Loaded antenna

Abstract
A novel loaded antenna is defined in the present invention. The radiating element of the loaded antenna consists of two different parts: a conducting surface and a loading structure. By means of this configuration, the antenna provides a small and multiband performance, and hence it features a similar behaviour through different frequency bands.
Description
OBJECT OF THE INVENTION

The present invention relates to a novel loaded antenna which operates simultaneously at several bands and featuring a smaller size with respect to prior art antennas.


The radiating element of the novel loaded antenna consists on two different parts: a conducting surface with a polygonal, space-filling or multilevel shape; and a loading structure consisting on a set of strips connected to said first conducting surface.


The invention refers to a new type of loaded antenna which is mainly suitable for mobile communications or in general to any other application where the integration of telecom systems or applications in a single small antenna is important.


BACKGROUND OF THE INVENTION

The growth of the telecommunication sector, and in particular, the expansion of personal mobile communication systems are driving the engineering efforts to develop multiservice (multifrequency) and compact systems which require multifrequency and small antennas. Therefore, the use of a multisystem small antenna with a multiband and/or wideband performance, which provides coverage of the maximum number of services, is nowadays of notable interest since it permits telecom operators to reduce their costs and to minimize the environmental impact.


Most of the multiband reported antenna solutions use one or more radiators or branches for each band or service. An example is found in U.S. patent Ser. No. 09/129,176 entitled “Multiple band, multiple branch antenna for mobile phone”.


One of the alternatives which can be of special interest when looking for antennas with a multiband and/or small size performance are multilevel antennas, Patent publication WO01/22528 entitled “Multilevel Antennas”, and miniature space-filling antennas, Patent publication WO01/54225 entitled “Space-filling miniature antennas”. In particular in the publication WO 01/22528 a multilevel antennae was characterised by a geometry comprising polygons or polyhedrons of the same class (same number of sides of faces), which are electromagnetically coupled and grouped to form a larger structure. In a multilevel geometry most of these elements are clearly visible as their arwea of contact, intersection or interconnection (if these exists) with other elements is always less than 50% of their perimeter or area in at least 75% of the polygons or polyhedrons.


In the publication WO 01/54225 a space-filling miniature antenna was defined as an antenna havinf at least one part shaped as a space-filling-curve (SFC), being defined said SFC as a curve composed by at least ten connected straight segments, wherein said segments are smaller than a tenth of the operating free-space wave length and they are spacially arranged in such a way that none of said adjacent and connected segments from another longer straight segment.


The international publication WO 97/06578 entitled fractal antennas, resonators and loading elements, describe fractal-shaped elements which may be used to form an antenna.


A variety of techniques used to reduce the size of the antennas can be found in the prior art. In 1886, there was the first example of a loaded antenna; that was, the loaded dipole which Hertz built to validate Maxwell equations.


A. G. Kandoian (A. G. Kandoian, Three new antenna types and their applications, Proc. IRE, vol. 34, pp. 70W-75W, February 1946) introduced the concept of loaded antennas and demonstrated how the length of a quarter wavelength monopole can be reduced by adding a conductive disk at the top of the radiator. Subsequently, Goubau presented an antenna structure top-loaded with several capacitive disks interconnected by inductive elements which provided a smaller size with a broader bandwith, as is illustrated in U.S. Pat. No. 3,967,276 entitled “Antenna structures having reactance at free end”.


More recently, U.S. Pat. No. 5,847,682 entitled “Top loaded triangular printed antenna” discloses a triangular-shaped printed antenna with its top connected to a rectangular strip. The antenna features a low-profile and broadband performance. However, none of these antenna configurations provide a multiband behaviour. In Patent No. WO0122528 entitled “Multilevel Antennas”, another patent of the present inventors, there is a particular case of a top-loaded antenna with an inductive loop, which was used to miniaturize an antenna for a dual frequency operation. Also, W. Dou and W. Y. M. Chia (W. Dou and W. Y. M. Chia, “Small broadband stacked planar monopole”, Microwave and Optical Technology Letters, vol. 27, pp. 288-289, November 2000) presented another particular antecedent of a top-loaded antenna with a broadband behavior. The antenna was a rectangular monopole top-loaded with one rectangular arm connected at each of the tips of the rectangular shape. The width of each of the rectangular arms is on the order of the width of the fed element, which is not the case of the present invention.


SUMMARY OF THE INVENTION

The key point of the present invention is the shape of the radiating element of the antenna, which consists on two main parts: a conducting surface and a loading structure. Said conducting surface has a polygonal, space-filling or multilevel shape and the loading structure consists on a conducting strip or set of strips connected to said conducting surface. According to the present invention, at least one loading strip must be directly connected at least at one point on the perimeter of said conducting surface. Also, circular or elliptical shapes are included in the set of possible geometries of said conducting surfaces since they can be considered polygonal structures with a large number of sides.


