This application is based upon and claims the benefit of priority from Japanese patent application No. 2017-181357, filed on Sep. 21, 2017, the disclosure of which is incorporated herein in its entirety by reference.
The present disclosure relates to a load-relieving apparatus.
Support systems for supporting rehabilitation of patients who suffer from lower-limb paralysis caused by strokes or the like have been developed. Such support systems can enable, for example, patients with paralyzed lower limbs to do walking trainings. In a walking training, a walking assisting apparatus is attached to a leg of a trainee, i.e., a patient with a paralyzed lower limb. The walking assisting apparatus is attached to the paralyzed leg and assists the trainee in performing knee bending/extending motions. The trainee wearing the walking assisting apparatus walks on a treadmill provided in the support apparatus. It should be noted that the walking assisting apparatus or the leg to which the walking assisting apparatus is attached is pulled in an upper-front direction and an upper-rear direction by a load-relieving apparatus. The load-relieving apparatus supports the weight of the walking assisting apparatus and assists the trainee in moving his/her leg by paying out or pulling in wire cables from positions located above and in front of the trainee, and above and behind the trainee.
As an example of a technique related to the above-described load-relieving apparatus, a lifting/lowering apparatus disclosed in Japanese Unexamined Patent Application Publication No. 2004-141517 includes a wire cable with locking means for suspending a suspended object attached to one end thereof, a winding drum for winding up this wire cable, and winding momentum-giving means for giving rotational momentum to the winding drum in a winding direction. Further, in this lifting/lowering apparatus, an insertion nut and a stopper through which the wire cable is inserted are attached to a base plate covering the winding drum, so that the locking means provided at the free end of the wire cable does not come into contact with the winding drum.
The present inventors have found the following problem. In the above-described load-relieving apparatus, there is a part where the wire cable is wound is directly exposed, which is undesirable in view of safety. Therefore, the above-described load-relieving apparatus is equipped with a cover that eliminates the exposure of the part where the wire cable is wound. Further, in the above-described load-relieving apparatus, a through hole through which the wire cable is inserted is formed in the cover in order to wind or pull the wire cable therethrough. It is desirable that this through hole be small in view of safety. It should be noted that a load-relieving apparatus used in a walking assisting apparatus may assist a trainee in moving his/her leg in a left/right direction of his/her body in addition to the motion in the front/rear direction (e.g., a swinging motion of the leg in the front/rear direction). In such a case, the wire cable of the load-relieving apparatus may be pulled in a direction perpendicular to the motion in the front/rear direction of the body (e.g., the leg swinging motion) in addition to the direction parallel to the motion in the front/rear direction of the body (e.g., the leg swinging motion). However, when the related technique disclosed in Japanese Unexamined Patent Application Publication No. 2004-141517 is used for the above-described walking training apparatus, the wire cable is repeatedly paid out and pulled in in a state where the wire cable is in contact with the cover of the winding drum. When the wire cable is repeatedly paid out and pulled in in the state where the wire cable is in contact with the cover, the wire cable could be worn out. When the wire cable is worn out, the cost for maintaining the apparatus could increase.
The present disclosure has been made to solve the above-described problem and an object thereof is to provide a load-relieving apparatus capable of suppressing wear of a wire cable.
A first exemplary aspect is a load-relieving apparatus including:
a wire cable with a free end and a fixed end opposite to the free end, a locking part being attached to the free end;
a winding part configured to wind the wire cable from a fixed-end side thereof;
a pulley interposed between the winding part and the locking part, and configured to stretch the wire cable therebetween; and
a cover with a through hole formed therein through which the wire cable is inserted, the cover being interposed between the locking part and the pulley, and formed so as to cover at least a part of the pulley, in which
the cover (the through hole) is configured so that a relative position of the cover (the through hole) with respect to a rotation axis of the pulley changes (is variable).
By the above-described configuration, the cover can be moved so that its relative position changes with respect to the pulley (the rotation axis of the pulley). Therefore, the cover can follow the movement of the wire cable. In other words, the through hole of the cover can follow the movement of the wire cable.
According to the present disclosure, it is possible to provide a load-relieving apparatus capable of suppressing wear of a wire cable.
The above and other objects, features and advantages of the present disclosure will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not to be considered as limiting the present disclosure.
A first embodiment according to the present disclosure is described hereinafter with reference to the drawings.
