In oilfield operations, tubulars such as casing and completion tubing are run into a wellbore. Load transfer sleeves are sometimes employed to provide an interface between certain tubular handling equipment, specifically an elevator and a rig floor support structure, and the tubulars. Such load transfer sleeves can be designed to be received around a tubular and bear against an axial load support surface along the tubular. Axial load support surfaces are generally provided by a collar, a lift nubbin, or an increased diameter area where the box-end connection is formed. In other cases, the load transfer sleeve may include slips that, when set, form an axial support shoulder to support the load of the tubulars. The tubular may be hoisted from a horizontal orientation to a vertical orientation or simply lifted and moved from one location to another with the tubular being in a vertical orientation e.g., via a spreader bar or an elevator coupled with the load transfer sleeve.
Tubular hoisting equipment generally fall within one of two broad categories. The first category of tubular hoisting equipment is referred to as slip-type handling tools. Slip type handling tools support tubulars and/or tubular strings via high radial gripping forces being applied along a length of the tubular. The surface of the slip that is in contact with the tubular and thru which the radial gripping force is applied is generally fitted with toothed gripping inserts or the contact surface itself has been manufactured so as to have a frictional engagement profile. The high radial force applied to the exterior surface of the slip thru the frictional surface of the slip on to the tubular being gripped is what provides the axial gripping capability of the slip type tubular handling tool. Although slip-type tubular handling tools are suitable and convenient in a variety of applications, in others, radial slip-type tubular handling tools need to be avoided. For example, because the radial gripping force applied by the slips is proportional to the weight of the tubular being supported, very heavy tubular strings supported by slip-type tubular handling tools may be crushed or damaged by the inward gripping force. Furthermore, slips may tend to mark the outside of the tubulars as they bite into the surface, to grip the tubulars. When handling corrosion-resistant tubulars, marking the exterior of the tubulars may not be acceptable. Accordingly, the second category of tubular handling tools are used to overcome some of the limitations of slip type tubular handling tools. The second category of tools can be broadly described as shoulder type tubular handling tools. Shoulder type tubular handling tools provide axial support to tubular strings via direct axial support at an axially oriented shoulder interface between the tubular and the handling tool. Among the handling tools which fall into this category are square shoulder “Side Door” type elevators and “Center Latch” type elevators. Within this category is the various types of “Collar Load Support” type systems (CLS) which rely on the use of bushing type “Load Transfer Sleeves” (LTS) as an interface element between the tubular being supported and an elevator which in turn supports the LTS. U.S. Pat. Nos. 5,083,356 and 6,237,684 illustrate an example of such CLS systems.
Typically, the bushing-style load transfer sleeves are received around and attached to the upper end of the tubular when the tubular is in a nearly horizontal orientation, near the rig floor. An elevator or some other lifting device then engages the load transfer sleeve, and hoists the tubular upright, and pipe handling equipment is used to present the tubular to well center. The tubular is then made-up to an uppermost box-end connection of the previously-run tubular string, which is supported at the rig floor (typically by another LTS and support structure). Once the connection is fully made, the elevator lifts the string and the LTS at the rig floor and associated support structure release the tubular string, and the weight is carried by the elevator via the interface with the load transfer sleeve. The tubular string is then lowered and set down on a rig floor mounted support structure such as a spear, and the process repeats.
In certain situations, it is desirable to make up to the tubular string, multiple joints of previously made up tubulars known as “stands.” as this reduces the number of connections that are required to be made up in order to assemble a string of tubulars. When running stands of tubulars the pre-made up stands of tubulars are “racked back” within the derrick structure of the rig. Racking back stands of tubulars includes placing the stands up in a vertical orientation within a stand support structure of the derrick. In order to make the stands up into a string the stands are then moved to a position that is concentric with the wellbore via a rig pipe racking system. The rig pipe racking system lifts the stand vertically and transports it laterally to a position where the lower end of the stand is concentric with the wellbore and vertically above the upper end of any tubulars suspended within the wellbore. Once the stand has been made up into the string the pipe handling system is required to engage the upper end of the stand that is now made up in to the string and is now protruding up from the string that is suspended in the rotary.
With this type of design, the Load Transfer Sleeve and associated elevator must be connected to the top stand of tubulars rather than at the rig floor level. Stands of tubulars can reach 120 feet (approx. 37 meters) or more, and thus, when stored in a vertical orientation, as described above, prior art transfer sleeves are difficult or impossible to attach to the top of the stand. As a consequence, in some applications, the desire to use LTS Type handling systems as a means of handling tubular strings can result in the single-joint CLS method of lifting and delivering tubulars to well center rather than any stand type handling systems for running tubulars, which slows the running process. An optional design for a remotely operable Load Transfer Sleeve that can be actuated to close around the upper end of a tubular stand is described in U.S. Pat. No. 9,630,811. The design of the LTS described in this patent includes powered actuators such as hydraulic cylinders to function the LTS from the open position to the closed position and vice versa. The actuators require connection to an external power source in the form of hydraulic or pneumatic hoses and/or electrical umbilicals along with other control components on the LTS. It is desirable to provide an LTS type device that does not require a connection to an external power source such as are described above and is a simple device that is free of external control components as well.
