The application generally relates to load bearing supports. The application relates more specifically to load bearing columns constructed of multiple stacked drums with a resilient core member surrounded by filler material.
Various devices disclosed in the prior art are designed and used to provide support to a mine roof. Underground mining results in removal of material from the interior of a mine, thereby leaving unsupported passageways of various sizes within the mine. The lack of support in such passageways may cause mine roof buckling and/or collapse. Thus, it has been desirable to provide support to mine roofs to prevent, delay, or control collapse thereof.
In both underground mining and areas of seismic activity, supports must be engineered to withstand enormous forces propagating through the earth. Building and bridge structures may include modified foundations designed to isolate the superstructure from major ground motion during an earthquake. Such supports for building structures are intended to avoid the transmission of high seismic forces.
Bridges and building structures which are located in an earthquake zone are capable of being damaged or destroyed by seismic forces. In general bridge structures may be constructed with bearings between the bridge's deck or superstructure and the bridge supporting columns to permit relative movement between the two. It is also known to provide damping for the movement upon these bearings of superstructure relative to supports, however the permitted relative movement is not large and furthermore it is not always preferred to attempt to hold a superstructure in a position around a neutral point with respect to the supports.
In underground mining applications, supports of aerated concrete in a hollow tube have been used to permit a support to yield axially in a controlled manner that prevents sudden collapse of an underground mine roof. Such supports yield axially as the aerated concrete within the product is crushed and maintains support of a load as it yields.
An oak wood post having a length of 6.5 feet and a diameter of 6 inches will have a slenderness (height to width) ratio of 26. Such a post will have a maximum axial load capacity of about 16,000 lbs. For a post formed from spruce, the maximum safe axial load handling capability for a post that is 6.5 feet in length and 6 inches in diameter is about 13,600 pounds. In addition, when a wood post yields by kneeling or buckling, such yielding will result in catastrophic failure of the post in which the post can no longer support the load.
Because of the obvious problem associated with such catastrophic failure of posts, various mine props have been developed in the art for supporting the roof of an underground mine. Such mine props have included, various configurations of wood beams encased in metal housings, and complex hydraulically controlled prop devices. Such props, however, do not allow for controlled axial yielding while preventing sideways buckling or kneeling in a simple, lightweight prop that can be hand carried by a user.
U.S. Pat. No. 5,308,196 to Frederick discloses a prior art mine roof support comprising a container that is placed between the mine roof and the mine floor and filled with a load-bearing material.
In instances where a support is compressed, whether due to seismic forces or geological forces, the support generally is incapable of rebounding when the load is reduced or removed. What is needed is a support that can compress under extreme loads and rebound to maintain contact with the load, and which satisfies one or more of these needs or provides other advantageous features. Other features and advantages will be made apparent from the present specification. The teachings disclosed extend to those embodiments that fall within the scope of the claims, regardless of whether they accomplish one or more of the aforementioned needs.
In one embodiment a load bearing support is disclosed. The load bearing support includes a cylindrical drum, comprising a top portion, a bottom portion, a tapered cylindrical sidewall extending between said top portion and said bottom portion, at least one core member extending between the top portion and the bottom portion, and a load-bearing material disposed between the sidewall and the core member ; an opening extending through the top portion of the cylindrical drum for receiving the load-bearing material therethrough; and each of the top portions and the bottom portions comprising a reinforcing chime; the at least one core member comprising a lateral transfer zone defined at one or more points along a vertical axis of the core member, the lateral transfer zone arranged to distribute a portion of an axial load on the drum to the cylindrical sidewall, the cylindrical sidewall providing a radial expansion area for compression of the at least one core member and the load-bearing material.
Another embodiment discloses a method of supporting a load comprising: providing a cylindrical drum having a top portion, a bottom portion, a tapered cylindrical sidewall extending between said top portion and said bottom portion, at least one core member extending between the top portion and the bottom portion, and a load-bearing material disposed between the sidewall and the core member; removing at least a portion of the at least one core member to define a lateral transfer zone along a vertical axis of the core member, applying a load on the cylindrical drum in an axial direction compressing the core member under the applied load to yield partially at the defined lateral transfer zone; distributing the axial load laterally through the core member as the core member yields, expanding the tapered cylindrical sidewall as axial compression of the core member and the load-bearing as the applied load increases; and in response to a reduction or axial displacement in the applied load after compression, extending the core member axially to retain a support contact between the drum and the load by rebounding in the core member axial direction.
The disclosure relates to a mine roof support including at least one core member or segments, e.g., a wood post or log—inserted vertically in a cladding or continuous metal cylinder, with the direction of wood grain coinciding with the axis of the cylinder or drum. The cylinder is preferably a conventional 55 gallon drum with cylinder walls having chimes or hoop stiffeners, or a frusto-conical drum with tapering sidewalls. After the core segments are inserted into the drum or drums (drums may be stacked to achieve a desired height for the roof support), flowable filler such as a cementitious material, e.g., foam cement is poured into the drums to occupy the gaps between the core segments so as to encapsulate the timber segments within the drum cylinder. Dry, flowable aggregate or sand may be used as gap filler instead. The support is placed vertically between a mine bottom and a mine roof to provide support in mine entries to prevent or control the collapse of a roof in a mine entry. The metal cladding in the form of one or more stacked drums provides an elastic expansion that allows the assembled support to partially compress—e.g., 12 inches (30.5 cm) of roof sag—and yield gradually, allowing the internal contents of the drum cladding to expand laterally under roof loading before the roof collapses. The roof support rebounds partially upon removal of the load to maintain contact with the roof surface if the roof moves away from the support.
Certain advantages of the embodiments described herein include a controlled yielding of the drum support without releasing the load, up to at least 200 tons and to as much as 300 tons.
