The present disclosure relates to oral health products. More specifically, the present disclosure relates to toothbrush systems.
Many people use electronically driven toothbrushes as part of a daily oral health routine. Electronically driven toothbrushes typically rotate or oscillate a brush head include one or more bristle groups. While electronic toothbrushes can provide superior cleaning capabilities as compared to conventional non-powered toothbrushes, many users will exert an additional force on the brush head during cleaning. This user applied force, in addition to the force exerted by the stiffness and electronic movement of the bristles, can damage the gums of a user. Therefore, it is desirable to ensure that the force of the bristles on a user's gums remains below a particular level. However, many conventional electronically driven toothbrushes do not have a way to monitor or change the pressure exerted on a user's gums.
The information included in this Background section of the specification, including any references cited herein and any description or discussion thereof, is included for technical reference purposes only and is not to be regarded subject matter by which the scope of the invention as defined in the claims is to be bound.
In one embodiment, a toothbrush including a pressure sensing function is disclosed. The toothbrush may include a handle and a brush tip releasably connected to the handle, where the brush tip includes multiple bristles connected thereto and rotatable therewith. The toothbrush may also include a power source, a direct current motor in selective communication with the power source, a drive assembly connected between the brush tip and a drive shaft that converts rotation of the direct current motor into oscillation or rotation of the brush tip, and a control assembly in electrical communication with the power source. During operation of the motor, the control assembly monitors a current draw by the motor to assess the pressure being exerted by the bristles on one or more surfaces of a user's mouth and adjusts a current applied to the direct current motor based on the current draw.
In another embodiment, a toothbrush including a pressure sensing function is disclosed. The toothbrush includes a brush tip comprising a plurality of bristles operably coupled thereto, a motor that actuates the brush tip, the plurality of bristles, or a combination thereof, a power source that provides current to the motor, a sensing module that detects a current provided to the motor, and a motor control coupled to the motor and the sensing module, wherein the motor control dynamically adjusts a current provided to the motor based on the detected current.
In another embodiment, a method of operating a toothbrush is disclosed. The method includes detecting, by a sensing module, a current provided to a motor driving a plurality of bristles on a brush tip, wherein the detected current is proportional to a pressure applied to the plurality of bristles, determining, by a processor, whether the detected current exceeds a threshold current, and providing an alert to a user responsive to determining that the detected current exceeds the threshold.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. A more extensive presentation of features, details, utilities, and advantages of the present invention as defined in the claims is provided in the following written description of various embodiments of the invention and illustrated in the accompanying drawings.
Overview
The present disclosure is generally related to a system and method to sense an applied load on a brush tip or bristles. Using this method, a toothbrush can provide an alert to a user to indicate that he or she has exceeded a desired force level and/or may automatically adjust one or more characteristics of the system to reduce the applied force, e.g., reduce the power applied to a motor driving the brush tip.
In one example, a toothbrush including a sensing module is disclosed. The toothbrush includes a direct-current (DC) driven motor, a drive assembly connected to and rotated by the motor, a power assembly for providing power to the motor, and a brush head or bristles connected to the drive assembly and configured to be oscillated or rotated by the drive assembly. In this example, the sensing module may monitor the voltage drop across the motor (e.g., by measuring the current that the motor is pulling from the power source) and use the value to determine the force being applied to a user's gums. In some embodiments, the sensing module may include parameters such as, but not limited to, type of brush tip, bristle stiffness, bristle height, no-load values, and the like. These additional parameters may assist in providing a more accurate reading for the toothbrush.
In a specific embodiment, the sensing module may monitor the voltage across a wire connected to the motor. Additionally or alternatively, the sensing module may monitor the voltage of an activating transistor electrically connected to the motor. The sensing modules may be connected to either or both the positive and negative terminals of the motor.
In some embodiments, the sensing module may analyze the detected values against a predetermined current/force relationship. In one embodiment, a linear slope relationship may be used to determine the force applied to the brush tip based on the current applied to the motor. In this example, as soon as the user applies the bristles of the brush tip to a surface in his or her mouth (e.g., gums, teeth, tongue, etc.), the sensing module tracks the current in real-time to adaptively track the motor load and thus the brush tip load, as it varies. An output to the user or a modification to the motor speed may occur when a detected load change is exceeds a predetermined threshold, e.g., magnitude or change value. In some embodiments, the toothbrush may dynamically calculate a threshold level of pressure for a particular brush, using a current/force relationship, e.g., adaptive learning, and use this threshold to detect when the force may damage a user's gums. This helps to accommodate for changes based on wear on the components, bristles, new brush heads, and the like. If the threshold was based solely on a static level, rather than a dynamic relationship, then the threshold may not compensate for increases/decreases in friction and other changes in the brushes.
Detailed Description
Turning now to the figures, the method and system will be discussed in more detail below.
The handle 102 defines a main body of the toothbrush 100 and acts to house the various internal components (e.g., motor 112, drive assembly 116, etc.). In many embodiments the handle 102 may be formed by two shells that are connected together to define an internal cavity. However, in other embodiments the handle 102 may be differently configured. In some embodiments the toothbrush 100 may also include a washing or irrigating function and in these embodiments the handle 102 may include a fluid connection to a reservoir or the like, as well as one or more fluid pathways defined therein or connected thereto, that transfer fluid from the reservoir to the brush tip 104.
The brush head 104 is movable relative to the handle 102 and may be removably connected to a top end of the handle 102. The brush tip 104 is connected to the output shaft 110 which drives the brush head 104 in an oscillating motion (e.g., back and forth about a pivot point) or to drive the brush head 106 in a rotational movement relative to the handle 102. The brush tip 104 includes a plurality of bristles 108 that are connected to the brush head 106. The bristles 108 may be uniform or may have varying heights, stiffness, and/or materials in order to provide a desired output characteristic. As will be discussed in more detail below, in some embodiments various characteristics of the bristles 108 may be provided as an input or otherwise adjusted for by the toothbrush 100 when determining a desired motor 112 speed. For example, the stiffer the bristles 108 the slower the motor 112 may need to rotate to achieve a desired exertion force on a user's teeth and gums. It should be noted that in some embodiments, the entire brush head 104 may move in order to move the bristles 108 correspondingly. In other examples, the brush head 104 may connect to a bristle head or carrier that supports the bristles. In these examples, the bristle carrier only may move and the brush head may remain stationary.
The motor 112 is used to drive the brush tip 104 and/or brush head 106. In many embodiments the motor 112 is a high speed DC motor that, when activated, rotates the drive shaft 114 in a continuous manner. In some embodiments, the drive shaft 114 may be an eccentric shaft having one portion aligned with a center axis of the motor 112 and one portion offset from the center axis of the motor 112. In other embodiments, the drive shaft 114 may be straight and be aligned with the center axis of the motor 112. In some embodiments, the motor will rotate between 5500 to 16000 rpms depending on whether sonic or sub-sonic rotary motion is desired. In one example, a DC motor having a maximum efficiency load of 6900 rpms, a no-load speed of 8300 rpm, and a loaded speed of 5500 rpms may be used. However, in other embodiments, other speeds may be used and may vary depending on the desired output characteristics of the toothbrush 100. For example, using a direct drive assembly 116, the motor 112 may operate at higher speeds, such as 16000 rpms. In some embodiments, the motor 112 may operate with a voltage range between 2.4 to 8.7 Volts. However, in other embodiments other voltage ranges may be used.
The drive assembly 116 converts rotation of the drive shaft 114 into a desired output motion of the brush tip 104 and/or brush head 106. For example, the drive assembly 116 may convert the rotational movement of the drive shaft 114 into an oscillating movement of the brush tip 104. In another embodiment, the drive assembly 116 may transfer rotary motion of the drive shaft 114 into rotational movement of the brush head 106 relative to the brush tip 104. The drive assembly 116 may be a direct drive configuration or may be an indirect configuration (e.g., gear reduction or the like). Additionally, the drive assembly 116 may reduce the speed of the movement as compared to the rotational speed of the drive shaft 114. Examples of drive assemblies 116 that may be used with the toothbrush 100 may be found in U.S. patent application Ser. No. 13/833,897 entitled “Electronic Toothbrush with Vibration Dampening,” filed on Mar. 15, 2013, U.S. Pat. No. 8,943,634 entitled “Mechanically-Driven, Sonic Toothbrush System,” filed on May 2, 2012, U.S. patent application Ser. No. 14/216,779 entitled “Mechanically-Driven, Sonic Toothbrush and Water Flosser” filed on Mar. 17, 2014, and U.S. Provisional Application No. 62/190,094 entitled “Irrigating Toothbrush” filed on Jul. 8, 2015, each of which are hereby incorporated by reference in their entireties.
The output shaft 110 is connected to the drive assembly 116 and may include two or more shafts connected together. The output shaft 110 may be inserted into a cavity in the brush tip 104 to drive the motion of the brush tip 104 or may connect to an internal shaft within the brush tip 104.
The power source 118 provides power to the motor 112, as well as other components of the toothbrush 100 that may require power (e.g., control assembly 126, output elements 128, lights, or the like). In some embodiments the power source 118 may be a battery (either rechargeable or replaceable), in other embodiments the power source 118 may be a power cord or the like that connects to an external power source (e.g., wall outlet).