The walking assisting apparatus 2 is attached to, for example, a diseased leg of a trainee U who does a walking training (in
The training apparatus 3 includes a treadmill 31, a frame main body 32, a first load-relieving apparatus 33, a second load-relieving apparatus 34, first and second wire-cable length detection units 41 and 42, which serve as detection means, and a control apparatus 35.
The treadmill 31 includes a ring-shaped rotatable belt conveyor 311 on which the trainee U walks. The trainee U gets on the belt conveyor 311 and walks thereon according to the movement of the belt conveyor 311.
The frame main body 32 includes two pairs of pillar frames 321 vertically disposed on the treadmill 31, a pair of lengthwise frames 322 extending in the front/rear direction and connected to respective pillar frames 321, and front and rear crosswise frames 323 and 324 extending in the left/right direction and connected to each of the lengthwise frames 322. Note that the structure of the frame main body 32 is not limited to this example. The frame main body 32 may have an arbitrary frame structure as long as it can properly fix the first and second load-relieving apparatus 33 and 34 thereto.
The first load-relieving apparatus 33 supports the weight of the walking assisting apparatus and assists the trainee in moving his/her leg by paying out or pulling in the wire from a position located above and in front of the trainee. The first load-relieving apparatus 33 is disposed in a position located above the trainee U and in front of the trainee U in the traveling direction. For example, the first load-relieving apparatus 33 is disposed in the front crosswise frame 323, which is located above the trainee U and in front of the trainee U in the traveling direction. The first load-relieving apparatus 33 pulls the leg of the trainee U to which the walking assisting apparatus 2 is attached upward and forward through a first wire cable 36. The first load-relieving apparatus 33 is connected to the control apparatus 35 (which will be described later) through a wiring line or the like. Details of the first load-relieving apparatus 33 will be described later.
One end of the first wire cable 36 hangs down from the first load-relieving apparatus 33 and is attached directly or indirectly to the leg of the trainee U. For example, one end of the first wire cable 36 is attached to the walking assisting apparatus 2 attached to the leg of the trainee U. The other end of the first wire cable 36 is supported in the first load-relieving apparatus 33 and wound around a winding mechanism.
The second load-relieving apparatus 34 supports the weight of the walking assisting apparatus and assists the trainee in moving his/her leg by paying out or pulling in the wire cable from a position located above and behind the trainee. The second load-relieving apparatus 34 is disposed in a position located above the trainee U and behind the trainee U in the traveling direction. For example, the second load-relieving apparatus 34 is disposed in the rear crosswise frame 324, which is located above the trainee U and behind the trainee U in the traveling direction. The second load-relieving apparatus 34 pulls the leg of the trainee U to which the walking assisting apparatus 2 is attached upward and rearward through a second wire cable 37. The second load-relieving apparatus 34 is composed of, for example, a winding mechanism such as a drum that winds and rewinds the second wire cable 37, a motor that drives the winding mechanism, and so on. The second load-relieving apparatus 34 is connected to the control apparatus 35 (which will be described later) through a wiring line or the like. The second load-relieving apparatus 34 has a configuration similar to that of the first load-relieving apparatus. Details of the second load-relieving apparatus 34 will be described later.
One end of the second wire cable 37 hangs down from the second load-relieving apparatus 34 and is attached directly or indirectly to the leg of the trainee U. For example, one end of the second wire cable 37 is attached to the walking assisting apparatus 2 attached to the leg of the trainee U. The other end of the second wire cable 37 is supported in the second load-relieving apparatus 34 and wound around a winding mechanism.
The detection means detects paid-out lengths of the first and second wire cables 36 and 37. For example, the detecting means includes a first wire-cable length detection unit 41 and a second wire-cable length detection unit 42. The first wire-cable length detection unit 41 is, for example, a sensor such as a rotary encoder that is provided on a winding shaft of the winding mechanism of the first load-relieving apparatus 33 and detects a rotation angle of the winding shaft. A length (a winding amount) by which the winding mechanism has wound the first wire cable 36 is calculated from a detection signal of the first wire-cable length detection unit 41. Further, the paid-out length of the first wire cable 36 is detected (i.e., calculated) by subtracting this winding amount from the already-known total length of the first wire cable 36. The first wire-cable length detection unit 41 is connected to the control apparatus 35 (which will be described later) through a wiring line or the like.
