Back pain is a significant clinical problem and the costs to treat it, both surgical and medical, are estimated to be over $2 billion per year. One method for treating a broad range of degenerative spinal disorders is spinal fusion. Implantable medical devices designed to fuse vertebrae of the spine to treat have developed rapidly over the last decade. However, spinal fusion has several disadvantages including reduced range of motion and accelerated degenerative changes adjacent the fused vertebrae.
Alternative devices and treatments have been developed for treating degenerative spinal disorders while preserving motion. These devices and treatments offer the possibility of treating degenerative spinal disorders without the disadvantages of spinal fusion. However, current devices and treatments suffer from disadvantages e.g., complicated implantation procedures; lack of flexibility to conform to diverse patient anatomy; the need to remove tissue and bone for implantation; increased stress on spinal anatomy; insecure anchor systems; poor durability, and poor revision options. Consequently, there is a need for new and improved devices and methods for treating degenerative spinal disorders while preserving motion.
The present invention includes a spinal implant system and methods that can dynamically stabilize the spine while providing for the preservation of spinal motion. Embodiments of the invention provide a dynamic stabilization system which includes: versatile components, adaptable stabilization assemblies, and methods of implantation. An aspect of embodiments of the invention is the ability to stabilize two, three and/or more levels of the spine by the selection of appropriate components of embodiments of the invention for implantation in a patient. Another aspect of embodiments of the invention is the ability to accommodate particular anatomy of the patient by providing a system of versatile components which may be customized to the anatomy and needs of a particular patient and procedure. Another aspect of the invention is to facilitate the process of implantation and minimize disruption of tissues during implantation.
Thus, the present invention provides new and improved systems, devices and methods for treating degenerative spinal disorders by providing and implanting a dynamic spinal stabilization assembly which supports the spine while preserving motion. These and other objects, features and advantages of the invention will be apparent from the drawings and detailed description which follow.
The present invention includes a versatile spinal implant system and methods which can dynamically stabilize the spine while providing for the preservation of spinal motion. Alternative embodiments can be used for spinal fusion. An aspect of the invention is restoring and/or preserving the natural motion of the spine including the quality of motion as well as the range of motion. Still, another aspect of the invention is providing for load sharing and stabilization of the spine while preserving motion.
Another aspect of the invention is to provide a modular system which can be customized to the needs of the patient. Another aspect of embodiments of the invention is the ability to stabilize two, three and/or more levels of the spine by the selection of appropriate components for implantation in a patient. Another aspect of the invention is the ability to provide for higher stiffness and fusion at one level or to one portion of the spine while allowing for lower stiffness and dynamic stabilization at another adjacent level or to another portion of the spine. Embodiments of the invention allow for fused levels to be placed next to dynamically-stabilized levels. Such embodiments of the invention enable vertebral levels adjacent to fusion levels to be shielded by providing a transition from a rigid fusion level to a dynamically stable, motion preserved, and more mobile level.
Embodiments of the present invention provide for assembly of a dynamic stabilization system which supports the spine while providing for the preservation of spinal motion. The dynamic stabilization system has an anchor system, a deflection system, a vertical rod system and a connection system. The anchor system anchors the construct to the spinal anatomy. The deflection system provides dynamic stabilization while reducing the stress exerted upon the bone anchors and spinal anatomy. The vertical rod system connects different levels of the construct in a multilevel assembly and may in some embodiments include compound deflection rods. The connection system includes coaxial connectors and offset connectors which adjustably connect the deflection system, vertical rod system and anchor system allowing for appropriate, efficient and convenient placement of the anchor system relative to the spine. Alternative embodiments can be used for spinal fusion.
Embodiments of the invention include a construct with an anchor system, a deflection system, a vertical rod system and a connection system. The deflection system provides dynamic stabilization while reducing the stress exerted upon the bone anchors and spinal anatomy. The anchor system anchors the deflection system to the spine. The connection system connects the deflection system to the vertical rod system. The vertical rod system connects dynamic stabilization system components on different vertebra to provide load sharing and dynamic stabilization.
Embodiments of the present invention include a deflection rod which provides load sharing while preserving range of motion and reducing stress exerted upon the bone anchors and spinal anatomy. The deflection rod includes a deflectable post mounted within a bone anchor. Deflection of the deflectable post is controlled by a spring. A contact surface of the deflection rod is positioned to limit deflection of the deflectable post. The force-deflection properties of the deflection rod may be adapted and/or customized to the anatomy and functional requirements of the patient by changing the properties of the spring. Different deflection rods having different force-deflection properties may be utilized in different patients or at different spinal levels within the same patient depending upon the anatomy and functional requirements. Moreover deflection rods may be utilized at a spinal level with fusion at an adjacent spinal level.
Common reference numerals are used to indicate like elements throughout the drawings and detailed description; therefore, reference numerals used in a drawing may or may not be referenced in the detailed description specific to such drawing if the associated element is described elsewhere. The first digit in a reference numeral indicates the series of figures in which the referenced item first appears.