The control buttons 120 allow a user to provide input to control the operation of the motor 112. For example, the control buttons 120 may include a power button to allow a user to activate the motor 112. Additionally the control buttons 120 may include a speed or setting button that allows a user to increase or decrease the speed of the motor 112. In embodiments where the toothbrush 100 may have additional functions (e.g., irrigating function), the control buttons 120 may also change the functionality of the toothbrush 100, such as activating the fluid flow.
With reference to
The sensing module 122 provides feedback to the motor control 124 regarding the operation of the brush tip 104 and can be used to automatically vary the output of the motor 112 or to activate the output element 128. In one embodiment, the sensing module 122 tracks the mechanical load experienced on the bristles 108 by tracking the current applied to the motor 112. In one example, the sensing module 122 may be an in-series current sense that monitors the voltage across the motor wire connections (e.g., in the connection wire before or after the motor 112, such as the connection wires on the positive and negative side of the motor 112). For example, the current sense may include a current sensor (such as an ammeter), a voltage meter, or any other type of device capable of measuring, directly or indirectly, an electrical current. As another example, the sensing module 122 may be a motor-control sense that monitors the voltage of a control switch, such as a transistor (e.g., field effect transistor (FET)), using the inherent resistance during the on-state of the transistor (e.g., drain-source on resistance (RDS(on)). As yet another example, the sensing module 122 may include using a sensing resistor positioned in series with the motor 112 or to add additional lengths of wire traces to a circuit board including the various components. However, with the sensing resistor option, a drop in efficiency may occur due to the introduced loss through the resistor and therefore may not be desired in some configurations.
In one embodiment, the positive sensing module 130 is an in-series current sense that monitors the voltage across the wire or trace connection 146 from the power source 118 to the positive terminal of the motor 112. In this example, the positive sensing module 130 may include a signal amplifier 134 that amplifies the detected signal before generating a first voltage output 136. As noted above, in other embodiments, the positive sensing module 130 may be differently configured and may be a current sense, rather than a voltage reference as shown point in
With continued reference to
As shown in
Operation of the toothbrush 100 will now be discussed. With reference to
As the user presses the bristles 108 against surfaces in his or her mouth, the added pressure provides a counteracting force on the motor causing the load on the motor 112 to increase. In particular, the harder the user presses the bristles 108 against a surface, the more torque the motor 112 may require in order to continue to rotate the bristles 108 at the desired or selected speed. In this manner, the current drawn by the motor 112 is proportional to the load (e.g., the force required to move the bristles 108), and as the load increases the current drawn by the motor 112 also increases.
By analyzing the motor current, along with other factors, such as characteristics of the brush tip 104, bristles 108 (e.g., strand thickness, tuft height (or heights when the brush head has groups of bristles with different heights), tuft counts, and the like), drive assembly 116, a relationship between the pressure exerted onto the applied surface as compared to the current drawn by the motor can be determined.
A method for using the pressure-current relationship 202 of
Operation 254 uses the motor current as the motor 112 is first activated to determine the no-load condition of the motor 112. In particular, as soon as the user activates the toothbrush 100, the system assumes that he or she has not yet positioned the bristles 108 against surfaces in his or her mouth, or if the user has positioned the bristles 108 against a surface, the pressure exerted manually by a user is very light. By creating an initial reading during operation 254, the method 250 can create a baseline value and account for variations in the toothbrush 100 over time. For example, normal operation may cause the drive assembly 116 and output shaft 110 to wear-in, reducing the friction on the motor 112 and thus reducing the no-load conditions on the motor 112. As another example, as a user's bristles 108 wear due to use or if the user replaces the brush tip 104 with a different type of brush tip or with stiffer bristles 108, the method 250 can accommodate for those changes. As yet another example, factory calibration conditions may not account for manufacturing tolerances and the specific characteristics of each toothbrush 100.
In some embodiments, the method 250 may include determining a baseline or expected pressure range during operation 254. For example, some users may place the bristles 108 against their teeth with some force before turning on the toothbrush 100. In this example, the initial detected condition may not be a true no-load and the system may not accurately detect when the actual exerted pressure exceeds the predetermined pressure thresholds since the initial baseline reading is incorrect. Accordingly, in these embodiments, if the initial load is greater than an acceptable no-load condition (which may be a range of values or threshold), a default or historical no-load condition is applied to initialize the readings. The default or historical no-load conditions may be stored, for example, in the memory 125 and accessed by the motor control 124 when needed.
With reference again to
In particular, the motor control 124 may determine the current being drawn by the motor 112 by evaluating the first voltage output 136 and/or the second voltage output 140. In some embodiments only the change in current between the initial value as determined in operation 254 and the value determined in operation 256 may be evaluated, rather than the full current value. In some embodiments, signal processing is applied in the control assembly 126 based on singular or sampling average techniques allowing accurate/stable current readings.
Using the voltage drop across the motor to determine the current used by the motor 112, the motor control 124 or other processor refers a pressure-current relationship, such as the linear pressure-current relationship shown in
The threshold value may be stored in a memory component 125 in the motor control 124 or in the control assembly 126 and may be selected based on characteristics of the brush tip 104, bristles 108, drive assembly 116, or the like. In some embodiments, the pressure threshold may be between around 280 to 430 grams (e.g., 10 to 15 ounces). This pressure range has been found to be sufficient to prevent damage to a user's gums, while still allowing effective cleaning and plaque removal. However, in other embodiments, different pressure thresholds may be selected. For example, depending on the stiffness of the bristles 108 the threshold may increase or decrease. In particular, for very stiff bristles 108, the threshold may reduce to about 140 grams (e.g., 5 ounces). In some embodiments, the toothbrush may include inputs that allow a user to provide information regarding the characteristics of the brush tip 104 or user preferences which can be used to set or adjust the pressure threshold.
If in operation 258, the pressure exceeds the threshold, the method 252 may proceed to operation 260. In operation 260, the control assembly 126 may provide an output to the user. For example, the output element 128 may be activated to vibrate the brush handle 102, turn on one or more lights, turn the motor 112 off, produce a buzz or other audible sound, create a stutter motion by the brush tip 104, or the like.
The method 252 may also include operation 262. In operation 262, if the pressure exceeds the predetermined threshold, the motor control 124 may reduce the speed of the motor 112. For example, the motor control 124 may reduce the current or voltage applied to the motor 124, which in turn will reduce the rotational speed of the drive shaft 114. The motor control 124 may adjust the voltage in various manners, but in one embodiment, the motor control 124 may include the transistor 142 which can be modulated (e.g., by modulating a gate condition or a channel condition of the transistor 142) to vary the motor speed. In other examples, a rheostat, signal generator, or other components can be used to provide varying voltage magnitudes to the motor 112. As yet another example, in one embodiment, a FET is driven in ohmic mode in combination with a digital potentiometer assembled as an extension of the motor control transistor 142.
After operation 262 or if in operation 258 the pressure did not exceed the threshold, the method 250 may proceed to operation 264. In operation 264, the motor control 124 determines whether the motor 112 should be deactivated. For example, the motor control 124 may determine whether the control button 120 for powering off the toothbrush 100 has been activated by a user. As another example, the toothbrush 100 may operate the motor 112 for a predetermined amount of time and automatically deactivated the motor 112 when the time expires. If the motor 112 is to be deactivated, the method 252 proceeds to operation 266 and the power source 118 is disconnected from the motor 112 to deactivate the motor 112. However, if the motor 112 is not to be deactivated, the method 252 may return to operation 256 and continue to monitor the pressure.
Using the method 250, the toothbrush 100 can provide adaptive pressure sensing for the DC motor 112, and help to prevent users from exerting too much pressure on interior surfaces in their mouths. The adaptive pressure sensing adjusts to accommodate mechanical and functional changes to the toothbrush, which is not possible with conventional toothbrushes. In some embodiments, the method 250 may track, using the sensing module 122, deltas or changes in current of a motor and uses these data points to adjust operation of the motor 112 or toothbrush 100. For example, the processing element may track a delta change from an operating or no-load current draw by the motor 112. In particular, in some instances a user's force may generate a consistent change in current (as compared to a current magnitude) by the motor 112 (e.g., an ampere change between 400 to 650 milliamps).
All directional references (e.g., proximal, distal, upper, lower, upward, downward, left, right, lateral, longitudinal, front, back, top, bottom, above, below, vertical, horizontal, radial, axial, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the present invention, and do not create limitations, particularly as to the position, orientation, or use of the invention. Connection references (e.g., attached, coupled, connected, and joined) are to be construed broadly and may include intermediate members between a collection of elements and relative movement between elements unless otherwise indicated. As such, connection references do not necessarily infer that two elements are directly connected and in fixed relation to each other. The exemplary drawings are for purposes of illustration only and the dimensions, positions, order and relative sizes reflected in the drawings attached hereto may vary.
The above specification, examples and data provide a complete description of the structure and use of exemplary embodiments of the invention as defined in the claims. Although various embodiments of the claimed invention have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of the claimed invention. Other embodiments are therefore contemplated. It is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative only of particular embodiments and not limiting. Changes in detail or structure may be made without departing from the basic elements of the invention as defined in the following claims.
