The present disclosure relates generally to fuel pumps, and is more particularly concerned with a new and improved single plunger fuel pump.
In a typical high pressure, reciprocating plunger fuel supply pump, the plunger reciprocates within a surrounding sleeve which is secured in the plunger bore hole. The sleeve bears on a shoulder or other mounting surface in the housing. To achieve ideal performance and long life, the plunger OD and the sleeve ID must be precisely sized with close tolerances and installed in a manner that preserves a precise fit.
Notwithstanding the precision with which the sleeve and plunger may be fabricated, the installation in the pump housing can produce slight misalignment of the plunger within the sleeve. This misalignment can cause excessive or non-uniform wear on the plunger, and can also affect the fluid seal between the sleeve and the housing, giving rise to excessive leakage. Such misalignment is due to an imbalance or asymmetry in the axial force applied around on the sleeve to bear against the mounting surface of the housing.
It is an object to provide an improved clamping and seal loading technique for securing the plunger sleeve to the pump housing of a single plunger fuel pump.
This object is achieved by providing a load ring between a sleeve retainer and the sleeve, such that the axial force applied by the retainer during installation is distributed more evenly on the sleeve and the mounting surface of the housing.
In a preferred embodiment, the invention is directed to a single plunger fuel pump comprising a housing having an internal pumping chamber and an inlet valve that feeds the pumping chamber, a plunger assembly mounting bore in the housing defining a bore wall and an end wall having an opening in fluid communication with the pumping chamber, and a plunger sleeve in the plunger assembly mounting bore adjacent the pumping chamber. The plunger sleeve has a seal face at one end which bears on and seals against a seal surface at the end wall of the mounting bore. A pumping plunger is reciprocable in the plunger sleeve inwardly toward and outwardly away from the pumping chamber. A plunger sleeve retainer is secured against the mounting bore wall and axially supports the sleeve. A plunger return spring is captured between a spring seat at the outer end of the plunger and a shoulder on the sleeve retainer. A load ring is situated between the sleeve retainer and the sleeve, urging the sleeve inwardly with sufficient force to maintain concentricity of the plunger within the sleeve and sealingly press the sealing face of the sleeve against the sealing surface at the end wall of the bore.
In an alternative form, the invention is directed a plunger assembly for a fuel pump comprising, a plunger sleeve having upper and lower ends, a substantially tubular body defining a pumping axis, and a radially extending external shoulder. A substantially tubular sleeve retainer concentrically receives the body of the sleeve, with a first radially extending external shoulder facing the shoulder on the sleeve. A pumping plunger is concentrically disposed in the plunger sleeve and retainer, with an upper end adjacent the upper end of the sleeve and a lower end projecting from the retainer. A plunger return spring is captured between a spring seat at the lower end of the plunger and a second shoulder on the sleeve retainer. A load ring is situated between the sleeve retainer first shoulder and the sleeve shoulder.
Preferably, the sleeve floats on the load ring until the sleeve retainer is advanced and secured within the bore a sufficient distance to form a seal between the seal face at one end which bears on and seals against a seal surface at the end wall of the mounting bore. The load ring is situated between the inner end of the sleeve retainer and a shoulder on the sleeve, urging the sleeve inwardly with a substantially constant force to sealingly press the sealing face of the sleeve against the sealing surface at the end wall of the bore.
Whether the retainer is advanced against the sleeve by threaded engagement or interference fit, the sleeve is uniformly urged by the retainer against the housing mounting surface, thereby maintaining alignment of the plunger within the sleeve and integrity of the seal between the sleeve and the housing.
In the accompanying drawing, like elements are numbered alike in the several Figures:
With reference now to
The substantially cylindrical pumping plunger 22 is carried concentrically in the plunger sleeve 24, which at one end 32 bears on or is otherwise sealed against the end wall 34 of the plunger assembly mounting bore 36 in the housing, and which must be laterally fixed directly or indirectly to the mounting bore. A plunger sleeve retainer 38 is press fit or threaded against the mounting bore wall 40 for this purpose. The plunger 22 is disposed concentrically in the inner wall 40 of the sleeve 24 and the retainer 38. A plunger return spring 42 is captured between a spring seat 44 at the driven end 20 of the plunger and a shoulder 46 on the sleeve retainer. The outer end 48 of the plunger sleeve retainer is turned inward to capture a lip seal 50 for sealing fuel within the pump. The upper end of the retainer forms a shoulder 52.
