipate energy generated during crashes, thereby improving user safety. For example, the deformation of the protrusions 502 absorbs energy during a crash event and thereby reduces the forces exerted on the vehicle occupant.


Several embodiments configured in accordance with the present technology can be designed to quickly and easily replace an existing buckle assembly in a vehicle. For example, the buckle assembly 100 can include electrical connectors or leads that can match existing connectors in a vehicle, and the switch 252 can provide indications in a manner that is at least generally similar to a switch in an existing restraint system. Accordingly, in vehicles having seatbelt warning systems, the buckle assembly 100 can be retrofitted to replace an existing buckle assembly and provide the same indications of a buckled seatbelt as the prior buckle assembly. However, in the event of a design-level load, the buckle assembly 100 will not provide a signal when the seatbelt is buckled. Hence, the buckle assembly 100 can provide enhanced features to an existing vehicle by providing a warning via the vehicle's existing electrical system.


In several embodiments, the present technology can provide additional safety features. For example, several vehicle types (including some RUVs) have a “limp-home” feature that is activated by a computer system based on sensor data or other electronic inputs. The limp-home mode often limits the vehicle to a relatively low speed and may be activated due to an adverse engine condition (e.g., overheating) or some other malfunction or adverse condition. In several embodiments, the buckle assemblies disclosed herein can be added to an existing vehicle and integrated with the limp-home mode. For example, the switch 252 can be connected to the vehicles electrical system and can activate the limp-home mode when the switch 252 is not actuated via the actuator 254. This can enhance the safety of the associated vehicle by limiting the speed after a design-level load has been sustained until components of the restraint system have been repaired or replaced.


The shape of the second aperture 404 and the material type and thickness of the tang 114 can be configured to provide for deformation of the protrusions 502 at any of a variety of design-level loads. For example, increasing the thickness of the tang 114, increasing the prominence of the protrusions 502, or increasing the strength of the material for the tang 114 can provide a corresponding increase in the design-level load at which the buckle assembly 100 provides an indication. These features can be selected and modified to match or correspond to a calculated design-level load. In one example, if a component of the restraint system suffers failure at a load of X, the buckle assembly 100 can be designed to provide an indication of a design-level load at 50% of X. In such a system, the design-level load includes a safety factor that sets the indication substantially below the failure point of the component.


In several embodiments, the second aperture 404 can include alternative shapes or features. For example, rather than two protrusions 502, a single protrusion 502 can be employed. In another example, the second aperture 404 can include two openings separated by a portion of the tang 114 that extends therebetween. In one such embodiment, the second aperture 404 includes two circular openings that each have a diameter slightly larger than the central portion 242 of the coupling member 238. The two circular openings can be drilled or stamped with a small separation between each of the openings. Similar to embodiments described above, the coupling member 238 can be positioned to extend through one of the openings. Application of a design-level load to the associated buckle assembly causes the coupling member to break or deform the portion of the tang 114 between the two openings, thereby allowing the coupling member to move from one opening to the other. Additionally, although several embodiments described herein include an elongate second aperture or load aperture in the tang 114, in other embodiments, the tang 114 can include a round first aperture or anchor aperture, and an elongate second aperture or load aperture can be formed in the frame 208.


In other embodiments, other load absorbing features can be used to maintain the relative position of the tang 114 and the frame 208 during normal operations, but allow for movement and load indication upon the application of a design-level load. For example, load absorbing components or materials can be attached to the tang 114 or the frame 208. In one embodiment, a load absorbing component includes a honeycomb structure that is positioned to resist movement of the tang 114 away from the frame 208. Upon the application of a design-level load, the coupling member 238 and/or another component crushes the honeycomb structure, allowing for relative motion between the frame 208 and the tang 114. In some embodiments, a strain gauge can be included in a buckle assembly, or can be attached or integrated with a restraint system's webbing. Additionally, a buckle assembly or other restraint system component or assembly can include electronic components (e.g., sensors, circuitry, processors, memory, etc.) that can measure and record the value of loads applied to the associated restraint system.


Although several embodiments described herein include buckle assemblies having load indicating features, other embodiments can include other restraint system components that provide load indicating features. For example, D-rings, mounting brackets, and other restraint system components can include load indicating features, including apertures with deformable protrusions.