The present disclosure claims priority to U.S. Provisional Application No. 62/333,679 entitled “Load Sensing for Oral Devices” filed on May 9, 2016, which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
669402 | Rose | Mar 1901 | A |
684951 | Rothkranz | Oct 1901 | A |
914501 | McEachern | Mar 1909 | A |
933718 | Mahoney | Sep 1909 | A |
958371 | Danek | May 1910 | A |
1018927 | Sarrazin | Feb 1912 | A |
1033819 | McMann | Jul 1912 | A |
1059426 | Barnes | Apr 1913 | A |
D45199 | McDonagh et al. | Feb 1914 | S |
D45572 | Sarrazin | Apr 1914 | S |
1128139 | Hoffman | Feb 1915 | A |
D49472 | Dierke | Aug 1916 | S |
1251250 | Libby | Dec 1917 | A |
1268544 | Cates | Jun 1918 | A |
1278225 | Schamberg | Sep 1918 | A |
1296067 | Fuller | Mar 1919 | A |
D53453 | Lloyd | Jul 1919 | S |
1313490 | Larson | Aug 1919 | A |
1337173 | White | Apr 1920 | A |
1355037 | Dziuk | Oct 1920 | A |
D57327 | Gibson | Mar 1921 | S |
1382681 | Segal | Jun 1921 | A |
1424879 | Carlstedt | Aug 1922 | A |
1440785 | Levis | Jan 1923 | A |
1456535 | Cartwright | May 1923 | A |
1488214 | Mason | Mar 1924 | A |
1494448 | Sookne | May 1924 | A |
1497495 | Fincke | Jun 1924 | A |
1517320 | Stoddart | Dec 1924 | A |
1527853 | Ferdon | Feb 1925 | A |
1588785 | Van Sant | Jun 1926 | A |
1639880 | Butler | Aug 1927 | A |
1657450 | Barnes | Jan 1928 | A |
1676703 | Nuyts | Jul 1928 | A |
1696835 | Burnett | Dec 1928 | A |
1703642 | Sticht | Feb 1929 | A |
1794711 | Jacobs | Mar 1931 | A |
1796641 | Zimmerman et al. | Mar 1931 | A |
1800993 | Funk | Apr 1931 | A |
1832519 | Wheat et al. | Nov 1931 | A |
1880617 | White | Oct 1932 | A |
1916641 | Seeliger | Jul 1933 | A |
1927365 | Frolio | Sep 1933 | A |
1943225 | McIntyre | Jan 1934 | A |
1992770 | Rathbun | Feb 1935 | A |
2016597 | Drake | Oct 1935 | A |
2016644 | Luball | Oct 1935 | A |
2042239 | Planding | May 1936 | A |
2044863 | Sticht | Jun 1936 | A |
D101080 | Cosad | Sep 1936 | S |
2114947 | Warsaw | Apr 1938 | A |
D113743 | Kahn | Mar 1939 | S |
D113744 | Kahn | Mar 1939 | S |
2158738 | Baker et al. | May 1939 | A |
2168964 | Strasser | Aug 1939 | A |
2206726 | Lasater | Jul 1940 | A |
2209173 | Russell | Jul 1940 | A |
2218072 | Runnels | Oct 1940 | A |
2226663 | Hill et al. | Dec 1940 | A |
2244098 | Busick | Jun 1941 | A |
2246523 | Kulik | Jun 1941 | A |
2273717 | Millard et al. | Feb 1942 | A |
2278365 | Daniels | Mar 1942 | A |
2279355 | Wilensky | Apr 1942 | A |
2282700 | Bobbroff | May 1942 | A |
2312828 | Adamsson | Mar 1943 | A |
D136156 | Fuller | Aug 1943 | S |
D139532 | Trecek | Nov 1944 | S |
D141350 | Alexander et al. | May 1945 | S |
D144163 | Dolnick | Mar 1946 | S |
2401186 | Price | May 1946 | A |
2405029 | Gallanty et al. | Jul 1946 | A |
D146271 | Stavely | Jan 1947 | S |
2414775 | Stavely | Jan 1947 | A |
2429740 | Aufsesser | Oct 1947 | A |
2450635 | Dembenski | Oct 1948 | A |
D154598 | Gass | Jul 1949 | S |
D155668 | Zandberg et al. | Oct 1949 | S |
D157669 | Graves, Jr. | Mar 1950 | S |
D160101 | MacDonald | Sep 1950 | S |
2533345 | Bennett | Dec 1950 | A |
2543999 | Voss | Mar 1951 | A |
D163707 | Pifer | Jun 1951 | S |
2558332 | Artale | Jun 1951 | A |
2567080 | Pifer | Sep 1951 | A |
2577597 | Wright et al. | Dec 1951 | A |
2583750 | Runnels | Jan 1952 | A |
2598275 | Lakin | May 1952 | A |
2618003 | Robey | Nov 1952 | A |
D169131 | Fay | Mar 1953 | S |
2651068 | Seko | Sep 1953 | A |
D170680 | Del Mas | Oct 1953 | S |
D172693 | Wibbelsman et al. | Jul 1954 | S |
D173616 | Hernandez | Dec 1954 | S |
2705335 | Glassman et al. | Apr 1955 | A |
2709227 | Foley et al. | May 1955 | A |
2722703 | Green | Nov 1955 | A |
2728928 | Beeren | Jan 1956 | A |
2734139 | Murphy | Feb 1956 | A |
2806235 | Carstairs et al. | Sep 1957 | A |
2819482 | Applegate | Jan 1958 | A |
2868215 | Mechem | Jan 1959 | A |
2875458 | Tsuda | Mar 1959 | A |
2917758 | Held et al. | Dec 1959 | A |
2931371 | Petitta | Apr 1960 | A |
2946072 | Filler et al. | Jul 1960 | A |
2962033 | Lew | Nov 1960 | A |
2977614 | Demanuele | Apr 1961 | A |
2977682 | Flatray | Apr 1961 | A |
3103027 | Birch | Sep 1963 | A |
3104405 | Perrinjaquet | Sep 1963 | A |
3106216 | Kirby | Oct 1963 | A |
D197048 | Troy | Dec 1963 | S |
D197208 | Cassidy et al. | Dec 1963 | S |
3143697 | Springer | Aug 1964 | A |
3145404 | Fiedler | Aug 1964 | A |
D199560 | Thompson | Nov 1964 | S |
D199893 | Bond et al. | Dec 1964 | S |
3159859 | Rasmussen | Dec 1964 | A |
3160902 | Aymar | Dec 1964 | A |
3168834 | Smithson | Feb 1965 | A |
3181189 | Leyden | May 1965 | A |
3183538 | Hubner | May 1965 | A |
3195537 | Blasi | Jul 1965 | A |
D202873 | Husted | Nov 1965 | S |
3220039 | Dayton et al. | Nov 1965 | A |
3229318 | Clemens | Jan 1966 | A |
3230562 | Birch | Jan 1966 | A |
D204127 | Syvertson | Mar 1966 | S |
3258805 | Rossnan | Jul 1966 | A |
3270416 | Massa | Sep 1966 | A |
3278963 | Bond | Oct 1966 | A |
3289681 | Chambers | Dec 1966 | A |
3311116 | Foster | Mar 1967 | A |
3316576 | Urbrush | May 1967 | A |
3335443 | Parisi et al. | Aug 1967 | A |
3346748 | McNair | Oct 1967 | A |
3358309 | Richardson | Dec 1967 | A |
3358314 | Matibag | Dec 1967 | A |
3359588 | Kobler | Dec 1967 | A |
3364576 | Kern, Jr. | Jan 1968 | A |
D210066 | Johnson | Feb 1968 | S |
3369265 | Halberstadt et al. | Feb 1968 | A |
3371260 | Jackson et al. | Feb 1968 | A |
D210349 | Boldt | Mar 1968 | S |
3375820 | Kuris et al. | Apr 1968 | A |
3394277 | Satkunas et al. | Jul 1968 | A |
D212208 | Rogers | Sep 1968 | S |
3418552 | Holmes | Dec 1968 | A |
3421524 | Waters | Jan 1969 | A |
3430279 | Hintze | Mar 1969 | A |
3463994 | Spohr | Aug 1969 | A |
3466689 | Aurelio et al. | Sep 1969 | A |
3472045 | Nelsen et al. | Oct 1969 | A |
3472247 | Borsum et al. | Oct 1969 | A |
3474799 | Cappello | Oct 1969 | A |
3509874 | Stillman | May 1970 | A |
3535726 | Sawyer | Oct 1970 | A |
3536065 | Moret | Oct 1970 | A |
3538359 | Barowski | Nov 1970 | A |
3552022 | Axelsson | Jan 1971 | A |
3559292 | Weissman | Feb 1971 | A |
3563233 | Bodine | Feb 1971 | A |
3588936 | Duve | Jun 1971 | A |
3590814 | Bennett et al. | Jul 1971 | A |
D221823 | Cook | Sep 1971 | S |
3608548 | Lewis | Sep 1971 | A |
3642344 | Corker | Feb 1972 | A |
3651576 | Massa | Mar 1972 | A |
3660902 | Axelsson | May 1972 | A |
3667483 | McCabe | Jun 1972 | A |
3672378 | Silverman | Jun 1972 | A |
