The present invention relates to lifts for lifting and lowering loads.
The lifting and transport of goods in loads heavy enough to make manual lifting and loading undesirable has long been an area of innovation. Lifts of many types are commonly and successfully employed to load heavy goods and equipment onto platforms, racks, trailers, and into trucks. The problem with using conventional lifts is that they are not easily adjustable for accommodating differently-sized loads, interfere with loading and unloading heavy loads at loading and unloading areas, and are not constructed to satisfactorily stabilize heavy loads during lifting, loading, and unloading operations. Conventional lifts that support loads from the bottom, such as on lifting platforms, can damage sensitive loads, such as sensitive equipment and fixtures that are prone to damage under their own weight when not supported properly. Conventional lifts that suspend heavy loads during lifting and unloading operations, such as crane lifts and hoists, render the load unstable. Furthermore, the load-supporting assemblies of conventional lifts are often damaged during normal use, which can render them unsafe or inoperable. Unfortunately, replacing the load-supporting assemblies of conventional lifts is difficult, time-consuming, and expensive. Given these and other deficiencies inherent in the art, those of ordinary skill will readily appreciate that continued improvement in the art is evident.
According to the principle of the invention, a load-supporting apparatus includes first and second support assemblies each including a base, and a slide mounted to the base for movement between a retracted position and an extended position relative to the base. The slide includes upper and lower ends that extend from a proximal end toward the base to a distal end away from the base, inner and outer sides, and an abutment proximate to the lower end between the proximal and distal ends that extends inwardly from the inner side. The first and second support assemblies are axially spaced and extend in the same direction, and a linkage assembly couples the slide of the first support assembly to the slide of the second support assembly. The linkage assembly is adjustable in length for enabling adjustment of the first and second support assemblies toward and away from one another. The abutments define contact points that engage and stabilize a load relative to the first and second support assemblies, when the load is between and is supported by the slides. The bases of the first and second support assemblies are concurrently mountable releasably to a lift operable for raising and lowering the load-supporting apparatus between raised and lowered positions. The first and second support assemblies are enabled for adjustment toward and away from one another via the linkage assembly, when the bases of the first and second support assemblies are concurrently mounted releasably to the lift. The bases of the first and second support assemblies include first and second hooks, respectively, and the first and second support assemblies are concurrently mountable releasably to the lift with the hooks for releasably suspending the load-supporting apparatus from the lift. The first support assembly includes a first lock assembly, the slide of the first support assembly is disabled from moving between the retracted and extended positions, when the first lock assembly is locked, and the slide of the first support assembly is enabled for moving between the retracted and extended positions, when the first lock assembly is unlocked. The second support assembly includes a second lock assembly, the slide of the second support assembly is disabled from moving between the retracted and extended positions, when the second lock assembly is locked, and the slide of the second support assembly is enabled for moving between the retracted and extended positions, when the second lock assembly is unlocked. A first handle that extends upright from the upper end of the slide of the first support assembly, and a second handle that extends upright from the upper end of the slide of the second support assembly. The slides of the first and second support assemblies are parallel to each other. The first and second support assemblies each further include, a spacer, an engagement element carried by the spacer, and first and second engagement elements carried by the slide and the base, respectively. The spacer is in a stowage position releasably attached the base, when the engagement element of the spacer is releasably engaged to the first complemental engagement element. The spacer is in an operative position releasably attached to the slide extending forwardly from the abutment, when the engagement element of the spacer is releasably engaged to the second complemental engagement element. The spacers define extended contact points spaced forwardly from the contact points of the respective abutments that engage and stabilize the load relative to the first and second support assemblies, when the load is between and is supported by the slides. The second complemental engagement elements are carried by the abutments of the respective first and second support assemblies. The linkage assembly is capable of being locked and unlocked. The first and second support assemblies are disabled from moving toward and away from one another via the linkage assembly, when the linkage assembly is locked. The first and second support