Several embodiments can include alternative or additional features that can be used to provide an indication or enhance an indication. For example, in one embodiment a convex lens can be added to the window 104 to increase the visibility of the load indicating region 250. In another embodiment, a light (e.g., a light-emitting diode) can be positioned within the buckle assembly 100. Upon the application of a design-level load, movement of the frame 208, the tang 114, or other components can activate the light (e.g., via the switch 252 or via another switch or component) to provide a steady or flashing illumination. In some of these embodiments, the housing 102 or another component can include a window, a light tunnel, or another opening or feature for light emission. For example, in one embodiment, the release button 228 or a portion of the release button 228 can be translucent and a light positioned within the housing 102 can illuminate the release button 228.


The buckle assemblies disclosed herein can also include audio indicators that activate upon the application of a design-level load. For example, the switch 252 or another switch or component can be coupled to an electrical circuit that includes a speaker. The speaker can be positioned in the buckle assembly 100 or in an alternative location within the vehicle. Upon the application of a design-level load, movement of the frame 208, the tang 114, or other components can activate the speaker to provide an audio indication to an occupant of the associated vehicle.


Several buckle assemblies disclosed herein can include pop-up indicators that are activated upon the application of a design-level load. For example, a spring loaded indicator can be retained within a housing via a clip or a frangible component. The clip or frangible component can be positioned to be removed or sheared upon relative motion between the tang 114 and the frame 208. The removal of the clip or frangible portion can release the pop-up indicator, which can extend out of an opening in the housing 102.


Additionally, several embodiments configured in accordance with the present technology can include components that can prevent the insertion of a connector into the buckle assembly after the buckle assembly has been subjected to a design-level load. For example, in one embodiment, a spring actuated blocking mechanism can be activated by movement of the tang 114 relative to the frame 208. Upon subsequent removal of the connector 110 from the buckle assembly 100, the spring actuated blocking mechanism can move to block the opening 106 in the housing 102 and prevent reinsertion of the connector 110. In another embodiment, the buckle assembly 100 can include a solenoid that can be activated by a switch that is actuated when a design-level load is sustained. The solenoid can move a pin or other blocking mechanism that blocks the opening 106 when the connector 110 is removed.


From the foregoing, it will be appreciated that specific embodiments have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the present technology. Those skilled in the art will recognize that numerous modifications or alterations can be made to the components or systems disclosed herein. Moreover, certain aspects of the present technology described in the context of particular embodiments may be combined or eliminated in other embodiments. Further, while advantages associated with certain embodiments have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the present technology. Accordingly, the inventions are not limited except as by the appended claims.

Claims
  • 1. A buckle assembly, comprising: a frame having a first aperture;a tang having a second aperture, wherein the second aperture includes a first edge portion opposite a second edge portion, wherein the tang includes an inwardly facing protrusion on at least one of the first edge portion or the second edge portion of the second aperture, wherein the inwardly facing protrusion at least partially defines a first end portion of the second aperture and a second end portion of the second aperture; anda coupling member operably coupling the tang to the frame, wherein the coupling member extends through the first aperture in the frame and through the first end portion of the second aperture in the tang.
  • 2. The buckle assembly of claim 1 wherein the tang is movable relative to the frame via deformation of the inwardly facing protrusion and associated movement of the coupling member from the first end portion of the second aperture to the second end portion of the second aperture, in response to a design-level load applied to the tang.
  • 3. The buckle assembly of claim 2, further comprising an electrical switch mounted to the tang and operable to deactivate an occupant restraint system warning indicator when the coupling member extends through the first end portion of the second aperture.
  • 4. The buckle assembly of claim 2, further comprising a visual load indicator coupled to the tang, wherein movement of the tang relative to the frame moves the visual load indicator from a first position to a second position to visually indicate the application of the design-level load on the buckle assembly.
  • 5. The buckle assembly of claim 4, further comprising a housing having a window, wherein the visual load indicator includes a first portion having a first color and a second portion having a second color, and wherein the second portion is not visible through the window when the load indicator is in the first position, and the second portion is visible through the window when the load indicator is in the second position.
  • 6. The buckle assembly of claim 1 wherein the second aperture comprises a figure eight shaped opening in the tang.
  • 7. The buckle assembly of claim 1 wherein the second aperture is non-circular.
  • 8. The buckle assembly of claim 1, further comprising: a switch operably coupled to the tang;a pawl pivotally mounted to the frame; anda pawl extension coupled to the pawl, wherein the pawl extension is operable to actuate the switch upon insertion of a web connector into the buckle assembly.