3676218 | Sawyer | Jul 1972 | A |
3685080 | Hubner | Aug 1972 | A |
3722020 | Hills | Mar 1973 | A |
3742549 | Scopp et al. | Jul 1973 | A |
3759274 | Warner | Sep 1973 | A |
3760799 | Crowson | Sep 1973 | A |
3792504 | Smith | Feb 1974 | A |
3809977 | Balamuth et al. | May 1974 | A |
3831611 | Hendricks | Aug 1974 | A |
3840932 | Balamuth et al. | Oct 1974 | A |
3847167 | Brien | Nov 1974 | A |
3851984 | Crippa | Dec 1974 | A |
D234518 | Gerlich | Mar 1975 | S |
3882364 | Wright et al. | May 1975 | A |
3902510 | Roth | Sep 1975 | A |
3903601 | Anderson et al. | Sep 1975 | A |
3939599 | Henry et al. | Feb 1976 | A |
3967617 | Krolik | Jul 1976 | A |
3973558 | Stouffer et al. | Aug 1976 | A |
3977084 | Sloan | Aug 1976 | A |
3978852 | Annoni | Sep 1976 | A |
3980906 | Kuris et al. | Sep 1976 | A |
4004344 | Gold et al. | Jan 1977 | A |
4005722 | Bragg | Feb 1977 | A |
4008728 | Sanchez | Feb 1977 | A |
4010509 | Huish | Mar 1977 | A |
4014354 | Garrett | Mar 1977 | A |
4019522 | Elbreder | Apr 1977 | A |
4033008 | Warren et al. | Jul 1977 | A |
4048723 | Thorup | Sep 1977 | A |
4051571 | Ayers | Oct 1977 | A |
4064883 | Oldham | Dec 1977 | A |
4133339 | Naslund | Jan 1979 | A |
4141352 | Ebner et al. | Feb 1979 | A |
4156620 | Clemens | May 1979 | A |
4177434 | Ida | Dec 1979 | A |
D254162 | Barker | Feb 1980 | S |
4192035 | Kuris | Mar 1980 | A |
4203431 | Abura et al. | May 1980 | A |
4205664 | Baccialon | Jun 1980 | A |
4219619 | Zarow | Aug 1980 | A |
4235253 | Moore | Nov 1980 | A |
4245658 | Lecouturier | Jan 1981 | A |
RE30536 | Perdreaux, Jr. | Mar 1981 | E |
4255693 | Keidl | Mar 1981 | A |
4265257 | Salyer | May 1981 | A |
4268933 | Papas | May 1981 | A |
4271382 | Maeda et al. | Jun 1981 | A |
4271384 | Beiling et al. | Jun 1981 | A |
4271854 | Bengtsson | Jun 1981 | A |
4275363 | Mishiro et al. | Jun 1981 | A |
4288883 | Dolinsky | Sep 1981 | A |
4289486 | Sargeant | Sep 1981 | A |
4303064 | Buffa | Dec 1981 | A |
4307740 | Florindez et al. | Dec 1981 | A |
4319377 | Tarrson et al. | Mar 1982 | A |
4319595 | Ulrich | Mar 1982 | A |
4326547 | Verplank | Apr 1982 | A |
4326548 | Wagner | Apr 1982 | A |
4326549 | Hinding | Apr 1982 | A |
4331422 | Heyman | May 1982 | A |
4333197 | Kuris | Jun 1982 | A |
4336622 | Teague, Jr. et al. | Jun 1982 | A |
D265515 | Levine | Jul 1982 | S |
4338957 | Meibauer | Jul 1982 | A |
D265698 | Roth | Aug 1982 | S |
4346492 | Solow | Aug 1982 | A |
4347839 | Youngclaus, Jr. | Sep 1982 | A |
4353141 | Teague, Jr. et al. | Oct 1982 | A |
4356585 | Protell et al. | Nov 1982 | A |
4381478 | Saijo et al. | Apr 1983 | A |
4395665 | Buchas | Jul 1983 | A |
4397327 | Hadary | Aug 1983 | A |
D270972 | Rosofsky | Oct 1983 | S |
D272565 | Levine | Feb 1984 | S |
D272680 | Stocchi | Feb 1984 | S |
4429997 | Matthews | Feb 1984 | A |
4432729 | Fattaleh | Feb 1984 | A |
4434806 | Givens | Mar 1984 | A |
4442830 | Markau | Apr 1984 | A |
D274018 | Usui | May 1984 | S |
4450599 | Scheller et al. | May 1984 | A |
4455704 | Williams | Jun 1984 | A |
4458702 | Grollimund | Jul 1984 | A |
4488327 | Snider | Dec 1984 | A |
4490114 | Kleesattel | Dec 1984 | A |
4505678 | Andersson | Mar 1985 | A |
4517701 | Stanford, Jr. | May 1985 | A |
4519111 | Cavazza | May 1985 | A |
4522355 | Moran | Jun 1985 | A |
4522595 | Selvidge | Jun 1985 | A |
4543679 | Rosofsky et al. | Oct 1985 | A |
D281202 | Thompson | Nov 1985 | S |
4562413 | Mishiro et al. | Dec 1985 | A |
4564794 | Kilen et al. | Jan 1986 | A |
4571768 | Kawashima | Feb 1986 | A |
4576190 | Youssef | Mar 1986 | A |
4577649 | Shimenkov | Mar 1986 | A |
4578033 | Mossle et al. | Mar 1986 | A |
D283374 | Cheuk-Yiu | Apr 1986 | S |
4585415 | Hommann | Apr 1986 | A |
4586521 | Urso | May 1986 | A |
D284236 | Collet | Jun 1986 | S |
D284528 | Jurado | Jul 1986 | S |
4603448 | Middleton | Aug 1986 | A |
4605025 | McSpadden | Aug 1986 | A |
4608019 | Kumabe et al. | Aug 1986 | A |
4610043 | Vezjak | Sep 1986 | A |
4617695 | Amos et al. | Oct 1986 | A |
4617718 | Andersson | Oct 1986 | A |
4619009 | Rosenstatter | Oct 1986 | A |
D287073 | Thompson | Dec 1986 | S |
4634376 | Mossle et al. | Jan 1987 | A |
4644937 | Hommann | Feb 1987 | A |
4655198 | Hommann | Apr 1987 | A |
4672706 | Hill | Jun 1987 | A |
D292448 | Vianello | Oct 1987 | S |
4698869 | Mierau et al. | Oct 1987 | A |
4706322 | Nicolas | Nov 1987 | A |
4706695 | Urso | Nov 1987 | A |
D294885 | Mollenhoff | Mar 1988 | S |
4729142 | Yoshioka | Mar 1988 | A |
D297467 | McCann | Aug 1988 | S |
4766630 | Hegemann | Aug 1988 | A |
4776054 | Rauch | Oct 1988 | A |
4787847 | Martin et al. | Nov 1988 | A |
4791940 | Hirshfeld et al. | Dec 1988 | A |
4800608 | Key | Jan 1989 | A |
4802255 | Breuer et al. | Feb 1989 | A |
4811445 | Lagieski et al. | Mar 1989 | A |
4820153 | Romhild et al. | Apr 1989 | A |
4820154 | Romhild et al. | Apr 1989 | A |
4827550 | Graham et al. | May 1989 | A |
4827551 | Maser et al. | May 1989 | A |
4827552 | Bojar et al. | May 1989 | A |
4832063 | Smole | May 1989 | A |
D301770 | Bethany | Jun 1989 | S |
4844104 | Martin | Jul 1989 | A |
4845795 | Crawford et al. | Jul 1989 | A |
4856133 | Sanchez | Aug 1989 | A |
4864676 | Schaiper | Sep 1989 | A |
D303876 | Clemens et al. | Oct 1989 | S |
4871396 | Tsujita et al. | Oct 1989 | A |
4873496 | Ohgihara et al. | Oct 1989 | A |
4875265 | Yoshida | Oct 1989 | A |
4877934 | Spinello | Oct 1989 | A |
4879781 | Desimone | Nov 1989 | A |
4880382 | Moret et al. | Nov 1989 | A |
4887052 | Murakami et al. | Dec 1989 | A |
4892191 | Nakamara | Jan 1990 | A |
4908902 | McNab et al. | Mar 1990 | A |
4913133 | Tichy | Apr 1990 | A |
4913176 | DeNiro | Apr 1990 | A |
4922936 | Buzzi et al. | May 1990 | A |
D308765 | Johnson | Jun 1990 | S |
4974278 | Hommann | Dec 1990 | A |
4984173 | Imam et al. | Jan 1991 | A |
4989287 | Scherer | Feb 1991 | A |
4991249 | Suroff | Feb 1991 | A |
4995403 | Beckman et al. | Feb 1991 | A |
5000684 | Odrich | Mar 1991 | A |
5002487 | Tichy | Mar 1991 | A |
5007127 | Paolo | Apr 1991 | A |
5016660 | Boggs | May 1991 | A |
5020179 | Scherer | Jun 1991 | A |
5033150 | Gross et al. | Jul 1991 | A |
D318918 | Hartwein | Aug 1991 | S |
D319363 | Uemura et al. | Aug 1991 | S |
5046212 | O'Conke | Sep 1991 | A |
5050625 | Siekmann | Sep 1991 | A |
5054149 | Si-Hoe et al. | Oct 1991 | A |
D321285 | Hirabayashi | Nov 1991 | S |