assemblies are enabled for moving toward and away from one another via the linkage assembly, when the linkage assembly is unlocked. A first stop element is carried by the base of the first support assembly, and a first complemental stop element is carried by the slide of the first support assembly. The first stop element engages the first complemental stop element when the slide of the first support assembly is in the extended position, disabling the slide of the first support assembly from moving beyond the extended position. A second stop element is carried by the base of the second support assembly, and a second complemental stop element is carried by the slide of the second support assembly. The second stop element engages the second complemental stop element when the slide of the second support assembly is in the extended position, disabling the slide of the second support assembly from moving beyond the extended position. The first and second support assemblies each further include a brace that depends downwardly from the base to a foot, and the foot of each of the braces engages a base of the lift, when the bases are mounted to the lift and the load-supporting apparatus is in the lowered position. In a particular embodiment, a cradle is formed in the distal end of the slide, and the contact points defined by the abutments engage and stabilize the load relative to the first and second support assemblies, when the load is between the slides and when trunnions of the load are pivotally supported by the respective cradles of the slides. In this embodiment, the spacers define the extended contact points spaced forwardly from the contact points of the respective abutments that engage and stabilize the load relative to the first and second support assemblies, when the load is between the slides and when the trunnions of the load are pivotally supported by the respective cradles of the slides. The second complemental engagement elements are carried by the abutments of the respective first and second support assemblies.
According to the principle of the invention, an apparatus includes a lift and a load-supporting apparatus. A backboard is mounted to the lift for moving the backboard in lifting and lowering directions, and the backboard includes an upper edge and a front surface. The load-supporting apparatus is carried by the backboard and includes first and second support assemblies each comprising a base, a hook carried by the base, and a slide mounted to the base for movement between a retracted position and an extended position relative to the base, the slide includes upper and lower ends that extend from a proximal end toward the base to a distal end away from the base, inner and outer sides, and an abutment proximate to the lower end between the proximal and distal ends that extends inwardly from the inner side. The first and second support assemblies are axially spaced and extend in the same direction, and a linkage assembly couples the slide of the first support assembly to the slide of the second support assembly, the linkage assembly is adjustable for enabling adjustment of the first and second support assemblies toward and away from one another. The abutments define contact points that engage and stabilize a load relative to the first and second support assemblies, when the load is between and is supported by the slides. Tithe load-supporting apparatus is suspended from the backboard with the hooks, in which the hooks are hooked over the upper edge of the backboard, the bases of the first and second support assemblies depend downwardly against the front surface of the backboard, and the slides of the respective first and second support assemblies concurrently extend horizontally forwardly from the linkage assembly, the bases of the respective first and second support assemblies, and the front surface of the backboard. The hooks and the bases are slidable back-and-forth across the upper edge and the front surface, respectively, of the backboard, which enables adjustment of the first and second support toward and away from one another via the linkage assembly. The first support assembly includes a first lock assembly, the slide of the first support assembly is disabled from moving between the retracted and extended positions, when the first lock assembly is locked; and the slide of the first support assembly is enabled for moving between the retracted and extended positions, when the first lock assembly is unlocked. The second support assembly includes a second lock assembly, the slide of the second support assembly is disabled from moving between the retracted and extended positions, when the second lock assembly is locked, and the slide of the second support assembly is enabled for moving between the retracted and extended positions, when the second lock assembly is unlocked. A first handle that extends upright from the upper end of the slide of the first support assembly, and a second handle that extends upright from the upper end of the slide of the second support assembly. The slides of the first and second support assemblies are parallel to each other. The first and second support assemblies each further include a spacer, an engagement element carried by the spacer, and first and second engagement elements carried by the slide and the base, respectively. The spacer is in a stowage position releasably attached the base, when the engagement element of the spacer is releasably engaged to the