The second wire-cable length detection unit 42 is, for example, a sensor such as a rotary encoder that is provided on a winding shaft of the winding mechanism of the second load-relieving apparatus 34 and detects a rotation angle of the winding shaft. A length (a winding amount) by which the winding mechanism has wound the second wire cable 37 is calculated from a detection signal of the second wire-cable length detection unit 42. Further, the paid-out length of the second wire cable 37 is detected (i.e., calculated) by subtracting this winding amount from the already-known total length of the second wire cable 37. The second wire-cable length detection unit 42 is connected to the control apparatus 35 (which will be described later) through a wiring line or the like. Note that the above-described detection means is not limited to those composed of the first and second wire-cable length detection units 41 and 42. Any means capable of detecting (or measuring) the paid-out lengths of the first and second wire cables 36 and 37 may be used. For example, image pick-up means such as a camera that detects external-appearance information (a position) of a wire cable may be used.
The control apparatus 35 controls pulling forces by which the first and second load-relieving apparatuses 33 and 34 respectively pull the wire cables, and controls the operation performed by the walking assisting apparatus 2. For example, the control apparatus 35 detects that the leg of the trainee U to which the walking assisting apparatus 2 is attached is lifted from the ground (i.e., from the belt conveyer) or set down on the ground. That is, the control apparatus 35 can detect a timing at which the leg of the trainee to which the walking assisting apparatus 2 is attached changes from a leg-standing state to a leg-idling state, and a timing at which the leg changes from the leg-idling state to the leg-standing state based on sensor data supplied from a ground-contact sensor. Upon detecting the timing at which the leg changes from the leg-standing state to the leg-idling state, the control apparatus 35 starts to control a motor unit included in the walking assisting apparatus at that timing.
For example, the control apparatus 35 is composed of hardware mainly using a microcomputer including a CPU (Central Processing Unit) that performs arithmetic processing, control processing, and so on, a ROM (Read Only Memory) that stores an arithmetic program, a control program, etc. to be executed by the CPU, a RAM (Random Access Memory) that stores various types of data, and an interface unit (I/F) that externally receives and outputs signals. The CPU, the ROM, the RAM, and the interface unit are connected with each other through a data bus or the like.
Next, details of the first and second load-relieving apparatuses 33 and 34 are described with reference to
Further, in the following description, a swinging direction of a wire cable or the like, or a rotation direction of an object is defined as follows. A direction of a rotation around the x-axis indicated by an arrow P is defined as a pitch direction. A direction of a rotation around the y-axis indicated by an arrow R is defined as a roll direction. A direction of a rotation about the z-axis indicated by an arrow Y is defined as a yaw direction.
The first load-relieving apparatus 33 mainly includes a first wire cable 36, a wire locking member 361, a support plate 331, an apparatus fixing part 332, a drive unit 333, a winding part 334, a pulley 335, and a cover 336.
The first wire cable 36 has a free end to which the wire locking member 361 is attached and a fixed end opposite to the free end. The free end of the first wire cable 36 hangs down from the first load-relieving apparatus 33 and the wire locking member 361 is attached directly or indirectly to a leg of a trainee U. The fixed end of the first wire cable 36 is fixed to the winding part 334. Further, the first wire cable 36 is wound around the winding part 334.
The wire locking member 361 is a locking component attached to the free end of the first wire cable 36. The wire locking member 361 includes a locking piece 362 such as a hole or a hook for locking the wire locking member 361 in the walking assisting apparatus 2.
The support plate 331 is a support component that supports each structure of the load-relieving apparatus. More specifically, the support plate 331 supports the drive unit 333, the winding part 334, and the pulley 335.
The support plate 331 includes an apparatus fixing part 332. The apparatus fixing part 332 is engaged with the front crosswise frame 323 and is fixed by arbitrary fixing means (not shown) so that the support plate 331 does not move relative to the front crosswise frame 323.
The support plate 331 includes a cover stopper 331S. The cover stopper 331S is a component for restricting the rotation of the cover 336. The cover stopper 331S is provided to stop the movement of the cover 336 in the rotation direction by coming into contact with a corresponding contact part 336S of the cover 336, and thereby prevent the cover 336 from making one rotation or more.
The drive unit 333 is connected to the winding part 334 and rotates the winding part 334. The drive unit 333 is formed by driving means including a motor. The driving unit 333 is controlled by the control unit 35 and rotates the winding part 334 in order to pay out or pull in the first wire cable 36 as described above. Note that instead of being a motor, the driving unit 333 may be momentum-giving means using a tension coil spring, a spiral spring, or the like.