5062797 | Gonser | Nov 1991 | A |
5067223 | Bruno | Nov 1991 | A |
D321986 | Snyder et al. | Dec 1991 | S |
5068939 | Holland | Dec 1991 | A |
5069233 | Ritter | Dec 1991 | A |
5069621 | Paradis | Dec 1991 | A |
5071348 | Woog | Dec 1991 | A |
5072477 | Pai | Dec 1991 | A |
5072482 | Bojar et al. | Dec 1991 | A |
5077855 | Ambasz | Jan 1992 | A |
5085236 | Odneal et al. | Feb 1992 | A |
5088145 | Whitefield | Feb 1992 | A |
D324957 | Piano | Mar 1992 | S |
5094256 | Barth | Mar 1992 | A |
5095470 | Oka et al. | Mar 1992 | A |
5100321 | Coss et al. | Mar 1992 | A |
5120225 | Amit | Jun 1992 | A |
5123841 | Millner | Jun 1992 | A |
5125837 | Warrin et al. | Jun 1992 | A |
5133661 | Euvrard | Jul 1992 | A |
5138733 | Bock | Aug 1992 | A |
5145369 | Lustig et al. | Sep 1992 | A |
5146643 | Bojar et al. | Sep 1992 | A |
5150492 | Suroff | Sep 1992 | A |
5151030 | Comeaux | Sep 1992 | A |
D330116 | Crawford et al. | Oct 1992 | S |
D330286 | Curtis et al. | Oct 1992 | S |
D330458 | Curtis et al. | Oct 1992 | S |
5152394 | Hughes | Oct 1992 | A |
5163375 | Withers et al. | Nov 1992 | A |
5165131 | Suroff | Nov 1992 | A |
5167193 | Withers et al. | Dec 1992 | A |
5169313 | Kline | Dec 1992 | A |
5170809 | Imai et al. | Dec 1992 | A |
5174314 | Charatan | Dec 1992 | A |
5176157 | Mazza | Jan 1993 | A |
5177826 | Vrignaud et al. | Jan 1993 | A |
5180363 | Idemoto et al. | Jan 1993 | A |
D332873 | Hall | Feb 1993 | S |
5183063 | Ringle et al. | Feb 1993 | A |
5183156 | Bruno | Feb 1993 | A |
5184368 | Holland | Feb 1993 | A |
5184632 | Gross et al. | Feb 1993 | A |
5186191 | Loubier | Feb 1993 | A |
5188133 | Romanus | Feb 1993 | A |
5189751 | Giuliani et al. | Mar 1993 | A |
5193678 | Janocik et al. | Mar 1993 | A |
5198732 | Morimoto | Mar 1993 | A |
D334472 | Curtis et al. | Apr 1993 | S |
5201092 | Colson | Apr 1993 | A |
D335579 | Chuang | May 1993 | S |
5207773 | Henderson | May 1993 | A |
5213434 | Hahn | May 1993 | A |
5214819 | Kirchner | Jun 1993 | A |
5217031 | Santoro | Jun 1993 | A |
5224500 | Stella | Jul 1993 | A |
5226206 | Davidovitz et al. | Jul 1993 | A |
5236358 | Sieffert | Aug 1993 | A |
5245117 | Withers et al. | Sep 1993 | A |
5246022 | Israel et al. | Sep 1993 | A |
5247716 | Bock | Sep 1993 | A |
5253382 | Beny | Oct 1993 | A |
5261430 | Mochel | Nov 1993 | A |
5263218 | Giuliani et al. | Nov 1993 | A |
D341943 | Si-Hoe | Dec 1993 | S |
D342160 | Curtis et al. | Dec 1993 | S |
D342161 | Curtis et al. | Dec 1993 | S |
D342162 | Curtis et al. | Dec 1993 | S |
5267579 | Bushberger | Dec 1993 | A |
D343064 | Reno | Jan 1994 | S |
5279314 | Poulos et al. | Jan 1994 | A |
5289604 | Kressner | Mar 1994 | A |
5293886 | Czapor | Mar 1994 | A |
5294896 | Kjellander et al. | Mar 1994 | A |
D346212 | Hosl | Apr 1994 | S |
5299723 | Hempel | Apr 1994 | A |
5301381 | Klupt | Apr 1994 | A |
5305492 | Giuliani et al. | Apr 1994 | A |
D346697 | O'Conke | May 1994 | S |
5309590 | Giuliani et al. | May 1994 | A |
5309591 | Hägele et al. | May 1994 | A |
5311632 | Center | May 1994 | A |
5311633 | Herzog et al. | May 1994 | A |
5315731 | Millar | May 1994 | A |
D347943 | Perry | Jun 1994 | S |
5323796 | Urso | Jun 1994 | A |
5335389 | Curtis et al. | Aug 1994 | A |
5337435 | Krasner et al. | Aug 1994 | A |
5339482 | Desimone et al. | Aug 1994 | A |
5341534 | Serbinski et al. | Aug 1994 | A |
5341537 | Curtis et al. | Aug 1994 | A |
5351358 | Larrimore | Oct 1994 | A |
5353460 | Bauman | Oct 1994 | A |
5354246 | Gotman | Oct 1994 | A |
5355638 | Hoffman | Oct 1994 | A |
5358328 | Inoue et al. | Oct 1994 | A |
D352396 | Curtis et al. | Nov 1994 | S |
D352829 | Perry | Nov 1994 | S |
5359747 | Amakasu | Nov 1994 | A |
5365627 | Jousson et al. | Nov 1994 | A |
D353490 | Hartwein | Dec 1994 | S |
5369831 | Bock | Dec 1994 | A |
5371915 | Key | Dec 1994 | A |
5373602 | Bang | Dec 1994 | A |
D354168 | Hartwein | Jan 1995 | S |
5378153 | Giuliani et al. | Jan 1995 | A |
5383242 | Bigler et al. | Jan 1995 | A |
5392483 | Heinzelman et al. | Feb 1995 | A |
5393229 | Ram | Feb 1995 | A |
5396678 | Bredall et al. | Mar 1995 | A |
5398368 | Elder | Mar 1995 | A |
5400811 | Meibauer | Mar 1995 | A |
5404608 | Hommann | Apr 1995 | A |
5406664 | Hukuba | Apr 1995 | A |
5406965 | Levine | Apr 1995 | A |
D358486 | Loew | May 1995 | S |
D358713 | Perry | May 1995 | S |
D358801 | Vos | May 1995 | S |
5411041 | Ritter | May 1995 | A |
5412827 | Muller et al. | May 1995 | A |
5416942 | Baldacci et al. | May 1995 | A |
5419346 | Tipp | May 1995 | A |
5419703 | Warrin et al. | May 1995 | A |
D358938 | Schneider et al. | Jun 1995 | S |
5421726 | Okada | Jun 1995 | A |
5435032 | McDougall | Jul 1995 | A |
5438726 | Leite | Aug 1995 | A |
5446940 | Curtis et al. | Sep 1995 | A |
D363605 | Kou et al. | Oct 1995 | S |
5459898 | Bacolot | Oct 1995 | A |
5461744 | Merbach | Oct 1995 | A |
5467494 | Muller et al. | Nov 1995 | A |
5467495 | Boland et al. | Nov 1995 | A |
5482466 | Haynes | Jan 1996 | A |
5484281 | Renow et al. | Jan 1996 | A |
5496256 | Bock et al. | Mar 1996 | A |
5499420 | Boland | Mar 1996 | A |
5504958 | Herzog | Apr 1996 | A |
5504959 | Yukawa et al. | Apr 1996 | A |
5511270 | Eliachar et al. | Apr 1996 | A |
5511275 | Volpenhein et al. | Apr 1996 | A |
D370125 | Craft et al. | May 1996 | S |
5518012 | Dolan et al. | May 1996 | A |
D370347 | Heinzelman et al. | Jun 1996 | S |
5529494 | Vlacancich | Jun 1996 | A |
D371242 | Shimatsu et al. | Jul 1996 | S |
5530981 | Chen | Jul 1996 | A |
5544382 | Giuliani et al. | Aug 1996 | A |
5545968 | Hilfinger et al. | Aug 1996 | A |
5546624 | Bock | Aug 1996 | A |
5546626 | Chung | Aug 1996 | A |
5561881 | Klinger et al. | Oct 1996 | A |
D375841 | Serbinski | Nov 1996 | S |
5573020 | Robinson | Nov 1996 | A |
5577285 | Drossler | Nov 1996 | A |
D376695 | Tveras | Dec 1996 | S |
5579786 | Wolk et al. | Dec 1996 | A |
5584690 | Maassarani | Dec 1996 | A |
5588452 | Peck | Dec 1996 | A |
5606984 | Gao | Mar 1997 | A |
5609170 | Roth | Mar 1997 | A |
5613258 | Hilfinger et al. | Mar 1997 | A |
5613259 | Craft et al. | Mar 1997 | A |
5617601 | McDougall | Apr 1997 | A |
5617602 | Okada | Apr 1997 | A |
5618275 | Bock | Apr 1997 | A |
5619766 | Zhadanov et al. | Apr 1997 | A |
5623746 | Ichiro | Apr 1997 | A |
5625916 | McDougall | May 1997 | A |
5628082 | Moskovich | May 1997 | A |
D380903 | Moskovich | Jul 1997 | S |