  • 9. The buckle assembly of claim 1, further comprising a load indicator operable to provide an indication of the position of the coupling member within the second aperture.
  • 10. A buckle assembly for releasably engaging a web connector, the buckle assembly comprising: a frame having a first aperture;a pawl pivotally attached to the frame and having a latch positioned to releasably engage the web connector;a tang having a second aperture that includes a first end portion and a second end portion, wherein the tang includes a first inwardly facing obstruction on a first edge portion of the second aperture and a second inwardly facing obstruction on a second opposing edge portion of the second aperture, wherein the first obstruction and the second obstruction are positioned between the first end portion and the second end portion; anda coupling member extending through the first aperture and the first end portion of the second aperture to secure the tang to the frame, wherein the obstructions are deformable under a design-level load to permit movement of the coupling member from the first end portion to the second end portion.
  • 11. The buckle assembly of claim 10, further comprising a housing having a window, and a load indicator having a load indicating region, wherein movement of the coupling member from the first end portion of the second aperture to the second end portion includes movement of the load indicating region to a position adjacent to the window.
  • 12. The buckle assembly of claim 10 wherein the second aperture includes a figure eight shape.
  • 13. The buckle assembly of claim 10, further comprising an electrical switch positioned such that engagement of the web connector with the buckle assembly actuates the switch when the coupling member extends through the first end portion of the second aperture.
  • 14. The buckle assembly of claim 13 wherein engagement of the web connector with the buckle assembly does not actuate the switch when the coupling member extends through the second end portion of the second aperture.
  • 15. The buckle assembly of claim 13, further comprising a pawl extension coupled to the pawl, wherein the pawl extension is operable to actuate the switch via rotation of the pawl.
  • 16. The buckle assembly of claim 10 wherein the design-level load is applied via forces acting on the tang and on the pawl.
  • 17. A load indicating buckle assembly, comprising: a frame having a first aperture;a tang having a second aperture, wherein one of the first aperture and the second aperture is circular, and the other of the first aperture and the second aperture is elongated, and wherein inwardly facing protrusions on opposing edge portions of the elongated aperture at least partially define a first end portion and a second end portion of the elongated aperture; anda coupling member extending through the circular aperture and the first end portion of the elongated aperture to secure the tang to the frame, wherein the protrusions are deformable under a design-level load to permit movement of the coupling member from the first end portion to the second end portion.
  • 18. The buckle assembly of claim 17, further comprising a pawl rotatably coupled to the frame, and a switch, wherein application of the design-level load includes movement of the switch from an actuable position to a non-actuable position.
  • 19. The buckle assembly of claim 18, further comprising a pawl extension coupled to the pawl, wherein the pawl extension includes a contact feature positioned to engage the switch via rotation of the pawl.
  • 20. The buckle assembly of claim 17, further comprising a load indicator having an indicating region, wherein application of the design-level load includes movement of the indicating region from a non-visible position to a visible position.
  • 21. The buckle assembly of claim 17 wherein the coupling member includes a cylindrical central portion, and wherein the cylindrical central portion extends through the circular aperture and the elongated aperture.
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims priority to U.S. Provisional Application No. 62/236,792, filed Oct. 2, 2015, and titled “Load Indicators for Personal Restraint Systems and Associated Systems and Methods,” which is incorporated herein by reference in its entirety.