The terms “vertical” and “horizontal” are used throughout the detailed description to describe general orientation of structures relative to the spine of a human patient that is standing. This application also uses the terms proximal and distal in the conventional manner when describing the components of the spinal implant system. Thus, proximal refers to the end or side of a device or component closest to the hand operating the device, whereas distal refers to the end or side of a device furthest from the hand operating the device. For example, the tip of a bone screw that enters a bone would conventionally be called the distal end (it is furthest from the surgeon) while the head of the screw would be termed the proximal end (it is closest to the surgeon).
Deflection rod 104 includes a deflectable post 105 which may deflect relative to a collar 107. Collar 107 is adapted to secure the deflectable post 105 to bone anchor 102. Collar 107 secures deflection rod 104 within cavity 132 of bone anchor 102. In other embodiments, the deflection rod may be integrated with a bone anchor. When received in cavity 132, collar 107 is secured into a fixed position relative to bone anchor 102. Deflectable post 105 may still deflect in a controlled manner relative to bone anchor 102 thereby provide for load sharing while preserving range of motion of the patient. The stiffness/flexibility of deflection of the deflectable post 105 relative to the bone anchor 102 may be controlled and/or customized as will be described below.
As shown in
Bone anchor 102 is an example of a component of the anchor system. Bone anchor 102 includes a bone screw 120 and housing 130. As shown in
As shown in
As shown in
Bone anchor 102 also includes a coupling 136 to which other components may be mounted. As shown in
It is desirable to have a range of different connectors which are compatible with the anchor system and deflection system. The connectors may have different attributes, including for example, different degrees of freedom, range of motion, and amount of offset, which attributes may be more or less appropriate for a particular relative orientation and position of two bone anchors and/or patient anatomy. It is desirable that each connector be sufficiently versatile to connect a vertical rod to a bone anchor in a range of positions and orientations while being simple for the surgeon to adjust and secure. It is desirable to provide a set of connectors which allows the dynamic stabilization system to be assembled in a manner that adapts a particular dynamic stabilization assembly to the patient anatomy rather than adapting the patient anatomy for implantation of the assembly (for example by removing tissue\bone to accommodate the system). In a preferred embodiment, the set of connectors comprising the connection system have sufficient flexibility to allow the dynamic stabilization system to realize a suitable dynamic stabilization assembly in all situations that will be encountered within the defined patient population.
In some embodiments of the present invention, a connection system component, e.g. a polyaxial connector may be mounted in the cavity 132 of a bone anchor 102 to secure the bone anchor to a vertical rod. For example,
Referring again to
The ability to coaxially mount coaxial head 150 to a bone anchor 102 has several advantages over a standard polyaxial bone screw in which a polyaxial connector is an integral part of the device and may not be removed or exchanged. The bone anchor 102 is simpler to install and there is no risk of damage to the polyaxial connector during installation. A single coaxial head 150 can be manufactured and designed to mount to a range of different bone anchors thus allowing bone anchors to be selected as appropriate for the patient anatomy. After the bone anchor is installed the orientation of the yoke 164 can be adjusted without changing the screw depth (this is not possible in a standard polyaxial bone screw without also turning the screw). After the bone anchor is implanted, one of a range of different coaxial heads may be installed without requiring removal of the bone anchor. Likewise, if a revision is required the coaxial head may be exchanged for a different component without necessitating removal of the bone anchor 102.
As described above, bone anchor 102 has a housing which can accept one coaxially-mounted component (e.g. a coaxial head) and one externally-mounted component (e.g. an offset connector).
Offset connector 170 comprises six components and allows for two degrees of freedom of orientation and two degrees of freedom of position in connecting a vertical rod to a bone anchor. The six components of offset connector 170 are dowel pin 172, pivot pin 174, locking set screw 176, plunger 178, clamp ring 180 and saddle 182. Saddle 182 has a slot 184 sized to receive a rod which may be a vertical rod, e.g. vertical rod 106 of
Clamp ring 180 is sized such that, when relaxed it can slide freely up and down the housing 130 of bone anchor 102 and rotate around the housing 130. However, when locking set screw 176 is tightened on a rod, the clamp ring 180 grips the housing and prevents the offset connector 170 from moving in any direction. Saddle 182 is pivotably connected to clamp ring 180 by pivot pin 174. Saddle 182 can pivot about pivot pin 174. However, when locking set screw 176 is tightened on a rod, the plunger 178 grips the clamp ring 180 and prevents further movement of the saddle 182. In this way, operation of the single set screw 176 serves to lock the clamp ring 180 to the housing 130 of the bone anchor 102, fix saddle 182 in a fixed position relative to clamp ring 180 and secure a rod within the slot 184 of offset connector 170.
The above-described coaxial connector and offset connector are provided by way of example only. Alternative embodiments of coaxial heads and offset connectors can be found in U.S. Provisional Patent Application No. 61/100,625, filed Sep. 26, 2008 entitled “Versatile Assembly Components And Methods For A Dynamic Spinal Stabilization System” (Attorney Docket No.: SPART-01043US0) which is incorporated by reference. These coaxial heads and offset connectors may be used in conjunction with the components herein described to permit assembly of a dynamic stabilization system appropriate to the functional needs and anatomy of a particular patient. In addition screws having an integrated connector may also be utilized to anchor components of the dynamic stabilization system in fixed relationship to a vertebra, for example polyaxial screws.