Due to the addition of the loading structure, the antenna can feature a small and multiband, and sometimes a multiband and wideband, performance. Moreover, the multiband properties of the loaded antenna (number of bands, spacing between bands, matching levels, etc) can be adjusted by modifying the geometry of the load and/or the conducting surface.


This novel loaded antenna allows to obtain a multifrequency performance, obtaining similar radioelectric parameters at several bands.


The loading structure can consist for instance on a single conducting strip. In this particular case, said loading strip must have one of its two ends connected to a point on the perimeter of the conducting surface (i.e., the vertices or edges). The other tip of said strip is left free in some embodiments while, in other embodiments it is also connected at a point on the perimeter of said conducting surface.


The loading structure can include not only a single strip but also a plurality of loading strips located at different locations along its perimeter.


The geometries of the loads that can be connected to the conducting surface according to the present invention are:

    • a) A curve composed by a minimum of two segments and a maximum of nine segments which are connected in such a way that each segment forms an angle with their neighbours, i.e., no pair of adjacent segments define a larger straight segment.
    • b) A straight segment or strip
    • c) A straight strip with a polygonal shape
    • d) A space-filling curve, Patent No. PCT/EP00/00411 entitled “Space-filling miniature antennas”.


In some embodiments, the loading structure described above is connected to the conducting surface while in other embodiments, the tips of a plurality of the loading strips are connected to other strips. In those embodiments where a new loading strip is added to the previous one, said additional load can either have one tip free of connection, or said tip connected to the previous loading strip, or both tips connected to previous strip or one tip connected to previous strip and the other tip connected to the conducting surface.


There are three types of geometries that can be used for the conducting surface according to the present invention:

    • a) A polygon (i.e., a triangle, square, trapezoid, pentagon, hexagon, etc. or even a circle or ellipse as a particular case of polygon with a very large number of edges).
    • b) A multilevel structure, Patent No. WO0122528 entitled “Multilevel Antennas”.
    • c) A solid surface with an space-filling perimeter.


In some embodiments, a central portion of said conducting surface is even removed to further reduce the size of the antenna. Also, it is clear to those skilled in the art that the multilevel or space-filling designs in configurations b) and c) can be used to approximate, for instance, ideal fractal shapes.



FIG. 1 and FIG. 2 show some examples of the radiating element for a loaded antenna according to the present invention. In drawings 1 to 3 the conducting surface is a trapezoid while in drawings 4 to 7 said surface is a triangle. It can be seen that in these cases, the conducting surface is loaded using different strips with different lengths, orientations and locations around the perimeter of the trapezoid, FIG. 1. Besides, in these examples the load can have either one or both of its ends connected to the conducting surface, FIG. 2.


The main advantage of this novel loaded antenna is two-folded:

    • The antenna features a multiband or wideband performance, or a combination of both.
    • Given the physical size of radiating element, said antenna can be operated at a lower frequency than most of the prior art antennas.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a trapezoid antenna loaded in three different ways using the same structure; in particular, a straight strip. In case 1, one straight strip, the loading structure (1a) and (1b), is added at each of the tips of the trapezoid, the conducting surface (1c). Case 2 is the same as case 1, but using strips with a smaller length and located at a different position around the perimeter of the conducting surface. Case 3, is a more general case where several strips are added to two different locations on the conducting surface. Drawing 4 shows a example of a non-symmetric loaded structure and drawing 5 shows an element where just one slanted strip has been added at the top of the conducting surface. Finally, cases 6 and 7 are examples of geometries loaded with a strip with a triangular and rectangular shape and with different orientations. In these cases, the loads have only one of their ends connected to the conducting surface.



FIG. 2 shows a different particular configuration where the loads are curves which are composed by a maximum of nine segments in such a way that each segment forms an angle with their neighbours, as it has been mentioned before. Moreover, in drawings 8 to 12 the loads have both of their ends connected to the conducting surface. Drawings 8 and 9, are two examples where the conducting surface is side-loaded. Cases 13 and 14, are two cases where a rectangle is top-loaded with an open ended curve, shaped as is mentioned before, with the connection made through one of the tips of the rectangle. The maximum width of the loading strips is smaller than a quarter of the longest edge of the conducting surface.



FIG. 3 shows a square structure top-loaded with three different space-filling curves. The curve used to load the square geometry, case 16, is the well-known Hilbert curve.