D381468 | Dolan et al. | Jul 1997 | S |
5651157 | Hahn | Jul 1997 | A |
D382407 | Craft et al. | Aug 1997 | S |
5652990 | Driesen et al. | Aug 1997 | A |
5653591 | Loge | Aug 1997 | A |
5678274 | Liu | Oct 1997 | A |
5678578 | Kossak et al. | Oct 1997 | A |
D386314 | Moskovich | Nov 1997 | S |
5687446 | Chen et al. | Nov 1997 | A |
5697117 | Craft | Dec 1997 | A |
5700146 | Kucar | Dec 1997 | A |
RE35712 | Murayama | Jan 1998 | E |
5704087 | Strub | Jan 1998 | A |
5709233 | Boland et al. | Jan 1998 | A |
5718667 | Sugimoto et al. | Feb 1998 | A |
5732433 | Göcking et al. | Mar 1998 | A |
5735011 | Asher | Apr 1998 | A |
5738575 | Bock | Apr 1998 | A |
5742972 | Bredall et al. | Apr 1998 | A |
5749380 | Zebuhr | May 1998 | A |
5762078 | Zebuhr | Jun 1998 | A |
5775346 | Szyszkowski | Jul 1998 | A |
5784742 | Giuliani | Jul 1998 | A |
5784743 | Shek | Jul 1998 | A |
D397251 | Eguchi et al. | Aug 1998 | S |
D397254 | Moskovich | Aug 1998 | S |
5787908 | Robinson | Aug 1998 | A |
5794295 | Shen | Aug 1998 | A |
5815872 | Meginnis, III et al. | Oct 1998 | A |
5816271 | Urso | Oct 1998 | A |
5822821 | Sham | Oct 1998 | A |
5827064 | Bock | Oct 1998 | A |
D400713 | Solanki | Nov 1998 | S |
5836030 | Hazeu et al. | Nov 1998 | A |
5842244 | Hilfinger et al. | Dec 1998 | A |
5850655 | Göcking et al. | Dec 1998 | A |
5851514 | Hassan et al. | Dec 1998 | A |
D403511 | Serbinski | Jan 1999 | S |
5855216 | Robinson | Jan 1999 | A |
5862558 | Hilfinger et al. | Jan 1999 | A |
5864911 | Arnoux | Feb 1999 | A |
5864915 | Ra | Feb 1999 | A |
5867856 | Herzog | Feb 1999 | A |
5875797 | Chiang et al. | Mar 1999 | A |
5893175 | Cooper | Apr 1999 | A |
5896614 | Flewitt | Apr 1999 | A |
5896615 | Zaksenberg | Apr 1999 | A |
5899693 | Himeno et al. | May 1999 | A |
5900230 | Cutler | May 1999 | A |
5901397 | Hafele et al. | May 1999 | A |
D410787 | Barre et al. | Jun 1999 | S |
5908038 | Bennett | Jun 1999 | A |
D411769 | Wright | Jul 1999 | S |
5921254 | Carlucci et al. | Jul 1999 | A |
5927300 | Boland et al. | Jul 1999 | A |
5927976 | Wu | Jul 1999 | A |
5930858 | Jung | Aug 1999 | A |
5931170 | Wu | Aug 1999 | A |
5934908 | Woog et al. | Aug 1999 | A |
5943723 | Hilfinger et al. | Aug 1999 | A |
5944033 | Robinson | Aug 1999 | A |
D413694 | Bennett | Sep 1999 | S |
D414937 | Cornu et al. | Oct 1999 | S |
D414939 | Pedro, Jr. et al. | Oct 1999 | S |
5974613 | Herzog | Nov 1999 | A |
5974615 | Schwarz-Hartmann et al. | Nov 1999 | A |
5980541 | Tenzer | Nov 1999 | A |
5987681 | Hahn et al. | Nov 1999 | A |
5991957 | Watanabe | Nov 1999 | A |
D417960 | Moskovich et al. | Dec 1999 | S |
6000083 | Blaustein et al. | Dec 1999 | A |
6009589 | Driesen et al. | Jan 2000 | A |
6021538 | Kressner et al. | Feb 2000 | A |
6026828 | Altshuler | Feb 2000 | A |
6032313 | Tsang | Mar 2000 | A |
6035476 | Underwood et al. | Mar 2000 | A |
6047429 | Wu | Apr 2000 | A |
6047711 | Wagner | Apr 2000 | A |
6050818 | Boland et al. | Apr 2000 | A |
D423784 | Joulin | May 2000 | S |
6065176 | Watanabe et al. | May 2000 | A |
6081957 | Webb | Jul 2000 | A |
6092252 | Fischer et al. | Jul 2000 | A |
6095811 | Stearns | Aug 2000 | A |
6102700 | Haczek et al. | Aug 2000 | A |
6106294 | Daniel | Aug 2000 | A |
6138310 | Porper et al. | Oct 2000 | A |
6140723 | Matsui et al. | Oct 2000 | A |
6148462 | Zseng | Nov 2000 | A |
D434563 | Lim et al. | Dec 2000 | S |
6154912 | Li | Dec 2000 | A |
6162202 | Sicurelli et al. | Dec 2000 | A |
6164967 | Sale et al. | Dec 2000 | A |
6165131 | Cuse et al. | Dec 2000 | A |
D437090 | Lang et al. | Jan 2001 | S |
D437091 | Lang et al. | Jan 2001 | S |
6178579 | Blaustein et al. | Jan 2001 | B1 |
D437663 | Lang et al. | Feb 2001 | S |
D437976 | Narayanan et al. | Feb 2001 | S |
D437977 | Lang et al. | Feb 2001 | S |
D438306 | Narayanan | Feb 2001 | S |
6183254 | Cohen | Feb 2001 | B1 |
6195828 | Fritsch | Mar 2001 | B1 |
6202242 | Salmon et al. | Mar 2001 | B1 |
6203320 | Williams et al. | Mar 2001 | B1 |
6220857 | Abels | Apr 2001 | B1 |
6230354 | Sproat | May 2001 | B1 |
6230717 | Marx et al. | May 2001 | B1 |
6233773 | Karge et al. | May 2001 | B1 |
6237178 | Krammer et al. | May 2001 | B1 |
D444629 | Etter et al. | Jul 2001 | S |
6253404 | Boland et al. | Jul 2001 | B1 |
6267593 | Haczek et al. | Jul 2001 | B1 |
6299444 | Cohen | Oct 2001 | B1 |
6308358 | Gruber et al. | Oct 2001 | B2 |
6308359 | Fritsch et al. | Oct 2001 | B2 |
6341400 | Kobayashi et al. | Jan 2002 | B1 |
6343396 | Simovitz et al. | Feb 2002 | B1 |
6343400 | Massholder et al. | Feb 2002 | B1 |
6347425 | Fattori et al. | Feb 2002 | B1 |
6349442 | Cohen et al. | Feb 2002 | B1 |
6353956 | Berge | Mar 2002 | B1 |
6360395 | Blaustein et al. | Mar 2002 | B2 |
6360398 | Wiegner et al. | Mar 2002 | B1 |
6363565 | Paffrath | Apr 2002 | B1 |
6365108 | Philyaw | Apr 2002 | B1 |
6367108 | Fritsch et al. | Apr 2002 | B1 |
6374448 | Seifert | Apr 2002 | B2 |
6375459 | Kamen et al. | Apr 2002 | B1 |
RE36699 | Murayama | May 2002 | E |
6381795 | Hofmann et al. | May 2002 | B1 |
6401288 | Porper et al. | Jun 2002 | B1 |
6421865 | McDougall | Jul 2002 | B1 |
6421866 | McDougall | Jul 2002 | B1 |
6421867 | Weihrauch | Jul 2002 | B1 |
6422867 | Lang et al. | Jul 2002 | B2 |
6434773 | Kuo | Aug 2002 | B1 |
D463627 | Lang et al. | Sep 2002 | S |
6446294 | Specht | Sep 2002 | B1 |
6446295 | Calabrese | Sep 2002 | B1 |
6447293 | Sokol et al. | Sep 2002 | B1 |
6453497 | Chiang et al. | Sep 2002 | B1 |
6453498 | Wu | Sep 2002 | B1 |
6453499 | Leuermann | Sep 2002 | B1 |
6463615 | Gruber et al. | Oct 2002 | B1 |
6490747 | Metwally | Dec 2002 | B1 |
6497237 | Ali | Dec 2002 | B1 |
6510575 | Calabrese | Jan 2003 | B2 |
6526994 | Santoro | Mar 2003 | B1 |
6536066 | Dickie | Mar 2003 | B2 |
6564940 | Blaustein et al. | May 2003 | B2 |
6571804 | Adler | Jun 2003 | B2 |
6574820 | DePuydt et al. | Jun 2003 | B1 |
6581233 | Cheng | Jun 2003 | B1 |
6581234 | Lee et al. | Jun 2003 | B2 |
6588042 | Fritsch et al. | Jul 2003 | B2 |
6599048 | Kuo | Jul 2003 | B2 |
6609527 | Brown | Aug 2003 | B2 |
6609910 | Narayanan | Aug 2003 | B2 |
6619219 | Marcon et al. | Sep 2003 | B2 |
6622333 | Rehkemper et al. | Sep 2003 | B1 |
6647577 | Tam | Nov 2003 | B2 |
D484311 | Cacka et al. | Dec 2003 | S |
6654979 | Calabrese | Dec 2003 | B2 |
6659674 | Carlucci et al. | Dec 2003 | B2 |
6665901 | Driesen et al. | Dec 2003 | B2 |