The components of the dynamic stabilization system may be assembled and implanted in the spine of a patient to provide a multilevel dynamic stabilization assembly which provides dynamic stabilization of the spine and load sharing. In some embodiments, the first step is implantation of bone anchors in the vertebrae. In other embodiments, the bone anchors may be implanted with the deflection rod/connection component already installed and/or built in.
As shown in
After installation of the bone anchors, the deflection system components, vertical rod systems components and connection system components may be installed and assembled.
The dynamic stabilization assembly 190 of
The particular dynamic stabilization assembly shown in
One feature of embodiments of the present invention is the load sharing and range of motion provided by the deflection system and deflection rods of the deflection system. The deflection rod provides stiffness and support where needed to support the loads exerted on the spine during normal spine motion thereby recovering improved spine function without sacrificing all motion. The deflection rod also isolates the anchor system components from forces exerted by the dynamic stabilization assembly; thereby reducing stress on the bone anchors and the bone to which they are attached. Moreover, by selecting the appropriate stiffness of the deflection rod to match the physiology of the patient and the loads that the patient places on the spine, a better outcome is realized for the patient.
The deflection rods of the present invention include in particular embodiments a deflectable post, a spring and a mounting/securing device. The deflectable post and mounting/securing device are typically made of biocompatible metal or metals, e.g. titanium and stainless steel. The spring is made of an elastic material, which may be a polymer or a metal. Suitable polymers include, for example, PEEK and Bionate®. Suitable metals include, for example, titanium, steel and Nitinol. The mounting/securing device secures the deflection rod to an anchoring device, for example, a bone screw, in a manner which allows deflection of the deflectable post. In some embodiments, the deflection rod is integrated with an anchoring device rather than selectably and/or removably mounted.
The deflectable post is configured to connect to the vertical rod system. The deflectable post may deflect relative to the anchoring device by compressing the spring. The deformation of the spring imparts force-deflection characteristics to the deflectable post. The movement of the deflectable post relative to the anchoring device allows controlled movement of the bone anchor (and vertebra in which it is implanted) relative to the vertical rod system. The deflection rod, thus, supports the vertebrae to which the bone anchors are attached while allowing movement of the vertebrae thereby providing for dynamic stabilization of the spine. In a dynamic stabilization assembly incorporating the deflection rod, the load sharing and deflection is provided by the deflection rod and to a lesser degree or not in the vertical rod such as the vertical rod 106 of
Deflection rods can be manufactured in a range from stiff configurations to compliant configurations by appropriate selection of the design, materials and dimensions of the post, spring and shield/housing. In particular, the spring rate of the spring can be adjusted to control the stiffness/flexibility of the deflection rod. Deflection rods having a particular stiffness/flexibility may be selected for use in a dynamic stabilization assembly based upon the physiological needs of a particular patient. In a preferred embodiment, deflection rod stiffness/flexibility is selected to provide load sharing in conjunction with from 50% to 100% of the normal range of motion of a patient and more preferably 70% to 100% of the normal range of motion of a patient.
In some cases, certain of the deflection rods of a dynamic stabilization assembly can have a different stiffness or compliance than other of the deflection rods. Thus, in the same assembly, a first deflection rod can have a first flexibility or stiffness or rigidity, and a second deflection rod can have a second different flexibility or stiffness or rigidity depending on the needs of the patient. Particular embodiments of a dynamic stabilization assembly may utilize deflection rods having different deflection properties for each level and/or side of the dynamic stabilization assembly. In other words, one portion of a dynamic stabilization assembly may offer more resistance to movement than the other portion based on the design and selection of different on the deflection rods having different stiffness characteristics, if that configuration benefits the patient.
Retainer 202 may be a ball-shaped retainer 202 as shown. Retainer 202 may be formed in one piece with deflectable post 204 or may be securely attached to deflectable post 204. The retainer 202 may be attached by laser welding, soldering or other bonding technology. For example, retainer 202 in the form of a ball, disk, plate or other shape may be laser welded to the distal end of deflectable post 204. Alternatively, retainer 202 may mechanically engage the deflectable post 204 using, for example, threads. For example, a lock ring, toothed locking washer, cotter pin or other mechanical device can be used to secure deflectable post 204 within shield 208.
The stiffness of deflection rod 200 is affected by the spring rate of spring 206. The stiffness of the deflection rod 200 can be changed for example by increasing the spring rate of spring 206 and conversely, the stiffness may be reduced by decreasing the spring rate of spring 206. The spring rate of the spring 206 can be, for example, increased by increasing the thickness of the lever arms 262 and/or decreasing the length of the lever arms 262. Alternatively and/or additionally changing the materials of the spring 206 can also affect the spring rate. For example, making spring 206 out of stiffer material increases the spring rate and thus reduces deflection of deflectable post 204 for the same amount of load—all other factors being equal. Spring 206 is preferably made of a biocompatible polymer or metal. Spring 206 may, for example, be made from PEEK, Bionate®, Nitinol, steel and/or titanium.