FIG. 4 shows three examples of the top-loaded antenna, where the load consist of two different loads that are added to the conducting surface. In drawing 19, a first load, built with three segments, is added to the trapezoid and then a second load is added to the first one.



FIG. 5 includes some examples of the loaded antenna where a central portion of the conducting surface is even removed to further reduce the size of the antenna.



FIG. 6 shows the same loaded antenna described in FIG. 1, but in this case as the conducting surface a multilevel structure is used.



FIG. 7 shows another example of the loaded antenna, similar to those described in FIG. 2. In this case, the conducting surface consist of a multilevel structure. Drawings 31, 32, 34 and 35 use different shapes for the loading but in all cases the load has both ends connected to the conducting surface. Case 33 is an example of an open-ended load added to a multilevel conducting surface.



FIG. 8 presents some examples of the loaded antenna, similar to those depicted in FIGS. 3 and 4, but using a multilevel structure as the conducting surface. Illustrations 36, 37 and 38, include a space-filling top-loading curve, while the rest of the drawings show three examples of the top-loaded antenna with several levels of loadings. Drawing 40 is an example where three loads have been added to the multilevel structure. More precisely, the conducting surface is firstly loaded with curve (40a), next with curves (40b) and (40c). Curve (40a) has both ends connected to conducting surface, curve (40b) has both ends connected to the previous load (40a), and load (40c), formed with two segments, has one end connected to load (40a) and the other to the load (40b).



FIG. 9 shows three cases where the same multilevel structure, with the central portions of the conducting surface removed, which is loaded with three different type of loads; those are, a space-filling curve, a curve with a minimum of two segments and a maximum of nine segments connected in such a way mentioned just before, and finally a load with two similar levels.



FIG. 10 shows two configurations of the loaded antenna which include three conducting surfaces, one of them bigger than the others. Drawing 45 shows a triangular conducting surface (45a) which is connected to two smaller circular conducting surfaces (45b) and (45c) through one conducting strip (45d) and (45e). Drawing 46 is a similar configuration to drawing 45 but the bigger conducting surface is a multilevel structure.



FIG. 11 shows other particular cases of the loaded antenna. They consist of a monopole antenna comprising a conducting or superconducting ground plane (48) with an opening to allocate a coaxial cable (47) with its outer conductor connected to said ground plane and the inner conductor connected to the loaded antenna. The loaded radiator can be optionally placed over a supporting dielectric (49).



FIG. 12 shows a top-loaded polygonal radiating element (50) mounted with the same configuration as the antenna in FIG. 12. The radiating element radiator can be optionally placed over a supporting dielectric (49). The lower drawing shows a configuration wherein the radiating element is printed on one of the sides of a dielectric substrate (49) and also the load has a conducting surface on the other side of the substrate (51).



FIG. 13 shows a particular configuration of the loaded antenna. It consists of a dipole wherein each of the two arms includes two straight strip loads. The lines at the vertex of the small triangles (50) indicate the input terminal points. The two drawings display different configurations of the same basic dipole; in the lower drawing the radiating element is supported by a dielectric substrate (49).



FIG. 14 shows, in the upper drawing, an example of the same dipole antenna side-loaded with two strips but fed as an aperture antenna. The lower drawing is the same loaded structure wherein the conductor defines the perimeter of the loaded geometry.



FIG. 15 shows a patch antenna wherein the radiating element is a multilevel structure top-loaded with two strip arms, upper drawing. Also, the figure shows an aperture antenna wherein the aperture (59) is practiced on a conducting or superconducting structure (63), said aperture being shaped as a loaded multilevel structure.



FIG. 16 shows a frequency selective surface wherein the elements that form the surface are shaped as a multilevel loaded structure.





DETAILED DESCRIPTION OF SOME PREFERRED EMBODIMENTS

A preferred embodiment of the loaded antenna is a monopole configuration as shown in FIG. 11. The antenna includes a conducting or superconducting counterpoise or ground plane (48). A handheld telephone case, or even a part of the metallic structure of a car or train can act as such a ground conterpoise. The ground and the monopole arm (here the arm is represented with the loaded structure (26), but any of the mentioned loaded antenna structure could be taken instead) are excited as usual in prior art monopole by means of, for instance, a transmission line (47). Said transmission line is formed by two conductors, one of the conductors is connected to the ground counterpoise while the other is connected to a point of the conducting or superconducting loaded structure. In FIG. 11, a coaxial cable (47) has been taken as a particular case of transmission line, but it is clear to any skilled in the art that other transmission lines (such as for instance a microstrip arm) could be used to excite the monopole. Optionally, and following the scheme just described, the loaded monopole can be printed over a dielectric substrate (49).