first complemental engagement element. The spacer is in an operative position releasably attached to the slide extending forwardly from the abutment, when the engagement element of the spacer is releasably engaged to the second complemental engagement element. The spacers define extended contact points spaced forwardly from the contact points of the respective abutments that engage and stabilize the load relative to the first and second support assemblies, when the load is between and is supported by the slides. The second complemental engagement elements are carried by the abutments of the respective first and second support assemblies. The linkage assembly is capable of being locked and unlocked. The first and second support assemblies are disabled from moving toward and away from one another via the linkage assembly, when the linkage assembly is locked. The first and second support assemblies are enabled for moving toward and away from one another via the linkage assembly, when the linkage assembly is unlocked. A first stop element is carried by the base of the first support assembly, a first complemental stop element is carried by the slide of the first support assembly, and the first stop element engages the first complemental stop element when the slide of the first support assembly is in the extended position, disabling the slide of the first support assembly from moving beyond the extended position. A second stop element is carried by the base of the second support assembly, a second complemental stop element is carried by the slide of the second support assembly, and the second stop element engages the second complemental stop element when the slide of the second support assembly is in the extended position, disabling the slide of the second support assembly from moving beyond the extended position. The first and second support assemblies each further include a brace that depends downwardly from the base to a foot, and the foot of each of the braces engages a base of the lift, when the bases are mounted to the lift and the load-supporting apparatus is in the lowered position. In a particular embodiment, a cradle is formed in the distal end of the slide, and the contact points defined by the abutments engage and stabilize the load relative to the first and second support assemblies, when the load is between the slides and when trunnions of the load are pivotally supported by the respective cradles of the slides. In this embodiment, the spacers define the extended contact points spaced forwardly from the contact points of the respective abutments that engage and stabilize the load relative to the first and second support assemblies, when the load is between the slides and when the trunnions of the load are pivotally supported by the respective cradles of the slides. The second complemental engagement elements are carried by the abutments of the respective first and second support assemblies.
Consistent with the foregoing summary of illustrative embodiments, and the ensuing detailed description, which are to be taken together, the invention also contemplates associated apparatus and method embodiments.
Referring to the drawings:
A load-supporting apparatus mountable releasably to a lift operable for raising and lowering the load-supporting apparatus between raised and lowered positions for raising and lowering loads carried by the load-supporting apparatus, and a lift incorporating the load-supporting apparatus are disclosed.
Turning now to the drawings, in which like reference characters indicate corresponding elements throughout the several views, attention is directed in relevant part to
With continuing reference in relevant part to
Base 60 includes an upstanding elongate support 70 and a beam 80. Elongate support 70, a piece of square, tubular stock in this example for strength, has upper end 71, lower end 72, and opposed inner and outer sides 73 and 74, a front 75, and an opposed back 76 that together extend from upper end 71 to lower end 72. An extension 71A of upper end extends rearward from back 76 to hook 77, which hooks downwardly for suspending support assembly 51 from a lift as described in detail below.
Beam 80 is connected elongate support 71 and is a structural element that is capable of withstanding load primarily by resisting bending. Beam 80, a C-beam in this example having a C-shaped cross-section, includes a vertical web 81, upper flange 82 that defines an upper end of beam 80, and lower flange 83 that defines a lower end of beam 80. For reference purposes and ease of discussion, reference character 82 is used interchangeably for denoting the upper end of beam 80 and the upper flange of beam 80, and reference character 83 is used interchangeably for denoting both the lower end of beam 80 and the lower flange of beam 80. Web 81 has inner side 85 and outer side 86 and extends upright between upper and lower flanges 82 and 83, i.e. the upper and lower ends of beam 80, which are horizontal and which extend outwardly in the same direction from outer side of web 81 to outer edges 82A and 83B, respectively. Upper and lower flanges 82 and 83 are horizontal and are perpendicular relative to web 81, and are parallel relative to each other. Web 81 and upper and lower flanges 82 and 83 that form beam 80 define inner or proximal end 88 of beam 80 and outer or distal end 89 of beam 80. Web 81 and upper and lower flanges 82 and 83 extend from proximal end 88 of beam 80 to distal end 89 of beam 80.