Spring 206 may have the same spring rate in each direction of deflection of the deflectable post (isotropic). The spring 206 may have different spring rates in different directions of deflection of the deflectable post (anisotropic). For example, the spring 206 can be designed to have a different spring rate in different directions by adjusting, for example, the length, thickness and/or material of the lever arms 262 in one direction compared to another direction. A deflection rod 200 incorporating an anisotropic spring would have different force-deflection characteristics imparted to it by the spring 206 in different directions.
The stiffness of the deflection rod 200 is also affected by factors beyond the spring rate of spring 206. By changing the dimensions and or geometry of the deflectable post 204, spring 206 and the shield 208, the deflection characteristics of the deflection rod 200 can be changed. For example, the stiffness of the deflection rod 200 can be increased by increasing the distance from the pivot point of the deflectable post 204 to the point of contact between the lever arms 262 surrounding aperture 264 and the deflectable post 204. Conversely, the stiffness of the deflection rod 200 can be decreased by decreasing the distance from the pivot point of the deflectable post 204 to the point of contact between the lever arms 262 surrounding aperture 264 and the deflectable post 204.
The stiffness of the deflection rod may thus be varied or customized according to the needs of a patient by controlling the material and design of spring 206 and defection rod 200. The deflection characteristics of the deflection rod 200 can be configured to approach the natural dynamic motion of the spine, while giving dynamic support to the spine in that region. It is contemplated, for example, that the deflection rod can replicate a 70% range of motion and flexibility of the natural intact spine, a 50% range of motion and flexibility of the natural intact spine and a 30% range of motion and flexibility of the natural intact spine.
One feature of the present invention is to allow the efficient manufacture of a range of deflection rods having a range of different force-deflection characteristics. This can readily be accomplished by manufacturing a range of springs having different force-deflection characteristics and leaving the remainder of the components unchanged. In this way, a range of deflection rods may be manufactured with a small number of unique parts. In some cases, a kit is provided to a doctor having a set of deflection rods with different force-deflection characteristics from which the doctor may select the deflection rods most suitable for a particular patient. In other cases, the surgeon may select deflection rods prior to the procedure based upon pre-operative assessment.
Referring now to
Referring again to
As shown in
Thus, as load or force is first applied to the deflection rod by the spine, the deflection of the deflection rod responds about linearly to the increase in the load during the phase when deflection of deflectable post 204 causes compression of spring 206 as shown in
Spring 306 is made of an elastic material which permits movement of deflectable post 304 relative to shield 308. The spring 306 effectively controls and limits the deflection of the deflectable post 304. Spring 306 is preferably made of a polymer or a metal. For example, spring 306 may be made of Bionate®, PEEK, Nitinol, steel or titanium. The properties of the material and dimensions of spring 306 are selected to achieve the desired spring rate of spring 306 and impart the desired force-deflection characteristics to deflectable post 304. In a preferred embodiment, spring 306 and may be elastically deformed over a range of 0.5-2 mm by deflection of the deflectable post. Spring 306 fits inside shield 308 surrounding deflectable post 304. Spring 306 may be of the same design as spring 206 of
In this embodiment, deflection rod 300 is configured to be assembled with a bone anchor 320 prior to implantation of the bone anchor into a vertebra. Bone anchor 320 comprises a threaded bone screw 322 connected to a housing 330. The threads of bone screw 322 are designed to secure bone anchor 320 to a vertebra and may vary in configuration to be adapted to engage particular regions of a vertebra having greater or lesser bone density. Alternative bone anchor configurations are illustrated in
Housing 330 has a cavity 332 oriented along the axis of bone anchor 320 at the proximal end and configured to receive deflection rod 300. Housing 330 also has an outer surface 334 adapted for mounting a component, e.g. an offset connector. Housing 330 may in some embodiments be cylindrical as previously described. As shown in
Referring now to
When assembled, deflectable post 304 may pivot about the center of ball-shaped retainer 302. As shown in
After deflectable post 304 has deflected a certain amount, deflectable post 304 contacts the limit surface 328 of collar 310. Thereafter, further deflection of mount 314 requires bending of deflectable post 304. In this region then, spring 306 and deflectable post 304 both contribute to the desired force-deflection characteristics of deflection rod 300. Because deflectable post 304 is relatively stiff, the deflection rod 300 becomes substantially stiffer after contact between deflectable post 304 and limit surface 328. Put another way, the amount of deflection of mount 314 per additional unit of load decreases after contact between deflectable post 304 and limit surface 328. In a preferred embodiment, the stiffness of deflection rod 300 is increased by two times or more upon contact between deflectable post 304 and limit surface 328. Accordingly, the deflection rod provides a range of motion where the load supported increases about linearly as the deflection increases and then with increased deflection the load supported increases more rapidly in order to provide stabilization.