Another preferred embodiment of the loaded antenna is a monopole configuration as shown in FIG. 12. The assembly of the antenna (feeding scheme, ground plane, etc) is the same as the considered in the embodiment described in FIG. 11. In the present figure, there is another example of the loaded antenna. More precisely, it consists of a trapezoid element top-loaded with one of the mentioned curves. In this case, one of the main differences is that, being the antenna edged on dielectric substrate, it also includes a conducting surface on the other side of the dielectric (51) with the shape of the load. This preferred configuration allows to miniaturize the antenna and also to adjust the multiband parameters of the antenna, such as the spacing the between bands.



FIG. 13 describes a preferred embodiment of the invention. A two-arm antenna dipole is constructed comprising two conducting or superconducting parts, each part being a side-loaded multilevel structure. For the sake of clarity but without loss of generality, a particular case of the loaded antenna (26) has been chosen here; obviously, other structures, as for instance, those described in FIGS. 2, 3, 4, 7 and 8, could be used instead. Both, the conducting surfaces and the loading structures are lying on the same surface. The two closest apexes of the two arms form the input terminals (50) of the dipole. The terminals (50) have been drawn as conducting or superconducting wires, but as it is clear to those skilled in the art, such terminals could be shaped following any other pattern as long as they are kept small in terms of the operating wavelength. The skilled in the art will notice that, the arms of the dipoles can be rotated and folded in different ways to finely modify the input impedance or the radiation properties of the antenna such as, for instance, polarization.


Another preferred embodiment of a loaded dipole is also shown in FIG. 13 where the conducting or superconducting loaded arms are printed over a dielectric substrate (49); this method is particularly convenient in terms of cost and mechanical robustness when the shape of the applied load packs a long length in a small area and when the conducting surface contains a high number of polygons, as happens with multilevel structures. Any of the well-known printed circuit fabrication techniques can be applied to pattern the loaded structure over the dielectric substrate. Said dielectric substrate can be, for instance, a glass-fibre board, a teflon based substrate (such as Cuclad®) or other standard radiofrequency and microwave substrates (as for instance Rogers 4003® or Kapton®). The dielectric substrate can be a portion of a window glass if the antenna is to be mounted in a motor vehicle such as a car, a train or an airplane, to transmit or receive radio, TV, cellular telephone (GSM900, GSM1800, UMTS) or other communication services electromagnetic waves. Of course, a balun network can be connected or integrated at the input terminals of the dipole to balance the current distribution among the two dipole arms.


The embodiment (26) in FIG. 14 consist on an aperture configuration of a loaded antenna using a multilevel geometry as the conducting surface. The feeding techniques can be one of the techniques usually used in conventional aperture antennas. In the described figure, the inner conductor of the coaxial cable (53) is directly connected to the lower triangular element and the outer conductor to the rest of the conductive surface. Other feeding configurations are possible, such as for instance a capacitive coupling.


Another preferred embodiment of the loaded antenna is a slot loaded monopole antenna as shown in the lower drawing in FIG. 14. In this figure the loaded structure forms a slot or gap (54) impressed over a conducting or superconducting sheet (52). Such sheet can be, for instance, a sheet over a dielectric substrate in a printed circuit board configuration, a transparent conductive film such as those deposited over a glass window to protect the interior of a car from heating infrared radiation, or can even be a part of the metallic structure of a handheld telephone, a car, train, boat or airplane. The feeding scheme can be any of the well known in conventional slot antennas and it does not become an essential part of the present invention. In all said two illustrations in FIG. 14, a coaxial cable has been used to feed the antenna, with one of the conductors connected to one side of the conducting sheet and the other connected at the other side of the sheet across the slot. A microstrip transmission line could be used, for instance, instead of a coaxial cable.


Another preferred embodiment is described in FIG. 15. It consists of a patch antenna, with the conducting or superconducting patch (58) featuring the loaded structure (the particular case of the loaded structure (59) has been used here but it is clear that any of the other mentioned structures could be used instead). The patch antenna comprises a conducting or superconducting ground plane (61) or ground counterpoise, and the conducting or superconducting patch which is parallel to said ground plane or ground counterpoise. The spacing between the patch and the ground is typically below (but not restricted to) a quarter wavelength. Optionally, a low-loss dielectric substrate (60) (such as glass-fibre, a teflon substrate such as Cuclad® or other commercial materials such as Rogers4003®) can be placed between said patch and ground counterpoise. The antenna feeding scheme can be taken to be any of the well-known schemes used in prior art patch antennas, for instance: a coaxial cable with the outer conductor connected to the ground plane and the inner conductor connected to the patch at the desired input resistance point (of course the typical modifications including a capacitive gap on the patch around the coaxial connecting point or a capacitive plate connected to the inner conductor of the coaxial placed at a distance parallel to the patch, and so on, can be used as well); a microstrip transmission line sharing the same ground plane as the antenna with the strip capacitively coupled to the patch and located at a distance below the patch, or in another embodiment with the strip placed below the ground plane and coupled to the patch through a slot, and even a microstrip line with the strip co-planar to the patch. All these mechanisms are well known from prior art and do not constitute an essential part of the present invention. The essential part of the invention is the loading shape of the antenna which contributes to enhance the behavior of the radiator to operate simultaneously at several bands with a small size performance.