US Referenced Citations (377)
Number Name Date Kind
906045 Martin Dec 1908 A
1079080 Ward Nov 1913 A
1369456 Meredith Feb 1921 A
1438898 Carpmill Dec 1922 A
1816262 Ritter Jul 1931 A
1930378 Beagan Oct 1933 A
2132556 Blackshaw Oct 1938 A
2255258 Lethern et al. Sep 1941 A
2372557 Dowd Mar 1945 A
2393178 Manson Jan 1946 A
2437585 Zimmern Mar 1948 A
2482693 Rogers et al. Sep 1949 A
2538641 Elsner Jan 1951 A
2549841 Morrow et al. Apr 1951 A
2639852 Sanders et al. May 1953 A
2641813 Loxham Jun 1953 A
2668997 Irvin et al. Feb 1954 A
2710999 Davis Jun 1955 A
2763451 Moran Sep 1956 A
2803864 Bishaf Aug 1957 A
2845233 Pfankuch et al. Jul 1958 A
2846745 Lathrop Aug 1958 A
2869200 Phillips et al. Jan 1959 A
2876516 Cummings Mar 1959 A
2892232 Quilter Jun 1959 A
2893088 Harper et al. Jul 1959 A
2899732 Cushman Aug 1959 A
2901794 Prete, Jr. Sep 1959 A
2921353 Cushman Jan 1960 A
2938254 Gaylord May 1960 A
D188897 Prete, Jr. Sep 1960 S
2964815 Sereno Dec 1960 A
2965942 Carter Dec 1960 A
3029487 Shinichro Apr 1962 A
3034596 Twaits, Jr. May 1962 A
3084411 Lindblad Apr 1963 A
3091010 Davis May 1963 A
3104440 Davis Sep 1963 A
3110071 Higuchi Nov 1963 A
3118208 Wexler Jan 1964 A
3132399 Cooper May 1964 A
3137907 Unai Jun 1964 A
D198566 Holmberg Jul 1964 S
3142103 Lindblad Jul 1964 A
3142968 Basham et al. Aug 1964 A
3145442 Brown Aug 1964 A
3165805 Lower Jan 1965 A
3178226 Cates Apr 1965 A
3179992 Murphy, Sr. Apr 1965 A
3183568 Gaylord May 1965 A
3189963 Warner et al. Jun 1965 A
3218685 Atumi Nov 1965 A
3226791 Carter Jan 1966 A
3233941 Selzer Feb 1966 A
3256576 Klove, Jr. et al. Jun 1966 A
3262169 Jantzen Jul 1966 A
3287062 Board et al. Nov 1966 A
3289261 Davis Dec 1966 A
3293713 Gaylord Dec 1966 A
3306662 Finnigan Feb 1967 A
3312502 Coe Apr 1967 A
3323829 Liem Jun 1967 A
3369842 Adams et al. Feb 1968 A
3380776 Dillender Apr 1968 A
3414947 Holmberg et al. Dec 1968 A
3428029 Klickstein et al. Feb 1969 A
3451720 Makinen Jun 1969 A
3456981 Radke et al. Jul 1969 A
3473201 Hopka et al. Oct 1969 A
3491414 Stoffel Jan 1970 A
3505711 Carter Apr 1970 A
3523342 Spires Aug 1970 A
D218589 Lohr Sep 1970 S
3564672 McIntyre Feb 1971 A
3576056 Barcus Apr 1971 A
3591900 Brown Jul 1971 A
3605207 Glauser et al. Sep 1971 A
3605210 Lohr Sep 1971 A
3631571 Stoffel Jan 1972 A
3639948 Sherman Feb 1972 A
3644967 Romanzi, Jr. et al. Feb 1972 A
3648333 Stoffel Mar 1972 A
3658281 Gaylord Apr 1972 A
3673645 Burleigh Jul 1972 A
3678542 Prete, Jr. Jul 1972 A
3695696 Lohr et al. Oct 1972 A
3714684 Gley Feb 1973 A
3744102 Gaylord Jul 1973 A
3744103 Gaylord Jul 1973 A
3747167 Pravaz Jul 1973 A
3760464 Higuchi Sep 1973 A
3766611 Gaylord Oct 1973 A
3766612 Hattori Oct 1973 A
3775813 Higuchi Dec 1973 A
3825979 Jakob Jul 1974 A
3827716 Vaughn et al. Aug 1974 A
3856351 Garvey Dec 1974 A
3879810 Prete, Jr. et al. Apr 1975 A
3898715 Balder Aug 1975 A
3935618 Fohl Feb 1976 A
3964138 Gaylord Jun 1976 A
3975800 Farlind Aug 1976 A
3986234 Frost et al. Oct 1976 A
3995885 Plesniarski Dec 1976 A
4018399 Rex Apr 1977 A
4026245 Arthur May 1977 A
4051743 Gaylord Oct 1977 A
4111459 Magyar May 1978 A
4095313 Piljay et al. Jun 1978 A