Proximal end 88 of beam 80 is affixed rigidly, via welding in this example, to front 75 of elongate support 70 between upper end 71 and lower end 72. Beam 80 is perpendicular relative to vertical elongate support 70, and extends horizontally outward or otherwise forward from proximal end 88, affixed rigidly to front 75, to distal end 89, and extends upright from lower flange 83, i.e. the lower end of beam 80, to upper flange 82, i.e. the upper end of beam 100. A bracket 90 is affixed rigidly via welding to front 75 of elongate support 70 proximate to side 74 along the length of elongate support 70 from proximate to upper end 71 to proximate to lower end 72. Bracket 90 extends outwardly or otherwise forward from front 75 of elongate support and is concurrently affixed rigidly via welding to outer edges 82A and 83A of upper and lower flanges 82 and 83 from proximal end 88 at front 75 of elongate support 70 to an intermediate location of beam 80 between proximal end 88 and distal end 89. Bracket 90 is spaced apart from outer side 86 of web 81, strengthens the attachment of beam 80 to elongate support 70, and cooperates with web 81 and upper and lower flanges 82 and 83 to form a box structure 91, which strengthens the capability of beam 80 of withstand load primarily by resisting bending.
Slide 61 is a beam 100 that is mounted reciprocally to beam 80 for movement between retracted and extended positions. Beams 80 and 100 cooperate to form a beam assembly. Beam 100 is a structural element that is capable of withstanding load primarily by resisting bending, like that of beam 80. Beam 100 includes a vertical web 101, and upper flange 102. Web 101 has inner side 105 and outer side 106 and extends upright between upper flange 102, which defines an upper end of beam 100 of slide 61, and a lower edge 103, that defines a lower end of beam 100 of slide 61. Upper flange 102 extends outwardly from outer side 106 of web 101 to outer edge 102A. Upper flange 102 is horizontal and is perpendicular relative to web 81. For reference purposes and ease of discussion, reference character 102 is used interchangeably to denote both the upper end of beam 100 of slide 61 and the upper flange of beam 100 of slide 61, and reference character 103 denotes both the lower end of beam 100 of slide 61 and the lower edge of beam 100 of slide 61. Web 101 and upper flange 102 define the inner or proximal end 108 of beam 100 and the outer or distal end 109 of beam 100. Beam 100 of slide 61 extends from proximal end 108 to distal end 109. Cradle 110 is formed in distal end 109. Cradle 110 is between upper end 102 and lower end 103, is closer to lower end 103 than to upper end 102, and is a hook that hooks upwardly toward upper end 102 of beam 100 of slide 61 for serving as a pivotal mount, such as for a trunnion of a load to be lifted. And so slide 61 includes beam 100 having upper end 102 and lower end 103 that extend from proximal end 108 to cradle 110 at distal end 109. Abutment 112 is formed in web 101 of beam 100 proximate to the lower end of slide 61 between proximal and distal ends 108 and 109 of beam 100 of slide 61, is vertical, and extends inwardly from inner side 105 in the opposite direction of upper flange 102. Abutment 112 is proximate to lower end 103 and is between proximal end 108 and cradle 110 of distal end 109. Abutment 112 functions as a contact point that engages and stabilizes a load carried by load-supporting apparatus 50.
Slide 61 is mounted reciprocally to beam 80 of base 60 for movement in reciprocal directions indicated by double arrowed line C in
Slide 61 is mounted reciprocally to beam 80 of base 60 for movement between its retracted position relative to base 60 in
Base 60 and slide 61 are fashioned with a lock assembly 130. Slide 61 is disabled from moving between its retracted and extended positions and is locked in its retracted position, when lock assembly 130 is locked in the retracted position of slide 61. Slide 61 is enabled for moving between its retracted and extended positions, when lock assembly 130 is unlocked. Referring to
In
In
Proximal end 151 of spacer 150 is positioned against abutment 112, and spacer 150 extends forwardly horizontally from abutment 112 from proximal end 151 against abutment 112 to distal end 152 in the operative position of spacer 150 when threaded shank 153 is threadably engaged to threaded opening 156. Distal end 152 of spacer 150 is an extended contact point spaced forwardly from the contact point defined by abutment 112 that engages and stabilizes a load carried by load-supporting apparatus 50.