The same FIG. 15 describes another preferred embodiment of the loaded antenna. It consist of an aperture antenna, said aperture being characterized by its loading added to a multilevel structure, said aperture being impressed over a conducting ground plane or ground counterpoise, said ground plane consisting, for example, of a wall of a waveguide or cavity resonator or a part of the structure of a motor vehicle (such as a car, a lorry, an airplane or a tank). The aperture can be fed by any of the conventional techniques such as a coaxial cable (61), or a planar microstrip or strip-line transmission line, to name a few.


Another preferred embodiment is described in FIG. 16. It consists of a frequency selective surface (63). Frequency selective surfaces are essentially electromagnetic filters, which at some frequencies they completely reflect energy while at other frequencies they are completely transparent. In this preferred embodiment the selective elements (64), which form the surface (63), use the loaded structure (26), but any other of the mentioned loaded antenna structures can be used instead. At least one of the selective elements (64) has the same shape of the mentioned loaded radiating elements. Besides this embodiment, another embodiment is preferred; this is, a loaded antenna where the conducting surface or the loading structure, or both, are shaped by means of one or a combination of the following mathematical algorithms: Iterated Function Systems, Multi Reduction Copy Machine, Networked Multi Reduction Copy Machine.

Claims
  • 1. A loaded antenna comprising: a radiating element comprising a first part and a second part; the first part comprising at least one conducting surface; andthe second part comprising a loading structure, the loading structure comprising at least one conducting strip connected at at least one point on an edge of the at least one conducting surface, the maximal width of the at least one conducting strip being less than a quarter of the longest straight edge of the conducting surface; andwherein at least a portion of the at least one conducting surface is a multilevel structure comprising a plurality of polygons, all of the plurality of polygons having at least four and the same number of sides, a plurality of the plurality of polygons being electromagnetically coupled via capacitive coupling or ohmic contact to define a plurality of contact regions and wherein, for at least 75% of the plurality of electromagnetically coupled polygons, a contact region is less than 50% of the perimeter of an electromagnetically coupled polygon.
  • 2. The loaded antenna of claim 1, wherein: a shape of at least one of the at least one conducting strip comprises a curve;wherein the curve comprises a minimum of two segments and a maximum of nine segments; andwherein each segment forms an angle with an adjacent segment so that no pair of adjacent segments defines a larger straight segment.
  • 3. The loaded antenna of claim 1, wherein two tips of at least one of the at least one conducting strip are connected at two points on a perimeter of the first part.
  • 4. The loaded antenna of claim 1, wherein: the loading structure comprises at least two conducting strips; anda tip of a first of the at least two conducting strips and a tip of a second of the at least two conducting strips are connected.
  • 5. The loaded antenna of claim 1, wherein: the loading structure comprises at least two conducting strips; andboth tips of a first of the at least two conducting strips are connected to a second of the at least two conducting strips.
  • 6. The loaded antenna of claim 1, wherein: the loading structure comprises at least two conducting strips; anda first tip of a first of the at least two conducting strips is connected to a second of the at least two conducting strips; anda second tip of the first of the at least two conducting strips is connected to the at least one conducting surface.
  • 7. The loaded antenna of claim 1, wherein the loading structure comprises at least two conducting strips connected at a plurality of points on a perimeter of the at least one conducting surface.
  • 8. The loaded antenna of claim 1, wherein at least one conducting surface and the loading structure are lying on a common flat or curved surface.
  • 9. The loaded antenna of claim 1, wherein: the antenna comprises at least two conducting surfaces;a second conducting surface of the at least two conducting surfaces features a smaller area than a first conducting surface of the at least two conducting surfaces; andat least one conducting strip of the at least one conducting strip is connected to the first conducting surface at a first end and to the second conducting surface at a second end.