Spring 406 is made of an elastic material which permits movement of deflectable post 404 relative to shield 408. The spring 406 effectively controls and limits the deflection of the deflectable post 404. Spring 406 is preferably made of a polymer or a metal for example, PEEK, Bionate®, titanium, steel or Nitinol. The spring rate of spring 406 is selected to achieve the desired force-deflection characteristics for deflectable post 404. The design, dimensions and material of spring 406 are selected to achieve the desired spring rate. In one preferred embodiment, spring 406 is made of PEEK and may be elastically deformed to allow from about 0.5 mm to 2 mm of travel in either direction by mount 414. Spring 406 fits inside shield 408 surrounding deflectable post 404. Spring 406 could be replaced with a spring similar to spring 206 of
In this embodiment, deflection rod 400 is configured to be assembled with a bone anchor 420 prior to implantation of the bone anchor. Bone anchor 420 comprises a threaded bone screw 422 connected to a housing 430. The threads of bone screw 422 are designed to secure bone anchor 420 to a vertebra and may vary in configuration so as to be adapted to engage particular regions of a vertebra having greater or lesser bone density.
Housing 430 of bone anchor 420 has a cavity 432 oriented along the axis of bone anchor 420 at the proximal end and configured to receive deflection rod 400. Housing 430 also has an outer surface 434 adapted for mounting a component, e.g. an offset connector. Housing 430 may, in some embodiments, be cylindrical as previously described. As shown in
Spring elements 460 may be individual elements as shown, or they may be joined together, for example at the first ends 462 and/or second ends 463. If joined together, spring elements 460 may all be connected, or may be connected in two parts such that the two parts may be assembled from either side of deflectable post 404 during assembly with shield 408. Spring elements 460 may, in some embodiments, be formed in one piece, for example, machined or molded from a single block of material. In other embodiments, spring elements 460 may be formed as separate pieces and then attached to one another.
The spring rate of each spring element 460 may be controlled during design by choice of the design, dimensions and material of the spring element 460. For example, making the material of the spring elements 460 thicker or reducing the length of the spring element 460 can increase the spring rate of the spring element. Also, the material of the spring element 460 may be selected to achieve the desired force-deflection characteristics. The spring elements 460 may be identical thereby resulting in a force-deflection curve that is substantially uniform in all directions (isotropic). In other embodiments, the spring elements may have different spring rates thereby allowing the force-deflection curve of the deflection rod to be anisotropic—i.e. the deflection of delectable post 404 has different force-deflection characteristics in different directions.
Referring now to
When assembled, deflectable post 404 may pivot about the center of ball-shaped retainer 402. Deflectable post 404 may also rotate about the long axis of the post. As shown in
After deflectable post has deflected a certain amount, deflectable post 404 contacts the limit surface 428 of collar 410. Thereafter, further deflection of mount 414 requires bending of deflectable post 404. In this region the, both spring 406 and deflectable post 404 contribute to the desired force-deflection characteristics of deflection rod 400. Because deflectable post 404 is relatively stiff, the deflection rod becomes substantially stiffer after contact between deflectable post 404 and limit surface 428. Put another way, the amount of deflection of mount 414 per additional unit of load decreases after contact between deflectable post 404 and limit surface 428. In a preferred embodiment, the stiffness of deflection rod 400 is increased by two times or more upon contact between deflectable post 404 and limit surface 428. Accordingly, the deflection rod provides a range of motion where the load supported increases about linearly as the deflection increases and then with increased deflection the load supported increases more rapidly in order to provide stabilization.
In this embodiment, retainer 502 is a ball-shaped retainer. Mount 514 is suitable for connecting to a vertical rod. A second ball may be used in place of mount 514 as previously described. In this embodiment, mount 514 is formed in one piece with deflectable post 504. In a preferred embodiment, mount 514, ball-shaped retainer 502 and deflectable post 504 are formed from a single piece of titanium. In alternative embodiments, deflectable post 504 may be formed separately from, and securely attached to, one or more of mount 514 and retainer 502 by laser welding, soldering or other bonding technology. Alternatively, deflectable post 504 may be formed separately and mechanically engage one or more of mount 514 and retainer 502 using, for example, threads, a lock ring, toothed locking washer, cotter pin or other mechanism.
Spring 506 fits inside cavity 532 of housing 530 surrounding post 504. Spring 506 is inserted in cavity 532 of housing 530 over post 504. Threaded collar 510 is then secured in the threaded proximal end of cavity 532. Threaded collar 510 has two sockets 511 for receiving the pins of a pin wrench to allow threaded collar 510 to be tightened to housing 530. Threaded collar 510 is laser welded to housing 530 after installation to further secure the components. Threaded collar 510 secures spring 506 within cavity 532 of bone anchor 520.
When assembled, deflectable post 504 may pivot about the center of ball-shaped retainer 502. As shown in
The interior surface of cavity 532 of housing 530 and/or collar 510 is shaped to provide the limit surface 572 to limit deflection of post 504. In a preferred embodiment, the spring may be compressed about 1 mm by deflection of the post 504 prior to contact of post 504 with limit surface 572 of collar 510. Thereafter, further deflection of mount 514 necessitates bending of post 504 and/or bone anchor 520. Post 504 and anchor 520 are stiffer than spring 506, thus upon contact of post 504 and limit surface 572, further deflection requires greater force per unit of deflection than prior to such contact. In preferred embodiments, the stiffness of the system increases to about double the stiffness of the spring after contact is made between post 504 and limit surface 572.