Referring to
Support assembly 51 further includes a link 180, which forms part of linkage assembly 55. Link 180 is a structural element that is capable of withstanding load primarily by resisting bending, and is fashioned steel, aluminum or other metal or metal composite having inherently rugged, impact resistant, strong, and rigid material characteristics. Referring in relevant part to
Support assemblies 51 and 52 oppose one another and are axially spaced apart and form a receiving area 170 between slides 61 and 61′, and are coupled together via linkage assembly 55 for relative movement of support assemblies 51 and 52 in reciprocal directions relative to one another as indicated by the double arrowed line B in
Link 190 extends vertically upright from lower flange 193 to upper flange 192, and upper and lower flanges 192 and 193 extend forwardly in the same direction as upper and lower flanges 182 and 183 of link 180 and upper and lower flanges 182′ and 183′ of link 180′. In
End 194 is connected to distal end 185 of link 180 with upper and lower fastener assemblies 200A and 200B, and end 195 is connected to distal end 185′ of link 180 with upper and lower fastener assemblies 200C and 200D. Fastener assemblies 200 are identical. Referring to
The application of upper and lower fastener assemblies 200A and 200B to end 194 of link 190 and distal end 185 of link 180 and the interaction of upper and lower fastener assemblies 200A and 200B with upper and lower elongate slots 187 and 188 all cooperate together to form a linkage lock assembly, whereby links 180 and 190 are enabled for moving toward and away from one another when the linkage lock assembly is unlocked, i.e. when upper and lower fastener assemblies 200A and 200B are unlocked, and links 180 and 190 are disabled from moving toward and away from one another when the linkage lock assembly is locked, i.e. when upper and lower fastener assemblies 200A and 200B are locked.
The application of upper and lower fastener assemblies 200C and 200D to end 195 of link 190 and distal end 185′ of link 185′ and the interaction of upper and lower fastener assemblies 200C and 200D with upper and lower elongate slots 187′ and 188′ all cooperate together to form another linkage lock assembly, whereby links 180′ and 190 are enabled for moving toward and away from one another when this other linkage lock assembly is unlocked, i.e. when upper and lower fastener assemblies 200C and 200D are unlocked, and links 180′ and 190 are disabled from moving toward and away from one another when the this other linkage lock assembly is locked, i.e. when upper and lower fastener assemblies 200C and 200D are locked. The linkage lock assembly between link 180 and link 190 can be used independently of, or concurrently with, the linkage lock assembly between link 180′ and link 190.
And so linkage assembly 55 is capable of being unlocked and locked, in which support assemblies 51 and 52 are disabled from moving toward and away from one another via linkage assembly 55, when linkage assembly 55 is locked, and support assemblies 51 and 52 are enabled for moving toward and away from one another via linkage assembly 55, when linkage assembly 55 is unlocked. Linkage assembly 55 is unlocked when the linkage lock assembly associated with distal end 185 of link 180 and end 194 of link 190 is unlocked, when linkage lock assembly associated with distal end 185′ of link 180′ and end 195 of link 190 is unlocked, and when the linkage lock assembly associated with distal end 185 of link 180 and end 194 of link 190 and linkage lock assembly associated with distal end 185′ of link 180′ and end 195 of link 190 are concurrently unlocked. Support assemblies 51 and 52 are enabled for movement in reciprocal directions toward and away from one another when linkage assembly 55 is unlocked. Linkage assembly 55 is locked when the linkage lock assembly associated with distal end 185 of link 180 and end 194 of link 190 and linkage lock assembly associated with distal end 185′ of link 180′ and end 195 of link 190 are concurrently locked. Support assemblies 51 and 52 are disabled from movement in reciprocal directions toward and away from one another when linkage assembly 55 is locked.