  • 10. The loaded antenna of claim 1, wherein a perimeter of the at least one conducting surface is of shaped as one of a triangle, a square, a rectangle, a trapezoid, a pentagon, a hexagon, a heptagon, an octagon, a circle, and an ellipse.
  • 11. The loaded antenna of claim 1, wherein, due to the loading structure, the loaded antenna has a multiband behavior involving more operating bands compared to an identical antenna without the loading structure.
  • 12. A loaded antenna comprising: a radiating element comprising a first part and a second part; the first part comprising at least one conducting surface; andthe second part comprising a loading structure, the loading structure comprising at least one conducting strip connected at at least one point on an edge of the at least one conducting surface, the maximal width of the at least one conducting strip being less than a quarter of the longest straight edge of the conducting surface;wherein the at least one conducting strip is shaped as a space-filling curve comprising at least ten segments connected so that no pair of adjacent segments defines a longer straight segment and, if the curve is periodic along a fixed straight direction of space, the period is defined by a non-periodic curve comprising at least ten connected segments and no pair of the adjacent and connected segments defines a straight longer segment; andwherein the space-filling curve intersects with itself at most only at its initial and final point.
  • 13. The loaded antenna of claim 12, wherein a perimeter of the at least one conducting surface is polygonal in shape.
  • 14. The loaded antenna of claim 12, wherein at least a part of a perimeter of the at least one conducting surface is shaped as a space-filling curve.
  • 15. The loaded antenna of claim 12, wherein at least a portion of the at least one conducting surface is shaped as a multilevel structure.
  • 16. The loaded antenna of claim 12, wherein two tips of at least one of the at least one conducting strip are connected at two points on a perimeter of the at least one conducting surface.
  • 17. The loaded antenna of claim 12, wherein the at least one conducting surface and the loading structure are lying on a common flat or curved surface.
  • 18. The loaded antenna of claim 12, wherein: the at least one conducting strip comprises a first conducting strip and a second conducting strip;the first conducting strip is connected at at least one point to a perimeter of the at least one conducting surface; anda tip of the second conducting strip is connected to the first conducting strip.
  • 19. The loaded antenna of claim 12, wherein: the at least one conducting surface comprises a first conducting surface and a second conducting surface;the second conducting surface has a smaller area than the first conducting surface; andthe at least one conducting strip is connected to the first conducting surface at a first end and to the second conducting surface at a second end.
  • 20. The loaded antenna of claim 12, wherein, due to the loading structure, the loaded antenna has a multiband behavior involving more operating bands compared to an identical antenna without the loading structure.
  • 21. A loaded antenna comprising: a radiating element comprising a first part and a second part; the first part comprising at least one conducting surface; andthe second part comprising a loading structure, the loading structure comprising at least one conducting strip connected at at least one point on an edge of the at least one conducting surface, the maximal width of the at least one conducting strip being less than a quarter of the longest straight edge of the conducting surface; andwherein at least a portion of the at least one conducting surface is a multilevel structure comprising a plurality of polygons, all of the plurality of polygons having at least four and the same number of sides, the plurality of polygons being generally identifiable by the free perimeter thereof as a geometrical element and wherein projection of the exposed perimeters of the plurality of polygons defines the least number of polygons necessary to form a generally distinguishable element where polygon perimeters are interconnected, a plurality of the plurality of polygons being electromagnetically coupled via capacitive coupling or ohmic contact to define a plurality of contact regions and wherein, for at least 75% of the plurality of electromagnetically coupled polygons, a contact region is less than 50% of the perimeter of an electromagnetically coupled polygon.
Priority Claims (1)
Number Date Country Kind
PCT/EP2001/11914 Oct 2001 EP regional
Parent Case Info

Continuation of prior PCT application No.: EP01/11914 filed Oct. 16, 2001.