In this embodiment, spring 506 is formed from a plurality of planar springs 560. Spring 506 may comprise one or more planar springs 560. Planar springs 560 may be cut or stamped from a flat sheet of material. Spring 506 is preferably made of a biocompatible elastic polymer or metal. For example, planar springs 560 may be made from, Bionate®, Peek, Nitinol, steel and/or titanium. The properties of the design, dimensions and material of the spring 506 and deflectable post 504 are selected to achieve the desired force-deflection characteristics for deflectable post 504. In some embodiments, the number of planar springs 560 in a particular deflection rod may be selectable such that stiffer deflection rods have a larger number of planar springs 560 and more compliant deflection rods have a lower number of planar springs 560. In other embodiments, the spring rate of each spring 506 may be adjusted by design, dimension or material changes.
The spring/spring elements in the deflection rod of
As shown in
Vertical rod 660 is mounted at the other end to the polyaxial head 672 of polyaxial screw 670. This screw 670 may be a standard polyaxial screw, for example, a 5.5 mm polyaxial screw available in the marketplace. This screw 670 may, alternatively, be a bone anchor with a polyaxial head e.g. the polyaxial head previously described with respect to
Mount 770 is designed to mate with vertical rod 780 as also shown in
As shown in
Bone anchor 810 of
Bone anchor 820 of
Bone anchor 830 of
Bone anchor 840 of
Bone anchor 850 of
Movement of the deflectable post relative to the bone anchor provides load sharing and dynamic stabilization properties to the dynamic stabilization assembly. As described above, deflection of the deflectable post deforms the material of the spring. The spring applies a restoring force upon the deflectable post; the force being dependent upon the spring rate of the spring and the amount of deflection of the deflectable post. The design, dimensions and the material of the spring may be selected to achieve the desired spring rate. The characteristics of the spring in combination with the dimensions of the other components of the deflection rod interact to generate the force-deflection curve of the deflection rod.
The design, dimensions and materials may be selected to achieve the desired force-deflection characteristics. By changing the dimensions of the deflectable post, spring and spring elements the deflection characteristics of the deflection rod can be changed. The stiffness of components of the deflection rod can be, for example, increased by increasing the diameter of the deflectable post. Additionally, decreasing the diameter of the deflectable post will decrease the stiffness of the deflection rod. Alternatively and/or additionally, changing the materials which comprise the components of the deflection rod can also affect the stiffness and range of motion of the deflection rod. For example, making the spring out of stiffer and/or harder material increases the load necessary to cause a given deflection of the deflection rod.
The deflectable post, bone anchor and vertical rods are preferably made of biocompatible implantable metals. The deflectable post can, for example, be made of, titanium, a shape memory metal for example Nitinol (NiTi) or stainless steel. In preferred embodiments, the deflectable post is made of titanium or cobalt chrome. In preferred embodiments, the bone anchor and vertical rods are also made of titanium; however, other materials, for example, stainless steel may be used instead of or in addition to the titanium components. The ball of the vertical rod may also be made of cobalt chrome for its improved wear characteristics.
The spring can be formed by extrusion, injection, compression molding and/or machining techniques, as would be appreciated by those skilled in the art. In some embodiments, the spring is formed separately. For example, a spring may be cut or machined from a biocompatible polymer and then assembled with the deflectable post and spring such as by being press fit into the shield. Alternatively or additionally, a fastener or biocompatible adhesive may be used to secure the spring to the shield and/or post.
The material of the spring is preferably a biocompatible and implantable polymer or metal having the desired deformation characteristics—elasticity and modulus. The material of the spring should also be able to maintain the desired deformation characteristics. Thus the material of the spring is preferably durable, resistant to oxidation and dimensionally stable under the conditions found in the human body. The spring may, for example be made from a PEEK or a polycarbonate urethane (PCU) such as Bionate® or a surgical steel or titanium or Nitinol. If the spring is comprised of Bionate®, a polycarbonate urethane or other hydrophilic polymer, the spring can also act as a fluid-lubricated bearing for rotation of the deflectable post relative to the longitudinal axis of the deflectable post.
Other polymers or thermoplastics may be used to make the spring including, but not limited to, polyether-etherketone (PEEK), polyphenylsolfone (Radel®), or polyetherimide resin (Ultem®). Other polymers that may be suitable for use in some embodiments, for example, other grades of PEEK, for example 30% glass-filled or 30% carbon filled, provided such materials are cleared for use in implantable devices by the FDA, or other regulatory body. Glass-filled PEEK is known to be ideal for improved strength, stiffness, or stability while carbon filled PEEK is known to enhance the compressive strength and stiffness of PEEK and lower its expansion rate.