6691363 | Huen | Feb 2004 | B2 |
6701565 | Hafemann | Mar 2004 | B2 |
6709185 | Lefevre | Mar 2004 | B2 |
6721986 | Zhuan | Apr 2004 | B2 |
6725490 | Blaustein et al. | Apr 2004 | B2 |
6735803 | Kuo | May 2004 | B2 |
6735804 | Carlucci et al. | May 2004 | B2 |
6739012 | Grez et al. | May 2004 | B2 |
6751823 | Biro et al. | Jun 2004 | B2 |
6760945 | Ferber et al. | Jul 2004 | B2 |
6760946 | DePuydt | Jul 2004 | B2 |
6766548 | Lukas et al. | Jul 2004 | B1 |
6766549 | Klupt | Jul 2004 | B2 |
6766807 | Piccolo et al. | Jul 2004 | B2 |
6779126 | Lin et al. | Aug 2004 | B1 |
6779215 | Hartman et al. | Aug 2004 | B2 |
6785926 | Green | Sep 2004 | B2 |
6785929 | Fritsch et al. | Sep 2004 | B2 |
6792640 | Lev | Sep 2004 | B2 |
6795993 | Lin | Sep 2004 | B2 |
6798169 | Stratmann et al. | Sep 2004 | B2 |
6799346 | Jeng et al. | Oct 2004 | B2 |
6802097 | Hafliger et al. | Oct 2004 | B2 |
6810550 | Wuelknitz et al. | Nov 2004 | B1 |
6813793 | Eliav | Nov 2004 | B2 |
6813794 | Weng | Nov 2004 | B2 |
6821119 | Shortt et al. | Nov 2004 | B2 |
6823875 | Hotta et al. | Nov 2004 | B2 |
6827910 | Chen | Dec 2004 | B2 |
6829801 | Schutz | Dec 2004 | B2 |
6832819 | Weihrauch | Dec 2004 | B1 |
D500599 | Callaghan | Jan 2005 | S |
D501084 | Schaefer et al. | Jan 2005 | S |
6836917 | Blaustein et al. | Jan 2005 | B2 |
6845537 | Wong | Jan 2005 | B2 |
6848141 | Eliav et al. | Feb 2005 | B2 |
6851150 | Chiang | Feb 2005 | B2 |
6851153 | Lehman | Feb 2005 | B2 |
6854965 | Ebner et al. | Feb 2005 | B2 |
6862771 | Muller | Mar 2005 | B1 |
6871373 | Driesen et al. | Mar 2005 | B2 |
6874509 | Bergman | Apr 2005 | B2 |
6886207 | Solanki | May 2005 | B1 |
6889401 | Fattori et al. | May 2005 | B2 |
6889829 | Lev et al. | May 2005 | B2 |
6892412 | Gatzemeyer et al. | May 2005 | B2 |
6892413 | Blaustein et al. | May 2005 | B2 |
6895625 | Lev et al. | May 2005 | B2 |
6895629 | Wenzler | May 2005 | B1 |
6902337 | Kuo | Jun 2005 | B1 |
6907636 | Hafemann | Jun 2005 | B2 |
6918153 | Gruber | Jul 2005 | B2 |
6920659 | Cacka et al. | Jul 2005 | B2 |
6920660 | Lam | Jul 2005 | B2 |
6928685 | Blaustein et al. | Aug 2005 | B1 |
6931688 | Moskovich et al. | Aug 2005 | B2 |
6938293 | Eliav et al. | Sep 2005 | B2 |
6938294 | Fattori et al. | Sep 2005 | B2 |
6944901 | Gatzemeyer et al. | Sep 2005 | B2 |
6945397 | Brattesani et al. | Sep 2005 | B2 |
6948209 | Chan | Sep 2005 | B2 |
6952854 | Blaustein et al. | Oct 2005 | B2 |
6952855 | Lev et al. | Oct 2005 | B2 |
6954961 | Ferber et al. | Oct 2005 | B2 |
6955539 | Shortt et al. | Oct 2005 | B2 |
6957468 | Driesen et al. | Oct 2005 | B2 |
6957469 | Davies | Oct 2005 | B2 |
6966093 | Eliav et al. | Nov 2005 | B2 |
6973694 | Schutz et al. | Dec 2005 | B2 |
6983507 | McDougall | Jan 2006 | B2 |
6988777 | Pfenniger et al. | Jan 2006 | B2 |
6990706 | Broecker et al. | Jan 2006 | B2 |
D515318 | Chan et al. | Feb 2006 | S |
6993803 | Chan | Feb 2006 | B2 |
6997191 | Nudo, Sr. | Feb 2006 | B2 |
7007331 | Davics et al. | Mar 2006 | B2 |
7008225 | Ito et al. | Mar 2006 | B2 |
7020925 | Gitelis | Apr 2006 | B1 |
7021851 | King | Apr 2006 | B1 |
7024717 | Hilscher et al. | Apr 2006 | B2 |
7024718 | Chu | Apr 2006 | B2 |
7036180 | Hanlon | May 2006 | B2 |
7055205 | Aoyama | Jun 2006 | B2 |
7059334 | Dougan et al. | Jun 2006 | B2 |
7065821 | Fattori | Jun 2006 | B2 |
RE39185 | Noe et al. | Jul 2006 | E |
7070354 | Gutierrez-Caro | Jul 2006 | B1 |
7080980 | Klupt | Jul 2006 | B2 |
7082638 | Koh | Aug 2006 | B2 |
7082950 | Kossak et al. | Aug 2006 | B2 |
7086111 | Hilscher et al. | Aug 2006 | B2 |
7089621 | Hohlbein | Aug 2006 | B2 |
7120960 | Hilscher et al. | Oct 2006 | B2 |
7122921 | Hall et al. | Oct 2006 | B2 |
7124461 | Blaustein et al. | Oct 2006 | B2 |
7124462 | Lee | Oct 2006 | B2 |
7128492 | Thames, Jr. | Oct 2006 | B1 |
7137136 | Gatzemeyer et al. | Nov 2006 | B1 |
7140058 | Gatzemeyer et al. | Nov 2006 | B2 |
7146675 | Ansari et al. | Dec 2006 | B2 |
7162764 | Drossler et al. | Jan 2007 | B2 |
7162767 | Pfenniger et al. | Jan 2007 | B2 |
7168122 | Riddell | Jan 2007 | B1 |
7168125 | Hohlbein | Jan 2007 | B2 |
7174596 | Fischer et al. | Feb 2007 | B2 |
7175238 | Barman | Feb 2007 | B1 |
7181799 | Gavney, Jr. et al. | Feb 2007 | B2 |
7185383 | Gatzemeyer et al. | Mar 2007 | B2 |
7186226 | Woolley | Mar 2007 | B2 |
D540542 | Harada | Apr 2007 | S |
7198487 | Luettgen et al. | Apr 2007 | B2 |
7207080 | Hilscher et al. | Apr 2007 | B2 |
7210184 | Eliav et al. | May 2007 | B2 |
7213293 | Schraga | May 2007 | B1 |
7213995 | Bravo-Loubriel | May 2007 | B2 |
7217332 | Brown, Jr. et al. | May 2007 | B2 |
7222381 | Kraemer | May 2007 | B2 |
7222382 | Choi et al. | May 2007 | B2 |
7225494 | Chan et al. | Jun 2007 | B2 |
7228583 | Chan et al. | Jun 2007 | B2 |
7234187 | Blaustein et al. | Jun 2007 | B2 |
7234192 | Barbar | Jun 2007 | B2 |
7469440 | Boland et al. | Dec 2008 | B2 |
7554225 | Kraus et al. | Jun 2009 | B2 |
7732952 | Taylor | Jun 2010 | B1 |
7857623 | Grez | Dec 2010 | B2 |
8032964 | Farrell et al. | Oct 2011 | B2 |
8196245 | Schwarz-Hartmann et al. | Jun 2012 | B2 |
8256979 | Hilscher et al. | Sep 2012 | B2 |
8453285 | Dickie | Jun 2013 | B2 |
8769758 | Jungnickel et al. | Jul 2014 | B2 |
9687329 | Lee | Jun 2017 | B2 |
20010035194 | Narayanan | Nov 2001 | A1 |
20010039955 | Winters et al. | Nov 2001 | A1 |
20010054563 | Lang et al. | Dec 2001 | A1 |
20020017474 | Blaustein et al. | Feb 2002 | A1 |
20020029988 | Blaustein et al. | Mar 2002 | A1 |
20020032941 | Blaustein et al. | Mar 2002 | A1 |
20020039720 | Marx et al. | Apr 2002 | A1 |
20020059685 | Paffrath | May 2002 | A1 |
20020078514 | Blaustein et al. | Jun 2002 | A1 |
20020084707 | Tang | Jul 2002 | A1 |
20020088068 | Levy et al. | Jul 2002 | A1 |
20020090252 | Hall et al. | Jul 2002 | A1 |
20020092104 | Ferber | Jul 2002 | A1 |
20020095734 | Wong | Jul 2002 | A1 |
20020100134 | Dunn et al. | Aug 2002 | A1 |
20020106607 | Horowitz | Aug 2002 | A1 |
20020137728 | Montgomery | Sep 2002 | A1 |
20020138926 | Brown, Jr. et al. | Oct 2002 | A1 |
20020152563 | Sato | Oct 2002 | A1 |
20020152564 | Blaustein et al. | Oct 2002 | A1 |
20020174498 | Li | Nov 2002 | A1 |
20020178519 | Zarlengo | Dec 2002 | A1 |
20030005544 | Felix | Jan 2003 | A1 |
20030033679 | Fattori et al. | Feb 2003 | A1 |
20030033680 | Davies et al. | Feb 2003 | A1 |
20030041396 | Dickie | Mar 2003 | A1 |