D248618 Anthony Jul 1978 S
4100657 Minolla Jul 1978 A
4118833 Knox et al. Oct 1978 A
4128924 Happel et al. Dec 1978 A
4136422 Ivanov et al. Jan 1979 A
4148224 Craig Apr 1979 A
4181832 Ueda Jan 1980 A
4184234 Anthony et al. Jan 1980 A
4185363 David Jan 1980 A
4196500 Happel et al. Apr 1980 A
4220294 DiPaola Sep 1980 A
4228567 Ikesue et al. Oct 1980 A
4239260 Hollowell Dec 1980 A
4253623 Steger et al. Mar 1981 A
4262396 Koike Apr 1981 A
4273301 Frankila Jun 1981 A
4278043 Heath Jul 1981 A
4302049 Simpson Nov 1981 A
4317263 Fohl Mar 1982 A
4321734 Gandelman Mar 1982 A
4323204 Takada Apr 1982 A
4334341 Krautz et al. Jun 1982 A
4336636 Ishiguro et al. Jun 1982 A
4344588 Hollowell et al. Aug 1982 A
4366604 Anthony et al. Jan 1983 A
4385425 Tanaka et al. May 1983 A
4403376 Palloks Sep 1983 A
4408374 Fohl Oct 1983 A
4419874 Brentini Dec 1983 A
4425688 Anthony et al. Jan 1984 A
4428103 Wier et al. Jan 1984 A
4454634 Haglund et al. Jun 1984 A
D274861 Lindblad Jul 1984 S
4457052 Hauber Jul 1984 A
4457251 Weman Jul 1984 A
4487454 Biller Dec 1984 A
4491343 Fohl Jan 1985 A
4525901 Krauss Jul 1985 A
4545097 Wier Oct 1985 A
4549769 Pilarski Oct 1985 A
4555831 Otzen et al. Dec 1985 A
4562625 Hunter, Jr. et al. Jan 1986 A
4569535 Haglund et al. Feb 1986 A
4574911 North et al. Mar 1986 A
4587696 Ueda May 1986 A
D285383 Anthony Sep 1986 S
4617705 Anthony et al. Oct 1986 A
4637102 Teder et al. Jan 1987 A
4638533 Gloomis et al. Jan 1987 A
4640550 Hakansson Feb 1987 A
4644618 Holmberg et al. Feb 1987 A
4646400 Tanaka Mar 1987 A
4648483 Skyba Mar 1987 A
4650214 Higbee Mar 1987 A
4651946 Anthony et al. Mar 1987 A
4656700 Tanaka et al. Apr 1987 A
4660889 Anthony et al. Apr 1987 A
4679852 Anthony et al. Jul 1987 A
4682791 Ernst Jul 1987 A
4685176 Burnside Aug 1987 A
4692970 Anthony et al. Sep 1987 A
4711003 Gelula Dec 1987 A
4716630 Skyba Jan 1988 A
4720148 Anthony et al. Jan 1988 A
4726625 Bougher Feb 1988 A
4727628 Rudholm Mar 1988 A
4733444 Takada Mar 1988 A
4738485 Rumpf Apr 1988 A
4741574 Weightman et al. May 1988 A
4742604 Mazelsky May 1988 A
D296678 Lortz et al. Jul 1988 S
4757579 Nishino et al. Jul 1988 A
4758048 Shuman Jul 1988 A
4766654 Sugimoto Aug 1988 A
4786078 Schreier et al. Nov 1988 A
4786080 Jay Nov 1988 A
4790597 Bauer et al. Dec 1988 A
4809409 Van Riesen Mar 1989 A
4832410 Bougher May 1989 A
4843688 Ikeda Jul 1989 A
4854607 Mandracchia et al. Aug 1989 A
4854608 Barral Aug 1989 A
D303232 Lortz et al. Sep 1989 S
4876770 Bougher Oct 1989 A
4876772 Anthony et al. Oct 1989 A
4884652 Vollmer Dec 1989 A
4901407 Pandola et al. Feb 1990 A
4903377 Doty Feb 1990 A
4911377 Lortz et al. Mar 1990 A
4919484 Bougher et al. Apr 1990 A
4927211 Bolcerek May 1990 A
4934030 Spinosa et al. Jun 1990 A
4940254 Ueno Jul 1990 A
4942649 Anthony et al. Jul 1990 A
4995640 Saito Feb 1991 A
5015010 Homeier et al. May 1991 A
5023981 Anthony et al. Jun 1991 A
5026093 Nishikaji Jun 1991 A
5029369 Oberhardt et al. Jul 1991 A
5031962 Lee Jul 1991 A
5038446 Anthony et al. Aug 1991 A
5039169 Bougher et al. Aug 1991 A
5046687 Herndon Sep 1991 A
5050274 Staniszewski et al. Sep 1991 A
5054815 Gavagan Oct 1991 A