What is needed is a bushing-style load transfer system (referenced herein as an “LTB System”) that is able to be connected to a stand of tubulars via remote control near the top of the stand, while the stand is in a vertical orientation without requiring hydraulic, pneumatic or electrical hoses/umbilicals.
Embodiments of the disclosure may provide a load transfer system for oilfield tubulars. The system includes a load transfer bushing having a first arcuate segment and a second arcuate segment, the first and second arcuate segments being configured to engage a load surface of a tubular or of a collar connected to the tubular, an elevator suspended from a rig and configured to receive the load transfer bushing so as to support the tubular via engagement with the load transfer bushing, the elevator having an open position and a closed position. Moving the elevator from the closed position to the open position while the elevator engages the load transfer bushing moves the first and second arcuate segments apart, so as to permit the elevator and the load transfer bushing to be received around the tubular. Moving the elevator from the opened position to the closed position with the load transfer bushing around the tubular forms an axial engagement load surface for engagement with the load carrying surface of the tubular or the collar. The load transfer bushing is disengageable from the elevator while the elevator.
Embodiments of the disclosure may also provide a method for running tubulars including receiving a load transfer bushing into an elevator, opening the elevator, with opening the elevator causing two segments of the load transfer bushing to separate apart, receiving the elevator and the load transfer bushing around a tubular while the elevator is open, closing the elevator, with closing the elevator causing the two segments of the load transfer bushing to at least partially surround and form an axial engagement load surface for the tubular or a collar secured to the tubular, raising the tubular by lifting the elevator, with the elevator supporting a weight of the tubular by engagement with the load transfer bushing, lowering the tubular through a spear by lowering the elevator, until the load transfer bushing engages the spear, continuing to lower the elevator with respect to the spear after engaging the load transfer bushing with the spear, such that the spear disengages the load transfer bushing from the elevator, the spear supporting the weight of the tubular through engagement with the load transfer bushing after disengaging the load transfer bushing from the elevator, again opening the elevator after the spear disengages the load transfer bushing from the elevator, with the load transfer bushing remaining engaged with the tubular when the elevator is again opened, and removing the elevator from around the spear, the tubular, and the load transfer bushing.
Embodiments of the disclosure may also provide a load transfer system including a spear coupled to a rig floor and positioned over a well center, an elevator suspended from the rig and configured to be raised and lowered with respect to the spear, and a load transfer bushing configured to axially engage a load surface of a tubular or of a collar coupled to the tubular. The load transfer bushing is receivable into the elevator such that opening the elevator causes the load transfer bushing to open, so as to receive the load transfer bushing and the elevator around the tubular. The load transfer bushing is disengageable from the elevator.
The present disclosure may best be understood by referring to the following description and accompanying drawings that are used to illustrate embodiments of the invention. In the drawings:
The following disclosure describes several embodiments for implementing different features, structures, or functions of the invention. Embodiments of components, arrangements, and configurations are described below to simplify the present disclosure; however, these embodiments are provided merely as examples and are not intended to limit the scope of the invention. Additionally, the present disclosure may repeat reference characters (e.g., numerals) and/or letters in the various embodiments and across the Figures provided herein. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed in the Figures. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact. Finally, the embodiments presented below may be combined in any combination of ways, e.g., any element from one exemplary embodiment may be used in any other exemplary embodiment, without departing from the scope of the disclosure.
Additionally, certain terms are used throughout the following description and claims to refer to particular components. As one skilled in the art will appreciate, various entities may refer to the same component by different names, and as such, the naming convention for the elements described herein is not intended to limit the scope of the invention, unless otherwise specifically defined herein. Further, the naming convention used herein is not intended to distinguish between components that differ in name but not function. Additionally, in the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to.” All numerical values in this disclosure may be exact or approximate values unless otherwise specifically stated. Accordingly, various embodiments of the disclosure may deviate from the numbers, values, and ranges disclosed herein without departing from the intended scope. In addition, unless otherwise provided herein, “or” statements are intended to be non-exclusive; for example, the statement “A or B” should be considered to mean “A. B, or both A and B.”
The first and second load transfer bushings 100, 104 may be generally the same in structure and function. Accordingly, for purposes of describing the structure of the load transfer bushings 100, 104, reference is made to the first load transfer bushing 100 only, with it being appreciated that the second load transfer bushing 104 may be generally the same.