In sum, load-supporting apparatus 50 includes support assemblies 51 and 52. Support assembly 51 includes base 60, and slide 61 mounted to base 60 for movement between retracted and extended position relative to base 60, and slide 61 includes upper and lower ends 102 and 103 that extend from a proximal end 108 toward elongate support 70 of base 60 to cradle 110 at distal end 109 away from elongate support 70 of base 60, inner and outer sides 105 and 106, and abutment 112 proximate to lower end 103 between proximal and distal ends 108 and 109 that extends inwardly from inner side 105 into receiving area 170. Identically, support assembly 52 includes base 60′, and slide 61′ mounted to base 60′ for movement between retracted and extended position relative to base 60′, and slide 61′ includes upper and lower ends 102′ and 103′ that extend from a proximal end 108′ toward elongate support 70′ of base 60′ to cradle 110′ at distal end 109′ away from elongate support 70′ of base 60′, inner and outer sides 105′ and 106′, and abutment 112′ proximate to lower end 103′ between proximal and distal ends 108′ and 109′ that extends inwardly from inner side 105′ into receiving area 170. Support assemblies 51 and 52 extend in the same direction, are axially spaced apart, and form receiving area 170 between inner side 105 of slide 61 and inner side 105′ of slide 61′ forward of linkage assembly 55. Linkage assembly 55 couples slide 61 of support assembly 51 to slide 61′ of support assembly 52, which couples support assembly 51 to support assembly 52. Linkage assembly 55 is adjustable in length as disclosed for enabling adjustment of support assemblies 51 and 52 toward and away from one another. Abutments 112 and 112′ of support assemblies 51 and 52 define contact points that engage and stabilize a load relative to support assemblies 51 and 52, when the load is between slides 61 and 61′ and supported by slides 61 and 61′, such as when trunnions of a load are pivotally supported by the respective cradles 112 and 112′ of slides 61 and 61′. Bases 60 and 60′ of support assemblies 51 and 52 include hooks 77 and 77′, respectively. Bases 60 and 60′ are concurrently mountable releasably to a lift, by suspending load-supporting apparatus 50 from a the lift with hooks 77 and 77′, operable for raising and lowering load-supporting apparatus 50 between raised and lowered positions. Support assemblies 51 and 52 are enabled for adjustment toward and away from one another via linkage assembly 55, when bases 60 and 60′ are concurrently mounted releasably to the lift, namely, when bases 60 and 60′ are concurrently suspended from the lift with hooks 77 and 77′, which is explained more fully below. Support assembly 51 includes lock assembly 130, and support assembly 52 includes lock assembly 130′. Slide 61 of support assembly 51 is disabled from moving between retracted and extended positions, when lock assembly 130 is locked, and slide 61 of support assembly 51 is enabled for moving between the retracted and extended positions, when lock assembly 130 is unlocked. Slide 61′ of support assembly 52 is disabled from moving between retracted and extended positions, when lock assembly 130′ is locked, and slide 61′ of support assembly 52 is enabled for moving between retracted and extended positions, when lock assembly 130′ is unlocked. Handle 125 extends upright from upper end 102 of slide 61 of support assembly 51, and handle 125′ extends upright from upper end 102′ of slide 61′ of support assembly 52. Handles 125 and 125′ can be selectively taken up by hand for moving slides 61 and 61′ of support assemblies 51 and 52 between the retracted and extended positions. Slides 61 and 61′ are parallel to each other, including axially spaced slides 61 and 61′. Support assembly 51 further includes spacer 150, an engagement element carried by spacer 150, and first and second complemental engagement elements carried by the slide 61 and the base 60, respectively, wherein spacer 150 is in a stowage position releasably attached the base 60, when the engagement element of spacer 150 is releasably engaged to the first complemental engagement element, and spacer 150 is in an operative position releasably attached to slide 61 extending forwardly from abutment 112, when the engagement