1. Field of the Invention
The present invention refers to a load-regulating device for scroll type compressors, particularly the rendering of a gliding block coupled with a pair of scrolls for defining a plurality of air chambers on the scrolls, so as to cause the motion of the gliding block by means of the pressure variation in the air chambers.
2. Description of Related Art
The design for general compressors must provide the functions of preventing fluid from flowing backwards and building up pressure quickly as the compressors are actuated, and the excessively high pressure should be prevented from being accumulated so that the scrolls will not be damaged.
A prior art as revealed in U.S. Pat. No. 6,059,549 shows an improved high-low-pressure sealing structure of scroll type compressors, whereby a gliding block is coupled with scrolls to form a single air chamber on the scrolls. As the compressor is actuated, the gliding block is caused to motion upwardly by means of the pressure variation in the air chamber coupling with the spring element to support the partition block for preventing the fluid in the high-pressure chamber from leaking towards the low-pressure chamber in order for the compressor to quickly build up pressure. However, the drawback of such a framework is that the amount of force present for the gliding block to solely motion upwardly is almost close to zero at time of actuation of the compressor or at times when the compression ratio is too low, thus making the gliding block unable to overcome the friction and weight and motion upwardly, resulting in leakage and failure of building up pressure. Therefore, requiring additional force of the spring element to cause the gliding block to motion upwardly; at times when the compression ratio is excessively high, with the force imposed on the gliding block plus the upwardly-thrusting force of the spring element, the gliding block is forced not to be able to motion downwardly to relieve part of the load, thus affecting the reliability of the compressor.
The present invention is to provide a load-regulating device for scroll type compressors that, by rendering a gliding block coupled with a pair of scrolls for defining a plurality of air chambers on the scrolls, the motion of the gliding block is caused by means of the pressure variation in the air chambers.
The primary object of the present invention is to provide a load-regulating device for scroll type compressors, wherein the pressure variation in the air chambers is utilized for causing the motion of the gliding block, thus enabling the compressor to cause the gliding block by means of the pressure variation to motion upwardly at the actuation of the compressor, and preventing the fluid in the high-pressure chamber from leaking towards the low-pressure chamber, consequently allowing the compressor to quickly build up pressure, and then the gliding block is caused by the pressure variation to motion downwardly at times when the compression ratio is excessively high, so as to relieve a portion of the load.
The load-regulating device for scroll type compressors capable of achieving the object aforesaid comprises a compressor housing having an inlet and an outlet; a bracket body, being fixed inside the compressor housing and defining with the compressor housing a chamber; a partition block, being fixed inside the compressor housing and located on top of the bracket body to divide the chamber into a high-pressure chamber and a low-pressure chamber defined with the bracket body and the partition block, which has a letting-out hole at the center thereof; a pair of scrolls, consisting of a fixed scroll and a rotary scroll convoluting each other and being installed between the partition block and the bracket body; a gliding block, being installed on the center portion of the top of the fixed scroll; a plurality of air chambers, being defined with the gliding block coupled with the pair of scrolls, by means of the coupling of the gliding block and the pair of scrolls, defining a plural number of air chambers on the scrolls, then causing the motion of the gliding block by means of the pressure variation in the plurality of air chambers.
Preferably, the partition block is further installed with at least a back-pressure regulating ring.
Preferably, the top of the scroll blades of both fixed scroll and the rotary scroll can further be respectively installed with a sealing component.
The present invention is hereby presented for providing a load-regulating device for scroll type compressors applying the coupling of a gliding block and scrolls, wherein the gliding block is coupled with the pair of scrolls for defining a plurality of air chambers on the scrolls, the pressure variation in the air chambers is then utilized to cause the motion of the gliding block, thus enabling the compressor to cause the gliding block by means of the pressure variation to motion upwardly as the compressor is actuated, and preventing the fluid in the high-pressure chamber from leaking towards the low-pressure chamber, thus allowing the compressors to quickly build up pressure; the gliding block is caused by the pressure variation to motion downwardly at times when the compression ratio is excessively high to relieve a portion of the load, so as to improve the performance and reliability of the compressors, and eliminate the deficiency of the prior art in effective manner.
These and other features, aspects and advantages of the present invention will become better understood with regard to the following description, appended claims and accompanying drawings that are provided only for further elaboration without limiting or restricting the present invention, where:
The following is a detailed description of the best presently known modes of carrying out the inventions. This description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the inventions.
Please refer to
Please continue refer to
Preferably, an air hole 44 is mounted at the center of the gliding block 40 to communicate with an air outlet 35 of the gliding block 40 and the letting-out hole 53 of the fixed scroll 51.
Please continue refer to
As the compressor is actuated, the low pressure fluid is introduced through the air supply inlet 12 of the housing 10 into the low-pressure chamber 33 of the compressor, through a sucking-in hole 34 into the pair of scrolls, by means of the co-orbiting motion of the fixed scroll 51 and the rotary scroll 52, filling the air chamber 61 with air rapidly, at this moment the upwardly-thrusting force imposed by the air chamber 61 on the gliding block 40 being larger than the downwardly-thrusting force imposed by the air chamber 62 on the gliding block 40, enabling the gliding block 40 to motion upwardly (Please refer to FIG. 2), and thus allowing the compressor to build up pressure; at time when the compression ratio is excessively high, the pressure in the air chamber 62 being a lot higher than that in the air chamber 61, which causes the gliding block 40 to motion downwardly, plus the weight of the gliding block 40, the two forces then jointly causing the gliding block 40 to motion downwardly (Please refer to FIG. 3), and thus allowing the fluid in the high-pressure chamber 32 to leak to the low-pressure chamber 33 so as to relieve part of the load.
Please refer to
Please refer to
In conclusion, the present invention utilizes the pressure variation in air chambers to cause the gliding block 40 to motion, thus as the compressor actuates, the gliding block 40 is caused to motion upwardly due to pressure variation, so as to prevent fluid in the high-pressure chamber 32 from entering the low-pressure chamber 33, and so as to cause the compressor to build pressure swiftly; as the compression ratio of the compressor becomes too great, the gliding block 40 is caused to motion downwardly due to pressure variation, so as to release a portion of the load carried, a design that meets the criteria for New Utility Model patents.
Although the present invention has been described in considerable detail with reference to certain preferred embodiments thereof, those skilled in the art can easily understand that all kinds of alterations and changes can be made within the spirit and scope of the appended claims. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred embodiments contained herein.
Number | Name | Date | Kind |
---|---|---|---|
4840545 | Moilanen | Jun 1989 | A |
5141420 | Nambiar | Aug 1992 | A |
5156539 | Anderson et al. | Oct 1992 | A |
RE35216 | Anderson et al. | Apr 1996 | E |
5613841 | Bass et al. | Mar 1997 | A |
6048184 | Chang et al. | Apr 2000 | A |
6059549 | Tarng et al. | May 2000 | A |
6293767 | Bass | Sep 2001 | B1 |
6390792 | Tarng et al. | May 2002 | B1 |
6454538 | Witham et al. | Sep 2002 | B1 |
6709244 | Pham | Mar 2004 | B2 |
20010002239 | Pham et al. | May 2001 | A1 |
20010028852 | Yuzaki et al. | Oct 2001 | A1 |
20020159898 | Rajendran et al. | Oct 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20040126246 A1 | Jul 2004 | US |