Still other suitable biocompatible thermoplastic or thermoplastic polycondensate materials maybe be suitable, including materials that have good memory, are flexible, and/or deflectable have very low moisture absorption, and good wear and/or abrasion resistance, can be used without departing from the scope of the invention. These include polyetherketoneketone (PEKK), polyetherketone (PEK), polyetherketoneetherketoneketone (PEKEKK), and polyetheretherketoneketone (PEEKK) and generally, a polyaryletheretherketone. Further, other polyketones can be used as well as other thermoplastics.
Still other polymers that can be used in the spring are disclosed in the following documents, all of which are incorporated herein by reference. These documents include: PCT Publication WO 02/02158 A1, dated Jan. 10, 2002 and entitled Bio-Compatible Polymeric Materials; PCT Publication WO 02/00275 A1, dated Jan. 3, 2002 and entitled Bio-Compatible Polymeric Materials; and PCT Publication WO 02/00270 A1, dated Jan. 3, 2002 and entitled Bio-Compatible Polymeric Materials.
The design, dimensions and materials of the spring are selected in combination with the design of the deflection rod to create a deflection rod having stiffness/deflection characteristics suitable for the needs of a patient. By selecting appropriate spring and spring rate the deflection characteristics of the deflection rod can be configured to approach the natural dynamic motion of the spine of a particular patient, while giving dynamic support to the spine in that region. It is contemplated, for example, that the deflection rod can be made in stiffness that can replicate a 70% range of motion and flexibility of the natural intact spine, a 50% range of motion and flexibility of the natural intact spine and a 30% range of motion and flexibility of the natural intact spine. Note also, as described above, in certain embodiments, a limit surface cause the stiffness of the deflection rod to increase after contact between the deflectable post and the limit surface.
The foregoing description of preferred embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims and their equivalents.
This application claims priority to the following patents and patent applications: U.S. Provisional Application No. 61/100,593 filed Sep. 26, 2008, entitled “A Spine Implant With A Deflection Rod System Selectively Alignable And Selectively Lockable To A Bone Anchor And Method” (Attorney Docket No. SPART-01042US0); and U.S. Provisional Application No. 61/100,625 filed Sep. 26, 2008, entitled “Versatile Components And Methods For Dynamic Stabilization” (Attorney Docket No. SPART-01043US0); and U.S. Provisional Application No. 61/119,651 filed Dec. 3, 2008, entitled “Load-sharing Component Having A Deflectable Post And Methods For Dynamic Spinal Stabilization” (Attorney Docket No. SPART-01044US0); and U.S. Provisional Application No. 61/122,658 filed Dec. 15, 2008, entitled “Load-sharing Component Having A Deflectable Post And Methods For Dynamic Spinal Stabilization” (Attorney Docket No. SPART-01044US2); and U.S. Provisional Application No. 61/144,426 filed Jan. 13, 2009, entitled “Load-sharing Component Having A Deflectable Post And Methods For Dynamic Spinal Stabilization” (Attorney Docket No. SPART-01044US3); and U.S. Provisional Application No. 61/225,478 filed Jul. 14, 2009, entitled “Load-sharing Component Having A Deflectable Post And Methods For Dynamic Spinal Stabilization” (Attorney Docket No. SPART-01044US4); and U.S. Provisional Application No. 61/167,789 filed Apr. 8, 2009, entitled “Load-sharing Component Having A Deflectable Post And Spring And Methods For Dynamic Spinal Stabilization” (Attorney Docket No. SPART-01049US0); and U.S. Provisional Application No. 61/217,556 filed Jun. 1, 2009, entitled “Load-sharing Component Having A Deflectable Post And Axially-Compressible Spring And Methods For Dynamic Spinal Stabilization” (Attorney Docket No. SPART-01053US0). The present application is a continuation-in-part of U.S. patent application Ser. No. 12/130,395, filed May 30, 2008, entitled “A Deflection Rod System For A Dynamic Stabilization And Motion Preservation Spinal Implantation System And Method” (Attorney Docket No.: SPART-01037US1) which claims priority to U.S. Provisional Application No. 61/031,598 filed Feb. 26, 2008 and entitled “A Deflection Rod System For A Dynamic Stabilization And Motion Preservation Spinal Implantation System And Method” (Attorney Docket No. SPART-01037US0). The present application is also a continuation-in-part of U.S. patent application Ser. No. 12/130,095, filed May 30, 2008, entitled “A Spine Implant With A Deflection Rod System Including A Deflection Limiting Shield Associated With A Bone Screw And Method” (Attorney Docket No.: SPART-01039US2) which claims priority to U.S. Provisional Application No. 61/057,340 filed May 30, 2008, entitled “A Spine Implant With A Deflection Rod System Aligned With A