5058244 Fernandez Oct 1991 A
5067212 Ellis Nov 1991 A
5074011 Carlson Dec 1991 A
5074588 Huspen Dec 1991 A
5084946 Lee Feb 1992 A
5088160 Warrick Feb 1992 A
5088163 van Riesen Feb 1992 A
5097572 Warrick Mar 1992 A
5100176 Ball et al. Mar 1992 A
D327455 Blair Jun 1992 S
5119532 Tanaka Jun 1992 A
5123147 Blair Jun 1992 A
5123673 Tame Jun 1992 A
5142748 Anthony et al. Sep 1992 A
5159732 Burke Nov 1992 A
5160186 Lee Nov 1992 A
5165149 Nihei Nov 1992 A
5170539 Lundstedt et al. Dec 1992 A
D332433 Bougher Jan 1993 S
5176402 Coulon Jan 1993 A
5182837 Anthony et al. Feb 1993 A
5219206 Anthony et al. Jun 1993 A
5219207 Anthony et al. Jun 1993 A
5220713 Lane, Jr. et al. Jun 1993 A
1338119 Merrick Aug 1993 A
5234181 Schroth Aug 1993 A
5236220 Mills Aug 1993 A
5248187 Harrison Sep 1993 A
D342465 Anthony et al. Dec 1993 S
5267377 Gillis et al. Dec 1993 A
5269051 McFalls Dec 1993 A
5272770 Allen et al. Dec 1993 A
5282672 Borlinghaus Feb 1994 A
5282706 Anthony et al. Feb 1994 A
5283933 Wiseman et al. Feb 1994 A
5286057 Forster Feb 1994 A
5286090 Templin et al. Feb 1994 A
5292181 Dybro Mar 1994 A
5301371 Chao Apr 1994 A
5306044 Tucker Apr 1994 A
5308148 Peterson et al. May 1994 A
5311653 Merrick May 1994 A
5332968 Brown Jul 1994 A
5350195 Brown Sep 1994 A
5350196 Atkns Sep 1994 A
5364048 Fujimura et al. Nov 1994 A
5369855 Tokugawa Dec 1994 A
5370333 Lortz et al. Dec 1994 A
5375879 Williams et al. Dec 1994 A
5380066 Wiseman et al. Jan 1995 A
5392535 Van Noy et al. Feb 1995 A
5397171 Leach Mar 1995 A
5403038 McFalls Apr 1995 A
5406681 Olson Apr 1995 A
5411292 Collins et al. May 1995 A
5416957 Renzi, Sr. et al. May 1995 A
D359710 Chinni et al. Jun 1995 S
5432987 Schroth Jul 1995 A
5435272 Epstein Jul 1995 A
5443302 Dybro Aug 1995 A
D362415 Takimoto Sep 1995 S
5451094 Templin et al. Sep 1995 A
D364124 Lortz et al. Nov 1995 S
5471714 Olson Dec 1995 A
5495646 Scrutchfield et al. Mar 1996 A
5497956 Crook Mar 1996 A
5511856 Merrick et al. Apr 1996 A
5516199 Crook et al. May 1996 A
5526556 Czank Jun 1996 A
5540403 Standley Jul 1996 A
5560565 Merrick et al. Oct 1996 A
5561891 Hsieh Oct 1996 A
5566431 Haglund Oct 1996 A
5568676 Freeman Oct 1996 A
5570933 Rouhana et al. Nov 1996 A
5577683 Imai Nov 1996 A
5579785 Bell Dec 1996 A
5584107 Koyanagi et al. Dec 1996 A
5588189 Gorman et al. Dec 1996 A
5606783 Gillis et al. Mar 1997 A
5622327 Heath et al. Apr 1997 A
5628548 Lacoste May 1997 A
5634664 Seki et al. Jun 1997 A
5640468 Hsu Jun 1997 A
5669572 Crook Sep 1997 A
5695243 Anthony et al. Dec 1997 A
5699594 Czank et al. Dec 1997 A
D389426 Merrick et al. Jan 1998 S
5722689 Chen et al. Mar 1998 A
5743597 Jessup et al. Apr 1998 A
5765774 Maekawa et al. Jun 1998 A
5774947 Anscher Jul 1998 A
5779319 Merrick Jul 1998 A
5788281 Yanagi et al. Aug 1998 A
5788282 Lewis Aug 1998 A
5878469 Wier Mar 1999 A
D748529 Paik et al. Feb 2016 S
20020089163 Bedewi et al. Jul 2002 A1
20020135175 Schroth Sep 2002 A1
20020145279 Murray Oct 2002 A1
20030015863 Brown et al. Jan 2003 A1
20030027917 Namiki et al. Feb 2003 A1
20030085608 Girardin May 2003 A1
20040066291 Tracy Apr 2004 A1
20040034953 Hansen May 2004 A1