Another advantage is the ability to use the disclosed drum support in various applications including underground mining, bridge construction and repair, and seismic supports for buildings and other structures, as permanent or temporary load supports for very large loads, using inexpensive materials and assembly methods.
Still another advantage is the ability to customize the load bearing characteristics by designing the core members to yield according to weight and desired load deflection profile, as well as rebounding effect of the core members, by inserting slits or drill patterns in predetermined configurations along the core member axis or axes.
Yet another advantage is the ability to design a matrix of bound components working in harmony to provide support for massive loads.
Alternative exemplary embodiments relate to other features and combinations of features as may be generally recited in the claims.
The application will become more fully understood from the following detailed description, taken in conjunction with the accompanying figures, wherein like reference numerals refer to like elements, in which:
Before turning to the figures which illustrate the exemplary embodiments in detail, it should be understood that the application is not limited to the details or methodology set forth in the following description or illustrated in the figures. It should also be understood that the phraseology and terminology employed herein is for the purpose of description only and should not be regarded as limiting.
Commonly owned U.S. patent application Ser. No. 14/456, 497 having a filing date of Aug. 11, 2014, entitled “NESTED MINE ROOF SUPPORTS”; U.S. Pat. No. 8,801,338 issued Aug. 12, 2014, entitled “NESTED MINE ROOF SUPPORTS” and U.S. Pat. No. 8,851,804 issued Oct. 7, 2014, entitled “PUMPABLE SUPPORT WITH CLADDING”, disclose various mine roof supports and methods, and are hereby incorporated by reference in their entirety.
The present invention includes a mine roof support set comprising a plurality of containers having a longitudinal axis and adapted to be placed in a passageway in a mine, with the longitudinal axis extending between the mine roof and the mine floor, and filled with a load-bearing material.
Drums 14 may have a frusto-conical shape with slightly tapered outer walls to facilitate nesting for transportation and to allow a margin or gap around the interior of the nested containers. Drums may also include a reinforcing chime or ring 21, located at one or more locations about the periphery of the sidewall 17.
In use, the container is placed with its longitudinal axis 18 extending between a mine roof 20 and a mine floor 22 such that the bottom end 12 of the container 10 is in contact with the mine floor 22. A core member or members 25 is disposed vertically inside the cavity 16 at the approximate center of drum coaxial with axis 18, or if multiple core members are used, parallel with axis 18. The cavity 16 is then filled with a load-bearing material 24 surrounding core member or members 25. In one exemplary embodiment core member 25 may be composed of wood sections of circular, square or rectangular cross-section. Preferably the wood grain is aligned vertically, i.e., parallel with axis 18, to provide resiliency and rebounding properties as will be discussed in greater detail below. Alternative materials for the core members may be used, such as steel or other high-strength post material. Various wood species may be used depending on the loading properties, cost and availability. E.g., oak and cherry wood exhibit greater hardness and may be capable of higher load capacity, whereas pine may be a less expensive wood with lower load capacity than hardwood species. Each support may be customized accordingly, based on desired load capacity.
In one exemplary embodiment, the load-bearing material 24 may be particulate and flowable which provides efficient filling of the cavity 16. By using particulate and flowable materials, a maximum amount of space is filled in the cavity 16, unlike if larger rocks or objects were to be used. Exemplary and non-limiting load-bearing materials 24 include pea gravel, sand, foamed cement (FOAMCRETE), concrete, polyurethane, coal from a mine entry, mine slack (i.e., wash plant refuse), and crushed mine tailings (e.g., discarded excavated mine material).
Although the container 10 shown in
In one embodiment, the containers 10 all possess the same or similar sidewall 17 thickness. In a preferred embodiment the sidewall thickness may be 1.2 millimeters (mm), to provide a desired elasticity under load for containing the filler material 24 and core member 25. Drums 14 may all have the same height or the drums 14 may have decreasing outer dimensions taken in the direction from the outermost container 10 to the innermost container 10 or some other arrangement, including random heights, provided that the containers 10 nest in each other.
Referring next to
Referring next to
A typical load profile of a roof support of the type shown in
Without being bound by theory, the rebound results as a property of the matrix formed between the metal sidewall 17 of the drum 14, which has an elastic property under such great force, the filler material 24, in this instance gravel that is partially pulverized to displace air pockets within the drum 14, and the core member, which folds between the slits or drill holes as the yield sections are laterally displaced within the drum 14. The core members 25 provide controlled deformation that prevents the release of the load and allows the metal sidewalls 17, typically a sheet metal skin of between 1 mm to 2 mm thickness, to fold over itself slowly. Referring to
It should be noted that while the roof support 10 has been described in the context of an underground mine roof support, the roof support may be used to reinforce a bridge or building structure, e.g., in a seismic zone or as a temporary or permanent column support during construction, replacement or maintenance of the structure.
While the exemplary embodiments illustrated in the figures and described herein are presently preferred, it should be understood that these embodiments are offered by way of example only. Accordingly, the present application is not limited to a particular embodiment, but extends to various modifications that nevertheless fall within the scope of the appended claims. The order or sequence of any processes or method steps may be varied or re-sequenced according to alternative embodiments.
It is important to note that the construction and arrangement of the load support drum with resilient core member, as shown in the various exemplary embodiments is illustrative only. Although only a few embodiments have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited in the claims. For example, elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present application. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. In the claims, any means-plus-function clause is intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present application.
This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/299,396 entitled “LOAD SUPPORT DRUM WITH RESILIENT CORE MEMBER” filed on Feb. 24, 2016, which is hereby incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US17/19079 | 2/23/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62299396 | Feb 2016 | US |