The winding part 334 is a drum-shaped component that winds the fixed-end side of the first wire cable 36. The winding part 334 is connected to the drive unit 333, and is configured so that the drum-shaped component is rotated by the drive unit 333. The winding amount of the first wire cable 36 wound by the winding part 334 or the length of the cable that has been paid out by the winding part 334 is controlled by the above-described first wire-cable length detection unit 41 (not shown), the drive unit 333, and the control apparatus 35.
The pulley 335 is interposed between the winding part 334 and the wire locking member 361, and stretches the first wire cable 36. By being interposed between the winding part 334 and the wire locking member 361, the pulley 335 guides the first wire cable 36 while preventing the first wire cable 36 from being excessively bent.
The cover 336 is a hollow spindle-shaped component that is formed so as to cover at least a part of the pulley 335 in order to prevent the pulley from being directly exposed. The cover 336 is rotatably locked on the same axis as an axis CR which is the rotation center of the pulley 335 (a direction indicated by an arrow P in
That is, the first wire cable 36 is paid out from the winding part 334, passes through the communication hole 337, and is stretched through the pulley 335. Then, the first wire cable 36 paid out from the pulley 335 passes through the stopper 338 and is connected to the wire locking member 361.
The stopper 338 is formed so that the wire locking member 361 does not come into contact with the pulley 335 when the first wire cable 36 is wound around the winding part 334 and the wire locking member 361 is thereby pulled into the stopper 338.
The contact part 336S is a component for restricting the rotation of the cover 336. The contact part 336S is formed in a place in which it comes into contact with the cover stopper 331S. Therefore, when the first wire cable 36 is wound around the winding part 334 and the wire locking member 361 is pulled into the fixed-end side, the wire locking member 361 comes into contact with the stopper 338 and hence the stopper 338 no longer continues to get any closer to the pulley 335. When the winding part 334 further winds the first wire cable 36, the cover 336 rotates to a position where the contact part 336S comes into contact with the cover stopper 331S. When the cover 336 rotates to the position where the contact part 336S is in contact with the cover stopper 331S, the cover 336 stops rotating. Therefore, the wire locking member 361 is no longer pulled into the fixed-end side. Note that the cover stopper 331S and the contact part 336S may have forms different from those shown in
Next, a structure of a part where the pulley 335 and the cover 336 are disposed is described in detail with reference to
Although both the pulley 335 and the cover 336 are pivotally supported on the shaft 339, the means for supporting the cover 336 is not limited to this example. For example, the cover 336 may be supported on a support component different from the shaft 339. Further, the rotation center of the pulley 335 and the rotation center of the cover 336 may be different from each other. In such a case, it is preferable that the rotation axes of the pulley 335 and the cover 336 be roughly parallel to each other. That is, the through hole 338H of the cover 336 is formed so that the cover 336 can rotate around an axis parallel to the rotation axis of the pulley 335. In this way, the through hole 338H of the cover 336 can follow the movement of the pulley 335 in the pitch direction.
Further, the cover 336 may have no rotation axis and may be configured to perform a reciprocating motion. In such a case, the through hole 338H of the cover 336 is formed so as to be able to reciprocate in a direction perpendicular to the rotation axis of the pulley 335. In this way, the through hole 338H of the cover 336 can follow the movement of the pulley 335 in the pitch direction.
Further, the shape of the cover 336 is not limited to the hollow spindle shape as described above. That is, the cover 336 may be, for example, a hollow cubic shape, a curved planar shape, or a combination of a plurality of flat surfaces and curved surfaces as long as it has the above-described function.
Further, the form of the cover 336 is not limited to the above-described structure. That is, the only requirement for the cover 336 is that a relative position of a part 336A of the cover 336 including the through hole 338H should be variable (movable) with respect to a part 336B of the other part of the cover 336, so that the cover 336 should have a function of making a relative position of the through hole 338H variable (movable) with respect to the rotation axis of the pulley 335. For example, the cover 336 may be formed as a flat surface (spherical surface) sliding mechanism composed of a pair of a part 336A having a curved-surface (or flat-surface) shape and a part 336B having a curved-surface (or flat-surface) shape corresponding to the curved-surface (or flat-surface) shape of the part 336A. Alternatively, for example, the cover 336 may be formed as a movable mechanism composed of a pair of a part 336A formed of a rigid component made of a metal, resin, etc. and a part 336B formed of a soft component made of soft rubber etc.