The first and second segments 200, 202 may not be connected together, but may be free to slide, move apart, or otherwise be displaced one relative to the other. In other embodiments, the segments 200, 202 may be movably connected together, e.g., via hinges, pins, detachable fasteners, etc. Further, the first and second segments 200, 202 may define plate-receiving slots (four shown: 208, 210, 212, 214) around an axially-extending periphery 215 thereof. In the illustrated example, two of the slots 208-214 are provided for each of the segments 200, 202, but it will be appreciated that any number of slots could be used.
The first and second segments 200, 202 may also each include two slots 222, 224 on either circumferential end thereof, which will be described in greater detail below. Further, the first and second segments 200, 202 may include a beveled or otherwise angled or profiled locking plate guide surface 226. The locking plate guide surface 226 may provide a transition between the axially-facing, radially-extending bottom surface 219 and the axially-extending, radially facing periphery 215.
Turning now to the CLS elevator 102 that receives the load transfer bushing 100,
The body 400 may define an axially-extending through-bore 408 therein. As shown, when the elevator 102 is closed, the through-bore 408 is generally cylindrical in shape, but when the elevator 102 is open, the through-bore 408 is accessible laterally through the body 400, allowing the elevator 102 to be received around a tubular. Within the through-bore 408, the body 400 may define an inwardly-protruding load support shoulder 410. The load support shoulder 410 may be annular and sized and configured to contact the bottom surface 219 (e.g.,
The elevator 102 may also include retainers 412, which may be positioned within the bore 408 and may extend upwards from the load support shoulder 410. The retainers 412 may be configured to be received into the slots 222, 224 (
The elevator 102 may include a locking mechanism that is configured to retain the load transfer bushing 100 axially within the bore 408 and on the load support shoulder 410 until the load transfer bushing 100 is engaged and supported by the spear 106. In an embodiment, the locking mechanism may include a plurality of locking plates 600 positioned at angular intervals around the bore 408. In an embodiment, the locking plates 600 may be radially movable with respect to the body 400, e.g., into and out of pockets 402 formed therein. For example, the locking plates 600 may be biased radially inwards, e.g., springs that bear on the body 400. Further, the locking plates 600 may be positioned, for example, so as to align with the plate-receiving slots 208-214 of the load transfer bushing 100.
The engagement surface 603 may be configured to engage the load transfer bushing 100, e.g., in one of the slots 208-214 (e.g.,
When the locking plate 600 moves radially outwards, overcoming the biasing force applied thereto by the springs 701, 703, the latch plate retainer pin 700 moves upwards by the sliding engagement between the latch plate retainer pin 700 and the pocket 710 at the tapered interface 712, and the locking plate retainer springs 703 extend. When the radial outward force is removed, the springs 701, 703 force the locking plate 600 radially inwards, which also lowers the latch plate retainer pin 700.
An indicator post 702 may extend radially outwards from the locking plate 600, through an opening defined in the body 400. An indicator flapper 704 may be positioned on an outside of the body 400, e.g., in a highly-visible location, and may be engageable by the indicator post 702.
As the load transfer bushing 100 is received into a bore 414, as shown in
Referring again to
Further, the load transfer bushing 100 is landed on the top surface 906 of the spear 106 at this point. In particular, according to an embodiment, the top surface 906 is received into the annular groove 220 and positioned against the spear contact surface 216 of the load transfer bushing 100. The inner contour 218 is thus received within the top of the bore 904 of the spear 106.
As the elevator 102 is continued to be lowered, with the locking plate 600 no longer preventing displacement of the load transfer bushing 100, and the load transfer bushing 100 landed on the spear 106, the elevator 102 continues its downward movement without the load transfer bushing 100, as shown in
The sequence of operation of the load transfer system 10 may now be understood.
Next, as shown in
As shown in
As shown in
As shown in
The elevator 102 may then be opened, as shown in
The foregoing has outlined features of several embodiments so that those skilled in the art may better understand the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
This application claims priority to U.S. provisional patent application No. 62/672,310, filed May 16, 2018, the contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1547282 | Youker | Jul 1925 | A |
RE29995 | Guier | May 1979 | E |
5083356 | Gonzalez | Jan 1992 | A |
6237684 | Bouligny, Jr. | May 2001 | B1 |
6651737 | Bouligny | Nov 2003 | B2 |
7370707 | McDaniel | May 2008 | B2 |
9206655 | Sipos | Dec 2015 | B2 |
9341036 | Sipos | May 2016 | B2 |
9630811 | Smith et al. | Apr 2017 | B2 |
9784050 | Smith | Oct 2017 | B2 |
20150233195 | Smith et al. | Aug 2015 | A1 |
20150259991 | Sipos | Sep 2015 | A1 |
20150361737 | Foley | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
2012151148 | Nov 2012 | WO |
Entry |
---|
Extended European Search Report dated Sep. 16, 2019, EP Application No. 19173661, pp. 1-10. |
Number | Date | Country | |
---|---|---|---|
20190352977 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62672310 | May 2018 | US |