element of spacer 150 is releasably engaged to the second complemental engagement element. Support assembly 52 further includes spacer 150′, an engagement element carried by spacer 150′, and first and second complemental engagement elements carried by the slide 61′ and the base 60′, respectively, wherein spacer 150′ is in a stowage position releasably attached the base 60′, when the engagement element of spacer 150′ is releasably engaged to the first complemental engagement element, and spacer 150′ is in an operative position releasably attached to slide 61′ extending forwardly from abutment 112′, when the engagement element of spacer 150′ is releasably engaged to the second complemental engagement element. Spacers 150 and 150′ define extended contact points spaced forwardly from the contact points of the respective abutments 112 and 112′ that engage and stabilize the load relative to the first and second support assemblies, when the load is between and is supported by slides 61 and 61′, such as when the trunnions of the load are pivotally supported by the respective cradles 112 and 112′ of slides 61 and 61′. Linkage assembly 55 incorporates at least one linkage lock assembly. Support assemblies 51 and 52 are enabled for moving toward and away from one another via the linkage assembly 55, when the linkage lock assembly is unlocked, and support assemblies 51 and 52 are disabled from moving toward and away from one another via the linkage assembly 55, when the linkage lock assembly is locked. Support assembly 51 includes stop element 140 and complemental stop element 141, and support assembly 52 includes stop element 140′ and complemental stop element 141′. Stop element 140 is carried by base 60, complemental stop element 141 is carried by slide 61, and stop element 140 engages complemental stop element 141 when slide 61 is in the extended position, disabling slide 61 from moving beyond the extended position. Stop element 140′ is carried by base 60′, complemental stop element 141′ is carried by slide 61′, and the stop element 140′ engages complemental stop element 141′ when slide 61′ is in the extended position, disabling slide 61′ from moving beyond the extended position. Support assemblies 51 and 52 further include braces 160 and 160′. Brace 160 depends downwardly from base 60 to foot 163. Brace 160′ depends downwardly from base 60′ to foot 163′. The foot 163 of brace 160 and foot 163′ of brace 160′ engage a base of the lift, when the bases 60 and 60′ are mounted to the lift and the load-supporting apparatus 50 is in the lowered position.
And so in
Slides 61 and 61′ can be moved back-and-forth, with the use of handles 125 and 125′ if chosen, between their retracted positions and their extended positions as needed for, in turn, moving breaker 230 supported by slides 61 and 61′ of load-supporting apparatus 50 between a retracted position corresponding to the retracted positions of slides 61 and 61′ and an extended position corresponding to the extended position of slides 61 and 61′. Slides 61 and 61′ of support assemblies 51 and 52 are disabled from moving between retracted and extended positions, when lock assemblies 130 and 130′ are locked in the retracted positions of slides 61 and 61′ corresponding to the retracted position of breaker. When breaker 230 is in the retracted position, lift 210 may be wheeled about as needed for transporting breaker 230. To unload breaker 230 onto a chosen landing area when in the retracted position, lift 210 can be maneuvered to position breaker 230 above a landing area and load-supporting apparatus 50 can be lowered via the operation of lift 210 to set breaker 230 down on the chosen landing area, at which point continued lowering of load-supporting apparatus 50 downwardly away from breaker 230 withdraws abutments 112 and 112′ from breaker 230 and withdraws cradles 110 and 110′ from trunnions 231. In the alternative, lock assemblies 130 and 130′ can be unlocked and sliders 61 and 61′ can be moved from their retracted positions corresponding to the retracted position of breaker 230 to their extended positions in
In
In the operation of lift 210 and load-supporting apparatus 50 described in conjunction with
In