Next, a use state of the first load-relieving apparatus 33 is described with reference to
The trainee U swings the leg in front of and behind the trainee in the walking training. When doing so, the leg also moves in the z-axis direction in addition to the y-axis direction. Therefore, each of the first and second wire cables 36 and 37, which assist the leg, swings in the pitch direction. In this process, the cover 336 of the first load-relieving apparatus 33 can follow the movement of the first wire cable 36 in the pitch direction. Similarly, the cover 336 of the second load-relieving apparatus 34 can follow the movement of the second wire cable 37 in the pitch direction.
Next, another state in the walking training is described with reference to
As shown in
Next, a movement of the cover 336 in the pitch direction is described with reference to
Note that since the stopper 338 is rotatably fixed, the stopper 338 could come into contact with the first wire cable 36. A contact point X shown in
Next, a movement of the first wire cable 36 in the roll direction is described with reference to
The first wire cable 36 paid out from the through hole 338H of the cover 336 can be used without being worn in a range in which the first wire cable 36 does not come into contact with the width 338A in the x-axis direction of the through hole 338H. That is, even if the motion of the leg performed by the trainee U involves an outward rotation as shown in
In the first embodiment, by the above-described configuration, it is possible to provide a load-relieving apparatus capable of suppressing wear of a wire cable.
Next, a second embodiment is described with reference to
The load-relieving apparatus 43 includes a rotation support part 432 between the support plate 331 and the apparatus fixing part 332. The rotation support part 432 is a support component that supports the support plate 331 in such a manner that the support plate 331 can rotate around an axis CY parallel to the z-axis in a direction indicated by an arrow Y. The rotation support part 432 is, for example, a fixing component including a rolling bearing.
In the second embodiment, by the above-described configuration, when a direction in which the trainee U walks (i.e., a y-axis positive direction) is defined as a forward in the walking training system 1, the load-relieving apparatus 43 can provide flexibility around the axis CY in a yaw direction (a direction indicated by an arrow Y). That is, in the load-relieving apparatus 43 according to the second embodiment, the cover (or the through hole) can follow the wire cable in the pitch direction, the roll direction, and the yaw direction. Therefore, the second embodiment can provide a load-relieving apparatus capable of suppressing wear of a wire cable.
Note that the present disclosure is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit and scope of the present disclosure.
From the disclosure thus described, it will be obvious that the embodiments of the disclosure may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the disclosure, and all such modifications as would be obvious to one skilled in the art are intended for inclusion within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2017-181357 | Sep 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3645503 | Doerfling | Feb 1972 | A |
4635875 | Apple | Jan 1987 | A |
4724827 | Schenck | Feb 1988 | A |
5667461 | Hall | Sep 1997 | A |
6123649 | Lee | Sep 2000 | A |
6666831 | Edgerton | Dec 2003 | B1 |
6796926 | Reinkensmeyer | Sep 2004 | B2 |
7331906 | He | Feb 2008 | B2 |
7494450 | Solomon | Feb 2009 | B2 |
7887471 | McSorley | Feb 2011 | B2 |
7998040 | Kram | Aug 2011 | B2 |
8057410 | Angold | Nov 2011 | B2 |
8608479 | Liu | Dec 2013 | B2 |
9638163 | Holloway | May 2017 | B2 |
10465663 | Holloway | Nov 2019 | B2 |
20030064869 | Reinkensmeyer | Apr 2003 | A1 |
20040087418 | Eldridge | May 2004 | A1 |
20040204294 | Wilkinson | Oct 2004 | A2 |
20050101448 | He | May 2005 | A1 |
20080300118 | Wehrell | Dec 2008 | A1 |
20120004581 | Dinon | Jan 2012 | A1 |
20130130866 | Wehrell | May 2013 | A1 |
20130225371 | Harrer | Aug 2013 | A1 |
20150232307 | Holloway | Aug 2015 | A1 |
20170027803 | Agrawal et al. | Feb 2017 | A1 |
20170218927 | Holloway | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
1 595 522 | Nov 2005 | EP |
2 949 366 | Dec 2015 | EP |
1177481 | Apr 1959 | FR |
2002-543021 | Dec 2002 | JP |
2004-141517 | May 2004 | JP |
2005-344385 | Dec 2005 | JP |
2009-523684 | Jun 2009 | JP |
2017-108991 | Jun 2017 | JP |
WO 00066479 | Nov 2000 | WO |
WO 2007084553 | Jul 2007 | WO |
2008968928 | Jun 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20190083351 A1 | Mar 2019 | US |