US Referenced Citations (139)
Number Name Date Kind
3521284 Shelton, Jr. et al. Jul 1970 A
3599214 Altmayer Aug 1971 A
3622890 Fujimoto et al. Nov 1971 A
3683376 Pronovost Aug 1972 A
3818490 Leahy Jun 1974 A
3967276 Goubau Jun 1976 A
3969730 Fuchser Jul 1976 A
4024542 Ikawa et al. May 1977 A
4072951 Kaloi Feb 1978 A
4131893 Munson et al. Dec 1978 A
4141016 Nelson Feb 1979 A
4471358 Glasser Sep 1984 A
4471493 Schober Sep 1984 A
4504834 Garay et al. Mar 1985 A
4543581 Nemet Sep 1985 A
4571595 Phillips et al. Feb 1986 A
4584709 Kneisel et al. Apr 1986 A
4590614 Erat May 1986 A
4623894 Lee et al. Nov 1986 A
4673948 Kuo Jun 1987 A
4730195 Phillips et al. Mar 1988 A
4839660 Hadzoglou Jun 1989 A
4843468 Drewery Jun 1989 A
4847629 Shimazaki Jul 1989 A
4849766 Inaba et al. Jul 1989 A
4857939 Shimazaki Aug 1989 A
4890114 Egashira Dec 1989 A
4894663 Urbish et al. Jan 1990 A
4907011 Kuo Mar 1990 A
4912481 Mace et al. Mar 1990 A
4975711 Lee Dec 1990 A
5030963 Tadama Jul 1991 A
5138328 Zibrik et al. Aug 1992 A
5168472 Lockwood Dec 1992 A
5172084 Fiedzuiszko et al. Dec 1992 A
5200756 Feller Apr 1993 A
5214434 Hsu May 1993 A
5218370 Blaese Jun 1993 A
5227804 Oda Jul 1993 A
5227808 Davis Jul 1993 A
5245350 Sroka Sep 1993 A
5248988 Makino Sep 1993 A
5255002 Day Oct 1993 A
5257032 Diamond et al. Oct 1993 A
5347291 Moore Sep 1994 A
5355144 Walton et al. Oct 1994 A
5355318 Dionnet et al. Oct 1994 A
5373300 Jenness et al. Dec 1994 A
5402134 Miller et al. Mar 1995 A
5410322 Sonoda Apr 1995 A
5420599 Erkocevic May 1995 A
5422651 Chang Jun 1995 A
5451965 Matsumoto Sep 1995 A
5451968 Emery Sep 1995 A
5453751 Tsukamoto et al. Sep 1995 A
5457469 Diamond et al. Oct 1995 A
5471224 Barkeshli Nov 1995 A
5493702 Crowley et al. Feb 1996 A
5495261 Baker et al. Feb 1996 A
5534877 Sorbello et al. Jul 1996 A
5537367 Lockwood et al. Jul 1996 A
5684672 Karidis et al. Nov 1997 A
5712640 Andou et al. Jan 1998 A
5767811 Mandai et al. Jun 1998 A
5798688 Schofield Aug 1998 A
5821907 Zhu et al. Oct 1998 A
5841403 West Nov 1998 A
5847682 Ke Dec 1998 A
5870066 Asakura et al. Feb 1999 A
5872546 Ihara et al. Feb 1999 A
5898404 Jou Apr 1999 A
5903240 Kawahata et al. May 1999 A
5926141 Lindenmeier et al. Jul 1999 A
5929825 Niu et al. Jul 1999 A
5943020 Liebendoerfer et al. Aug 1999 A
5966098 Qi et al. Oct 1999 A
5973651 Suesada et al. Oct 1999 A
5986610 Miron Nov 1999 A
5990838 Burns et al. Nov 1999 A
6002367 Engblom et al. Dec 1999 A
6028568 Asakura et al. Feb 2000 A
6031499 Dichter Feb 2000 A
6031505 Qi et al. Feb 2000 A
6078294 Mitarai Jun 2000 A
6091365 Derneryd et al. Jul 2000 A
6097345 Walton Aug 2000 A
6104349 Cohen Aug 2000 A
6127977 Cohen Oct 2000 A
6131042 Lee et al. Oct 2000 A
6140969 Lindenmeier et al. Oct 2000 A
6140975 Cohen Oct 2000 A
6160513 Davidson et al. Dec 2000 A
6166694 Ying Dec 2000 A
6172618 Hakozaki et al. Jan 2001 B1
6211824 Holden et al. Apr 2001 B1
6218992 Sadler et al. Apr 2001 B1
6236372 Lindenmeier et al. May 2001 B1
6266023 Nagy et al. Jul 2001 B1
6268831 Sanford Jul 2001 B1
6268836 Faulkner et al. Jul 2001 B1
6281846 Puente Baliarda et al. Aug 2001 B1
6307511 Ying et al. Oct 2001 B1
6329951 Wen et al. Dec 2001 B1
6329954 Fuchs et al. Dec 2001 B1
6329962 Ying Dec 2001 B2