Again, slides 61 and 61′ can be moved back-and-forth, with the use of handles 125 and 125′ if chosen, between their retracted positions and their extended positions as needed for, in turn, moving breaker 240 supported by slides 61 and 61′ of load-supporting apparatus 50 between a retracted position corresponding to the retracted positions of slides 61 and 61′ and an extended position corresponding to the extended position of slides 61 and 61′. Slides 61 and 61′ of support assemblies 51 and 52 are disabled from moving between retracted and extended positions, when lock assemblies 130 and 130′ are locked in the retracted positions of slides 61 and 61′ corresponding to the retracted position of breaker. When breaker 240 is in the retracted position, lift 210 may be wheeled about as needed for transporting breaker 240. To unload breaker 240 onto a chosen landing area when in the retracted position, lift 210 can be maneuvered to position breaker 240 above a landing area and load-supporting apparatus 50 can be lowered via the operation of lift 210 to set breaker 240 down on the chosen landing area, at which point continued lowering of load-supporting apparatus 50 downwardly away from breaker 240 withdraws distal ends 152 and 152′ of spacers 150 and 150′ from breaker 240 and withdraws cradles 110 and 110′ from trunnions 241. In the alternative, lock assemblies 130 and 130′ can be unlocked and slides 61 and 61′ can be can be moved from their retracted positions corresponding to the retracted position of breaker 240 to their extended positions in
Those having regard for the art will readily appreciate that an exemplary load-supporting apparatus 50 and lift 210 formed therewith are disclosed. Load-supporting apparatus 50 is simple in structure, easily mounted releasably to a lift for lifting and lowering load-supporting apparatus 50 and a load supported thereby, easily adjustable for accommodating loads of varying size, and easily detached from the lift. In the exemplary embodiments disclosed above, cradles 110 and 110′ pivotally support a load the is braced against abutments 112 and 112′ of slides 61 and 61′ in one configuration of load-supporting apparatus 50, and that is braced against extended contact points of slides 61 and 61′ defined by distal ends 152 and 152′ of spacers 150 in their operative positions when needed to relate to the load to be lifted. Load-supporting apparatus 50 is adjustable to accommodate loads of varying size, is easily suspended from a lift operable for raising and lowering load-supporting apparatus 50 without the use of separate tools and without having to modify load-supporting apparatus 50 or lift 210 or backboard 213 of lift 210 and without the need for separate mechanical fasteners, and is easily removed from the lift for maintenance, repair or replacement simply by lifting load-support apparatus 50 away from the lift.
The invention has been described above with reference to illustrative embodiments. However, those skilled in the art will recognize that changes and modifications may be made to the embodiments without departing from the nature and scope of the invention. Various changes and modifications to the embodiments herein chosen for purposes of illustration will readily occur to those skilled in the art. To the extent that such modifications and variations do not depart from the spirit of the invention, they are intended to be included within the scope thereof.
Number | Name | Date | Kind |
---|---|---|---|
3029962 | Didtel | Apr 1962 | A |
4279564 | Weinert | Jul 1981 | A |
4549845 | Ramsey, Jr. | Oct 1985 | A |
4699565 | Seaberg | Oct 1987 | A |
5230599 | Orr | Jul 1993 | A |
5823737 | Cook | Oct 1998 | A |
6287073 | Lindgren | Sep 2001 | B1 |
8142131 | Tygard | Mar 2012 | B2 |
8282075 | Chan | Oct 2012 | B2 |
8814238 | Tygard | Aug 2014 | B2 |
9073716 | Brighenti | Jul 2015 | B2 |
9139405 | Balcom | Sep 2015 | B2 |
9388029 | Ziaylek | Jul 2016 | B2 |
9409754 | McGrane | Aug 2016 | B2 |
20120070259 | Altemeier | Mar 2012 | A1 |
20120087769 | Michaels | Apr 2012 | A1 |
20130259618 | McGrane | Oct 2013 | A1 |
20140299826 | March | Oct 2014 | A1 |
20140374193 | Meijer | Dec 2014 | A1 |
20150266709 | Tygard | Sep 2015 | A1 |
20150375976 | Kuck | Dec 2015 | A1 |
20160101794 | Fowler | Apr 2016 | A1 |
20160176690 | Iotti | Jun 2016 | A1 |
20160214659 | Schmalzl | Jul 2016 | A1 |