Bone Anchor And Method” (Attorney Docket No.: SPART-01039US0). All of the afore-mentioned patent applications are incorporated herein by reference in their entireties. This application is related to all of the afore-mentioned patent applications. This application is also related to all of the following applications including: U.S. patent application Ser. No. 12/______, filed Sep. 24, 2009, entitled “A Modular In-Line Deflection Rod And Bone Anchor System And Method For Dynamic Stabilization Of The Spine” (Attorney Docket No. SPART-01042US1); and U.S. patent application Ser. No. 12/______, filed Sep. 24, 2009, entitled “Versatile Polyaxial Connector Assembly And Method For Dynamic Stabilization Of The Spine” (Attorney Docket No. SPART-01043US1); and U.S. patent application Ser. No. 12/______, filed Sep. 24, 2009, entitled “Versatile Offset Polyaxial Connector And Method For Dynamic Stabilization Of The Spine” (Attorney Docket No. SPART-01043US2); and U.S. patent application Ser. No. 12/______, filed Sep. 24, 2009, entitled “Load-Sharing Bone Anchor Having A Deflectable Post and Method For Dynamic Stabilization Of The Spine” (Attorney Docket No. SPART-01044US1); and U.S. patent application Ser. No. 12/______, filed Sep. 24, 2009, entitled “Load-Sharing Component Having A Deflectable Post And Method For Dynamic Stabilization Of The Spine” (Attorney Docket No. SPART-01044US5); and U.S. patent application Ser. No. 12/______, filed Sep. 24, 2009, entitled “Load-Sharing Bone Anchor Having A Durable Compliant Member And Method For Dynamic Stabilization Of The Spine” (Attorney Docket No. SPART-01044US6); and U.S. patent application Ser. No. 12/______, filed Sep. 24, 2009, entitled “Load-Sharing Bone Anchor Having A Deflectable Post With A Compliant Ring And Method For Stabilization Of The Spine” (Attorney Docket No. SPART-01044US7); and U.S. patent application Ser. No. 12/______, filed Sep. 24, 2009, entitled “Load-Sharing Bone Anchor Having A Deflectable Post With A Compliant Ring And Method For Stabilization Of The Spine” (Attorney Docket No. SPART-01044US8); and U.S. patent application Ser. No. 12/______, filed Sep. 24, 2009, entitled “Load-Sharing Bone Anchor Having A Deflectable Post And Method For Stabilization Of The Spine” (Attorney Docket No. SPART-01044US9); and U.S. patent application Ser. No. 12/______, filed Sep. 24, 2009, entitled “Load-Sharing Bone Anchor Having A Deflectable Post And Method For Stabilization Of The Spine” (Attorney Docket No. SPART-01044USA); and U.S. patent application Ser. No. 12/______, filed Sep. 24, 2009, entitled “Dynamic Spinal Rod And Method For Dynamic Stabilization Of The Spine” (Attorney Docket No. SPART-01044USC); and U.S. patent application Ser. No. 12/______, filed Sep. 24, 2009, entitled “Dynamic Spinal Rod Assembly And Method For Dynamic Stabilization Of The Spine” (Attorney Docket No. SPART-01044USD); and U.S. patent application Ser. No. 12/______, filed Sep. 24, 2009, entitled “Configurable Dynamic Spinal Rod And Method For Dynamic Stabilization Of The Spine” (Attorney Docket No. SPART-01044USE); and U.S. patent application Ser. No. 12/______, filed Sep. 24, 2009, entitled “A Spinal Prosthesis Having A Three Bar Linkage For Motion Preservation And Dynamic Stabilization Of The Spine” (Attorney Docket No. SPART-01044USF); and U.S. patent application Ser. No. 12/______, filed Sep. 24, 2009, entitled “Surgical Tool And Method For Implantation of A Dynamic Bone Anchor” (Attorney Docket No. SPART-01045US1); and U.S. patent application Ser. No. 12/______, filed Sep. 24, 2009, entitled “Surgical Tool And Method For Connecting A Dynamic Bone Anchor and Dynamic Vertical Rod” (Attorney Docket No. SPART-01045US2); and U.S. patent application Ser. No. 12/______, filed Sep. 24, 2009, entitled “Load-Sharing Bone Anchor Having A Deflectable Post And Centering Spring And Method For Dynamic Stabilization Of The Spine” (Attorney Docket No. SPART-01049US1); and U.S. patent application Ser. No. 12/______, filed Sep. 24, 2009, entitled “Load-Sharing Component Having A Deflectable Post And Centering Spring And Method For Dynamic Stabilization Of The Spine” (Attorney Docket No. SPART-01049US2); and U.S. patent application Ser. No. 12/______, filed Sep. 24, 2009, entitled “Load-Sharing Bone Anchor Having A Deflectable Post And Axial Spring And Method For Dynamic Stabilization Of The Spine” (Attorney Docket No. SPART-01053US1). All of the afore-mentioned patent applications are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
61100625 | Sep 2008 | US | |
61100593 | Sep 2008 | US | |
61119651 | Dec 2008 | US | |
61122658 | Dec 2008 | US | |
61144426 | Jan 2009 | US | |
61167789 | Apr 2009 | US | |
61217556 | Jun 2009 | US | |
61225478 | Jul 2009 | US | |
61031598 | Feb 2008 | US | |
61057340 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12130395 | May 2008 | US |
Child | 12566553 | US | |
Parent | 12130095 | May 2008 | US |
Child | 12130395 | US |