20030064348 | Sokol et al. | Apr 2003 | A1 |
20030066145 | Prineppi | Apr 2003 | A1 |
20030074751 | Wu | Apr 2003 | A1 |
20030079305 | Takahata et al. | May 2003 | A1 |
20030084525 | Blaustein et al. | May 2003 | A1 |
20030084526 | Brown et al. | May 2003 | A1 |
20030084527 | Brown et al. | May 2003 | A1 |
20030097723 | Li | May 2003 | A1 |
20030099502 | Lai | May 2003 | A1 |
20030101526 | Hilscher | Jun 2003 | A1 |
20030106565 | Andrews | Jun 2003 | A1 |
20030140435 | Eliav et al. | Jul 2003 | A1 |
20030140437 | Eliav et al. | Jul 2003 | A1 |
20030140937 | Cook | Jul 2003 | A1 |
20030150474 | Doyscher | Aug 2003 | A1 |
20030154567 | Drossler et al. | Aug 2003 | A1 |
20030154568 | Boland et al. | Aug 2003 | A1 |
20030163881 | Driesen et al. | Sep 2003 | A1 |
20030163882 | Blaustein et al. | Sep 2003 | A1 |
20030182743 | Gatzemeyer et al. | Oct 2003 | A1 |
20030182746 | Fattori et al. | Oct 2003 | A1 |
20030192139 | Fattori et al. | Oct 2003 | A1 |
20030196283 | Eliav et al. | Oct 2003 | A1 |
20030196677 | Wiseman | Oct 2003 | A1 |
20030213075 | Hui et al. | Nov 2003 | A1 |
20030221267 | Chan | Dec 2003 | A1 |
20030221269 | Zhuan | Dec 2003 | A1 |
20030226223 | Chan | Dec 2003 | A1 |
20040010870 | McNair | Jan 2004 | A1 |
20040010871 | Nishinaka et al. | Jan 2004 | A1 |
20040016068 | Lee | Jan 2004 | A1 |
20040016069 | Lee | Jan 2004 | A1 |
20040034951 | Davies et al. | Feb 2004 | A1 |
20040045106 | Lam | Mar 2004 | A1 |
20040045107 | Egeresi | Mar 2004 | A1 |
20040049867 | Hui | Mar 2004 | A1 |
20040049868 | Ng | Mar 2004 | A1 |
20040060137 | Eliav | Apr 2004 | A1 |
20040063603 | Dave et al. | Apr 2004 | A1 |
20040068811 | Fulop et al. | Apr 2004 | A1 |
20040074026 | Blaustein et al. | Apr 2004 | A1 |
20040083566 | Blaustein et al. | May 2004 | A1 |
20040087882 | Roberts et al. | May 2004 | A1 |
20040088806 | DePuydt et al. | May 2004 | A1 |
20040088807 | Blaustein et al. | May 2004 | A1 |
20040091834 | Rizoiu et al. | May 2004 | A1 |
20040107521 | Chan et al. | Jun 2004 | A1 |
20040119344 | Lau et al. | Jun 2004 | A1 |
20040123409 | Dickie | Jul 2004 | A1 |
20040128778 | Wong | Jul 2004 | A1 |
20040129296 | Treacy et al. | Jul 2004 | A1 |
20040134001 | Chan | Jul 2004 | A1 |
20040143917 | Ek | Jul 2004 | A1 |
20040154112 | Braun et al. | Aug 2004 | A1 |
20040163191 | Cuffaro et al. | Aug 2004 | A1 |
20040168269 | Kunita et al. | Sep 2004 | A1 |
20040168272 | Prineppi | Sep 2004 | A1 |
20040177458 | Chan et al. | Sep 2004 | A1 |
20040187889 | Kemp et al. | Sep 2004 | A1 |
20040200016 | Chan et al. | Oct 2004 | A1 |
20050004498 | Klupt | Jan 2005 | A1 |
20050008986 | Sokol et al. | Jan 2005 | A1 |
20050102773 | Obermann et al. | May 2005 | A1 |
20050144745 | Russell | Jul 2005 | A1 |
20050189000 | Cacka et al. | Sep 2005 | A1 |
20050255427 | Shortt et al. | Nov 2005 | A1 |
20050266376 | Sokol et al. | Dec 2005 | A1 |
20060010624 | Cleland | Jan 2006 | A1 |
20060078844 | Goldman et al. | Apr 2006 | A1 |
20070151051 | Filsouf | Jul 2007 | A1 |
20080213731 | Fishburne | Sep 2008 | A1 |
20080307591 | Farrell et al. | Dec 2008 | A1 |
20090019650 | Grez et al. | Jan 2009 | A1 |
20090019651 | Dickie | Jan 2009 | A1 |
20090178215 | Gall | Jul 2009 | A1 |
20100055634 | Spaulding et al. | Mar 2010 | A1 |
20100132139 | Jungnickel | Jun 2010 | A1 |
20100186179 | Miller | Jul 2010 | A1 |
20110010874 | Dickie | Jan 2011 | A1 |
20110041268 | Iwahori et al. | Feb 2011 | A1 |
20110047729 | Iwahori | Mar 2011 | A1 |
20110083288 | Kressner | Apr 2011 | A1 |
20120112566 | Doll | May 2012 | A1 |
20120192366 | Cobabe | Aug 2012 | A1 |
20120198635 | Hilscher | Aug 2012 | A1 |
20120216358 | Kloster | Aug 2012 | A1 |
20140259469 | Garrigues | Sep 2014 | A1 |
20140259474 | Sokol et al. | Sep 2014 | A1 |
20150107035 | Sokol et al. | Apr 2015 | A1 |
20150297327 | Miller | Oct 2015 | A1 |
20150327965 | Garrigues | Nov 2015 | A1 |
20160022393 | Yoshida | Jan 2016 | A1 |
Number | Date | Country |
---|---|---|
435553 | Oct 1967 | CH |
609238 | Feb 1979 | CH |
201223467 | Apr 2009 | CN |
102111032 | Jun 2011 | CN |
243224 | Apr 1910 | DE |
2019003 | Nov 1971 | DE |
1766651 | Dec 1981 | DE |
3431481 | Feb 1986 | DE |
3512190 | Oct 1986 | DE |
8626725 | May 1987 | DE |
3736308 | Jul 1989 | DE |
4142404 | Jul 1991 | DE |
4003305 | Aug 1991 | DE |
4223195 | Jan 1994 | DE |
4223196 | Jan 1994 | DE |
4226658 | Feb 1994 | DE |
4226659 | Feb 1994 | DE |
4241576 | Jun 1994 | DE |
4309078 | Sep 1994 | DE |
29715234 | Dec 1997 | DE |
29919053 | Dec 2000 | DE |
19961447 | Jul 2001 | DE |
20319996 | Mar 2004 | DE |
102006061381 | Jun 2008 | DE |
0210094 | Jan 1987 | EP |
0354352 | Feb 1990 | EP |
0661025 | Jul 1995 | EP |
0704180 | Apr 1996 | EP |
0968686 | Jan 2000 | EP |
429447 | Sep 1911 | FR |
1171337 | Jan 1959 | FR |
477799 | Jan 1938 | GB |
500517 | Feb 1939 | GB |
838564 | Jun 1960 | GB |
899618 | Jun 1962 | GB |
1583558 | Aug 1977 | GB |
2175494 | Dec 1986 | GB |
2250428 | Jun 1992 | GB |
53029847 | Mar 1978 | JP |
53033753 | Mar 1978 | JP |
3222905 | Oct 1991 | JP |
324221 | May 1970 | SE |
WO 9113570 | Sep 1991 | WO |
WO 9119437 | Dec 1991 | WO |
WO 9210146 | Jun 1992 | WO |
WO 9216160 | Oct 1992 | WO |
WO 9310721 | Jun 1993 | WO |
WO 9315628 | Aug 1993 | WO |
WO 9404093 | Mar 1994 | WO |
WO 9426144 | Nov 1994 | WO |
WO 9502375 | Jan 1995 | WO |
WO 9533419 | Dec 1995 | WO |
WO 9847443 | Oct 1998 | WO |
WO 0128452 | Apr 2001 | WO |
WO 0145582 | Jun 2001 | WO |
WO 02071970 | Sep 2002 | WO |
WO 02071971 | Sep 2002 | WO |
WO 05063143 | Jul 2005 | WO |
WO 2006012974 | Feb 2006 | WO |
WO 2008070730 | Jun 2008 | WO |
WO 2014145890 | Sep 2014 | WO |
WO 2014150418 | Sep 2014 | WO |
Entry |
---|
Sonex International: Brushing with the Ultima—The World's Only Dual-Frequency Ultrasonic Toothbrush, Jul. 28, 1999, published at Sonipic.com. |
Teledyne Water Pik “Plaque Control 3000” plaque removal instrument (Jul. 1991). |
American Dentronics Incorporated “Soniplak” sonic plaque removal system (May 1993). |
Teledyne Water Pik “Sensonic” Toothbrush, sales brochure (at least as early as Sep. 1994). |
International Search Report and Written Opinion, PCT Application No. PCT/US2012/036092, 7 pages, dated Jul. 10, 2012 (P216207.US.03). |
Number | Date | Country | |
---|---|---|---|
20170319311 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
62333679 | May 2016 | US |