Any leakage around the inner end 32 of the plunger sleeve 24 enters the clearance 54 with the ID of the tubular body of sleeve retainer 38 and is directed back to the lower pressure at the inlet valve 18, via leak off ports 56 in the retainer and an internal passage 58 through the housing.
In the embodiment of
A load ring 74 is situated between the inner end 52 of the retainer and the shoulder 70 on the sleeve. The sleeve 24 floats on the load ring 74 until the retainer 38 is advanced within the housing bore 36 a sufficient distance to press the sealing rim or bead 66 of the sleeve against the sealing surface 34 at the end wall of the bore. When this condition is reached during assembly, the retainer is fixed with respect to the bore, as by retainer external shoulder 39 bottoming out as a hard stop against the shoulder 37 on the housing, thereby preventing further inward axial movement. This can be achieved with a threaded connection 41 between the retainer and the bore, or the retainer can be press (interference) fit. The shape of the load ring affords considerable tolerance on the effective positioning of the retainer within the bore. The reason for the load ring as opposed to traditional threaded clamping or press-fit designs is to reduce the sleeve ID distortion at the critical interface with the plunger OD. The load ring applies a very consistent, predictable load.
The load ring 74 is preferably a split or C-shaped ring having a cross section (taken parallel to the axis 84) that generally resembles the letter “W”. The load ring can, however, be a full ring. Preferably, each outer leg 86, 88 (at the axial ends) is substantially perpendicular to the axis 84 with all the corners 90, 92, 94 contoured rather than sharp. The legs are spaced apart a free height H when the ring is not loaded, but move toward each other during loading by the sleeve retainer 38, to a shorter, compressed height H′. In a typical application, the load ring can be 20-25 mm across the greatest diameter (at 92), and 4 to 5 mm less across the smallest diameter (at 90, 94), for axially transmitting a target seal load of 750-1500 lbs. across a surface area defined by the legs, in the range of 0.0001 to 0.0002 m2. As a representative but not limiting example, the free height H of the load ring can be about 4.0 mm, whereas the compressed height H′ for transmitting the target load can range between about 2.0 to 3.0 mm (i.e., a compression of about 1-2 mm).
As noted above with reference to
While preferred embodiments have been set forth for purposes of illustration, the foregoing description should not be deemed a limitation of the disclosure herein. Accordingly, various modifications, adaptations and alternatives may occur to one skilled in the art without departing from the spirit and scope of the present disclosure.
This application claims priority under 35 U.S.C. 119(e) from U.S. Provisional Application No. 60/879,674 filed Jan. 10, 2007 for “Load Ring Mounting of Pumping Plunger”, the entire disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2559364 | Mashinter | Jul 1951 | A |
4029071 | Saito et al. | Jun 1977 | A |
4239460 | Golz | Dec 1980 | A |
4272027 | Seilly et al. | Jun 1981 | A |
4276000 | Warwicker | Jun 1981 | A |
5065988 | Wedell | Nov 1991 | A |
5775203 | Osborn et al. | Jul 1998 | A |
6379132 | Williams | Apr 2002 | B1 |
6502826 | Schroeder et al. | Jan 2003 | B1 |
7114928 | Asayama et al. | Oct 2006 | B2 |
20030056765 | Onishi et al. | Mar 2003 | A1 |
20030161746 | Asayama et al. | Aug 2003 | A1 |
20040052652 | Yamada et al. | Mar 2004 | A1 |
Number | Date | Country |
---|---|---|
WO 03064885 | Aug 2003 | WO |
Entry |
---|
International Search Report, PCT/US2008/000324, dated Jun. 5, 2008. |
Number | Date | Country | |
---|---|---|---|
20080213112 A1 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
60879674 | Jan 2007 | US |