6337667 Ayala et al. Jan 2002 B1
6343208 Ying Jan 2002 B1
6362790 Proctor, Jr. et al. Mar 2002 B1
6367939 Carter et al. Apr 2002 B1
6392610 Braun et al. May 2002 B1
6407710 Keilen et al. Jun 2002 B2
6408190 Ying et al. Jun 2002 B1
6417810 Huels et al. Jul 2002 B1
6431712 Turnbull Aug 2002 B1
6445352 Cohen Sep 2002 B1
6452549 Lo Sep 2002 B1
6452553 Cohen Sep 2002 B1
6459413 Tseng et al. Oct 2002 B1
6476766 Cohen Nov 2002 B1
6525691 Varadan et al. Feb 2003 B2
6535175 Brady et al. Mar 2003 B2
6552690 Veerasamy Apr 2003 B2
6657593 Nagumo et al. Dec 2003 B2
6680705 Tan et al. Jan 2004 B2
6717551 Desclos et al. Apr 2004 B1
6756946 Deng et al. Jun 2004 B1
6864854 Dai et al. Mar 2005 B2
7019695 Cohen Mar 2006 B2
20020000940 Moren et al. Jan 2002 A1
20020000942 Duroux Jan 2002 A1
20020036594 Gynes Mar 2002 A1
20020105468 Tessier et al. Aug 2002 A1
20020109633 Ow et al. Aug 2002 A1
20020126054 Fuerst et al. Sep 2002 A1
20020126055 Lindenmeier et al. Sep 2002 A1
20020175866 Gram Nov 2002 A1
20040056804 Kadambi et al. Mar 2004 A1
20040095281 Poilasne et al. May 2004 A1
20040119644 Puente-Baliarda et al. Jun 2004 A1
Foreign Referenced Citations (94)
Number Date Country
3337941 May 1985 DE
0096847 Dec 1983 EP
0297813 Jun 1988 EP
0358090 Aug 1989 EP
0543645 May 1993 EP
0571124 Nov 1993 EP
0688040 Dec 1995 EP
0765001 Mar 1997 EP
0814536 Dec 1997 EP
0871238 Oct 1998 EP
0892459 Jan 1999 EP
0929121 Jul 1999 EP
0932219 Jul 1999 EP
0969375 Jan 2000 EP
0986130 Mar 2000 EP
0942488 Apr 2000 EP
0997974 May 2000 EP
1018777 Jul 2000 EP
1018779 Jul 2000 EP
1071161 Jan 2001 EP
1079462 Feb 2001 EP
1083624 Mar 2001 EP
1094545 Apr 2001 EP
1096602 May 2001 EP
1148581 Oct 2001 EP
1198027 Apr 2002 EP
1237224 Sep 2002 EP
1267438 Dec 2002 EP
0843905 Dec 2004 EP
2112163 Mar 1998 ES
2142280 May 1998 ES
2543744 Oct 1984 FR
2704359 Oct 1994 FR
2215136 Sep 1989 GB
2330951 May 1999 GB
2355116 Apr 2001 GB
55147806 Nov 1980 JP
5007109 Jan 1993 JP
5129816 May 1993 JP
5267916 Oct 1993 JP
5347507 Dec 1993 JP
6204908 Jul 1994 JP
10209744 Aug 1998 JP
9511530 Apr 1995 WO
9627219 Sep 1996 WO
9629755 Sep 1996 WO
9638881 Dec 1996 WO
9706578 Feb 1997 WO
9711507 Mar 1997 WO
9732355 Sep 1997 WO
9733338 Sep 1997 WO
9735360 Sep 1997 WO
9747054 Dec 1997 WO
9812771 Mar 1998 WO
9836469 Aug 1998 WO
9903166 Jan 1999 WO
9903167 Jan 1999 WO
9925042 May 1999 WO
9927608 Jun 1999 WO
9956345 Nov 1999 WO
0001028 Jan 2000 WO
0003453 Jan 2000 WO
0022695 Apr 2000 WO
0036700 Jun 2000 WO
0049680 Aug 2000 WO
0052784 Sep 2000 WO
0052787 Sep 2000 WO
0103238 Jan 2001 WO
0108257 Feb 2001 WO
0113464 Feb 2001 WO
WO-0108257 Feb 2001 WO
0117064 Mar 2001 WO
0122528 Mar 2001 WO
0124314 Apr 2001 WO
0126182 Apr 2001 WO
0128035 Apr 2001 WO
0131739 May 2001 WO
0133665 May 2001 WO
0135491 May 2001 WO
0137369 May 2001 WO
0137370 May 2001 WO
0141252 Jun 2001 WO
0148861 Jul 2001 WO
0154225 Jul 2001 WO
0173890 Oct 2001 WO
0178192 Oct 2001 WO
WO-0178192 Oct 2001 WO
0182410 Nov 2001 WO
0235646 May 2002 WO
WO-0235652 May 2002 WO
02091518 Nov 2002 WO
02096166 Nov 2002 WO
WO-03034544 Apr 2003 WO
WO-2004027922 Apr 2004 WO
Related Publications (1)
Number Date Country
20060077101 A1 Apr 2006 US
Continuations (1)
Number Date Country
Parent PCT/EP01/11914 Oct 2001 US
Child 10822933 US