20040169411 Murray Sep 2004 A1
20040174063 Kocher Sep 2004 A1
20040217583 Wang Nov 2004 A1
20040227390 Schroth Nov 2004 A1
20040251367 Suzuki et al. Dec 2004 A1
20050073187 Frank et al. Apr 2005 A1
20050107932 Bolz et al. May 2005 A1
20050127660 Liu Jun 2005 A1
20050175253 Li et al. Aug 2005 A1
20050179244 Schroth Aug 2005 A1
20050206151 Ashline Sep 2005 A1
20050284977 Specht et al. Dec 2005 A1
20060071535 Kim et al. Apr 2006 A1
20060075609 Dingman et al. Apr 2006 A1
20060090313 Muromachi et al. May 2006 A1
20060097095 Boast May 2006 A1
20060237573 Boelstler et al. Oct 2006 A1
20060243070 Van Druff et al. Nov 2006 A1
20060267394 David et al. Nov 2006 A1
20060277727 Keene et al. Dec 2006 A1
20070052255 O'Connor Mar 2007 A1
20070080528 Itoga et al. Apr 2007 A1
20070241549 Boelstler et al. Oct 2007 A1
20070257480 Van Druff et al. Nov 2007 A1
20080018156 Hammarskjold et al. Jan 2008 A1
20080030013 Burghardt Feb 2008 A1
20080054615 Coultrup Mar 2008 A1
20080087754 Aihara et al. Apr 2008 A1
20080093833 Odate Apr 2008 A1
20080100051 Bell et al. May 2008 A1
20080100122 Bell et al. May 2008 A1
20080136246 Salter Jun 2008 A1
20080172847 Keene et al. Jul 2008 A1
20080224460 Erez Sep 2008 A1
20090014991 Smyth et al. Jan 2009 A1
20090069983 Humbert et al. Mar 2009 A1
20090179412 Gray et al. Jul 2009 A1
20090183348 Walton et al. Jul 2009 A1
20090212549 Jones Aug 2009 A1
20090241305 Buckingham Oct 2009 A1
20100046843 Ma et al. Feb 2010 A1
20100115737 Foubert May 2010 A1
20100125983 Keene et al. May 2010 A1
20100146749 Jung Jun 2010 A1
20100213753 Humbert Aug 2010 A1
20100219667 Merrill et al. Sep 2010 A1
20110010901 Holler Jan 2011 A1
20110043402 Sasakawa Feb 2011 A1
20110057500 Walker et al. Mar 2011 A1
20110162175 Gnesda et al. Jul 2011 A1
20120242134 Siegel Sep 2012 A1
20120284966 Greaves et al. Nov 2012 A1
20120292893 Baca et al. Nov 2012 A1
20130127229 Humbert May 2013 A1
20130207442 Sickon et al. Aug 2013 A1
20130212845 Ford et al. Aug 2013 A1
20140230202 Humbert et al. Aug 2014 A1
20160318472 Schramm Nov 2016 A1
Foreign Referenced Citations (36)
Number Date Country
2036493 Aug 1991 CA
2038505 Sep 1991 CA
2091526 Oct 1993 CA
2112960 Dec 2002 CA
2450744 Feb 2003 CA
4019402 Dec 1991 DE
69019765 Jul 1995 DE
4421688 Dec 1995 DE
0026564 Apr 1981 EP
0254383 Jan 1988 EP
0363062 Apr 1990 EP
0380442 Aug 1990 EP
0401455 Dec 1990 EP
0404730 Dec 1990 EP
0449772 Oct 1991 EP
0519296 Dec 1992 EP
0561274 Sep 1993 EP
0608564 Aug 1994 EP
1153789 Nov 2001 EP
1447021 Aug 2004 EP
1298012 Jul 1962 FR
888436 Jan 1962 GB
1047761 Nov 1966 GB
1582973 Jan 1981 GB
2055952 Mar 1981 GB
2356890 Jun 2001 GB
52055120 May 1977 JP
63141852 Jun 1988 JP
63247150 Oct 1988 JP
10119611 May 1998 JP
2001138858 May 2001 JP
1986003386 Jun 1986 WO
2003009717 Feb 2003 WO
2004004507 Jan 2004 WO
2006041859 Apr 2006 WO
2010027853 Mar 2010 WO
Non-Patent Literature Citations (19)
Entry
BRITAX, “COMPAQ: Convertible Car Seats,” Buckle Image, accessed Oct. 12, 2010, www.britax.com.au/car-seats/compaq, 2 pages. This has been publicly available for at least one year prior to this application's filling date.
Global Seating Systems LLC, “CCOPS Cobra: Soldier Survival System,” 1 page, undated. [Color Copy].
Holmbergs, “Art.No. 63-4959-XX and 63-4958-XX GR.1 Buckle, 3/5 point” accessed Sep. 15, 2010, www.holmbergs.se, 2 pages.
Holmbergs “Gr. 0+ 3-point buckle with plastic chassi and tongues,” accessed Sep. 15, 2010, http://www.holmbergs.se/1/1.0.1.0/70/1/, 1 page.
Holmbergs, “Gr. 1 Buckle, Viking,” accessed Sep. 15, 2010, http://www.holmbergs.se1/1/1.0.1.0/53/1/, 1 page.
Holmbergs, “Group 1 Systems,” accessed Sep. 15, 2010, http://www.holmbergs.se/1/1.0.1.0/87/1/, 1 page.
Holmbergs, “Infant buckle with steel tongues,” accessed Sep. 15, 2010, http://www.holmbergs.se/1/1.0.1.0/74/1/, 1 page.
Holmbergs, “Infant buckle. 5-point with plastic chassi and plastic tongues,” accessed Sep. 15, 2010, http://www.holmbergs.se/1/1.0.1.0/73/1/, 1 page.
Sabelt, “SABUSA004: Fiberglass-plastic buckle with metal pin latch,” accessed Sep. 15, 2010, http://childsafety.sabelt.com/index.php/eshop/product/Sabelt-Racing-SABUSA004.html/1/, 1 page.
Novarace, “DL: Group 1 Buckle,” accessed Sep. 15, 2010, http://www.novarace.com/index.php?option=com_content&task=view&id=3684Itemid=48, 1 page.
Novarace, “GT 3: Group 0 Buckle,” accessed Sep. 15, 2010, http://www.novarace.com/index.php?option=com_content&task=view&id=33&Itemid=46, 1 page.
Novarace, “GT 5: Group 0 Buckle,” accessed Sep. 15, 2010, http://www.novarace.com/index.php?option=com_content&task=view&id=30&Itemid=44, 1 page.
Novarace, “GT: Group 1 Buckle,” accessed Oct. 8, 2010, http://www.novarace.com/gt.htm, 1 page.
Novarace, “KMA 1: Group 1 Buckle,” accessed Sep. 15, 2010 http://www.novarace.com/index.php?option=com_content&task=view&id=34&Itemid=47, 1 page.
SABELT Catalog, “SAB104: Standard tongue hole to facilitate webbing insert,” p. 23, 1 page.
Sabelt, “Daphne 0: Fiberglass-plastic buckle with metal pin latch,” accessed Sep. 15, 2010, http://childsafety.sabelt.com/index.php/eshop/product/Sabelt-Racing-DAPHNE-0.html/1/, 1 page.
Sabelt, “RO1000: Fiberglass-plastic buckle with metal pin latch,” accessed Sep. 15, 2010, http://childsafety.sabelt.com/index.php/eshop/product/Sabelt-Racing_RO1000.html/1/pid/1, 1 page.
Sabelt, “SAB004: Fiberglass-plastic buckle with metal pin latch,” accessed Sep. 15, 2010, http://childsafety.sabelt.com/index.php/eshop/product/Sabelt-Racing-SAB004.html/1/pid/1, 1 page.
International Search Report and Written Opinion dated Feb. 17, 2017; International Patent Application No. PCT/US2016/055186; 10 pages.
Related Publications (1)
Number Date Country
20170106833 A1 Apr 2017 US
Provisional Applications (1)
Number Date Country
62236792 Oct 2015 US