The present invention relates generally to closure systems, devices, and methods for use in surgical procedures.
Minimally invasive procedures are continually increasing in number and variation in part because such techniques offer an immediate advantage over more traditional, yet highly invasive surgeries. Endoscopic surgery, for example, uses one or more scopes inserted through small incisions for diagnosing and treating disease. In particular, endovascular surgery gives access to many regions of the body, such as the heart, through major blood vessels. Typically, the technique involves introducing a surgical instrument percutaneously into a blood vessel, such as, for example, the femoral artery. The currently emerging percutaneous endovascular procedures include aortic valve replacement, mitral valve repair, abdominal and thoracic aneurysm repair and tricuspid valve replacement. Other procedures requiring access to the femoral artery include coronary, carotid and cerebral angiographic procedures.
Other examples of a minimally invasive procedure include NOTES (Natural Orifice Translumenal Endoscopic Surgery) based surgery, e.g. transgastric, transvesical, and transcolonic approaches.
A key feature of these minimally invasive surgical procedures is the forming of a temporary pathway, usually an incision or dilated perforation, to the surgical site. For example, in the emerging percutaneous endovascular procedures, an access site (e.g. incision, puncture hole, or perforation) ranging from approximately 10 to 30 French units is formed as a temporary pathway to access the target site. Various instruments, such as procedural sheaths, guidewires and catheters, are inserted through the access site, as well as specialized medical instruments, such as, balloon catheters and stents.
Currently, these large (10 to 30 French (F)) puncture holes (or perforations) or access sites are routinely created after surgical cut down to the blood vessel and post procedure are closed via cut-down surgical repair. This method is very invasive and fraught with complications. Accordingly, the rapid development of percutaneous endovascular surgery, of which interventional radiology and cardiology are a major component, has led to the need for instrumentation to minimize the risk of complications associated with closing the access site after a procedure.
In accordance with example embodiments of the present invention, a device for folding an implant having a wing into a an overlapped configuration is provided. The device includes: a funnel body comprising a first portion configured to receive and protect the implant when the wing of the implant is in a relaxed state, a second portion proximal to the first portion and configured to engage and fold opposite first and second side portions of the wing of the implant in a predetermined direction when the implant is retracted proximally from the first portion of the funnel body and into the second portion of the funnel body, and an overlap guide configured to direct the path of a first one of the side portions of the wing such that the first and second side portions of the wing are overlapped in a predetermined manner and to prevent respective edges of the first and second side portions of the wing from butting into each other as the first and second side portions of the wing are guided into the overlapping configuration during proximal retraction of the implant relative to the funnel body.
The overlap guide may include a channel configured to receive one of the side portions of the wing to provide an offset between the side portions of the wing such that the edges of the side portions do not butt into each other as the side portions are folded into the overlapping configuration.
The overlap guide may include a rib configured to engage one of the side portions of the wing to provide an offset between the side portions of the wing such that the edges of the side portions do not butt into each other as the side portions are folded into the overlapping configuration.
The overlap guide may include a cutout slot in the funnel body.
The overlap guide may include a flexible tab.
The overlap guide may include a scoop.
The overlap guide may include one or more convex walls.
The overlap guide may include a tear-drop profile providing offset surfaces to direct respective side portions of the implant.
The overlap guide may include a dimple.
The funnel body may include an elliptical inner profile.
The funnel body may include four distinct zones including a first zone corresponding to the first portion of the funnel body, a second zone corresponding to the second portion of the funnel body, a third zone corresponding to the overlap guide of the funnel body, and a fourth zone corresponding to the location of a loading cannula that is separable from the loading funnel.
The device may further include a loading cannula separable from the loading funnel and configured to receive the implant from the loading funnel after the implant has been converted to its overlapped configuration via proximal movement of the implant through the loading funnel.
At an interface between the loading funnel and loading cannula, an internal diameter of the loading funnel may be less than the internal diameter of the loading cannula such that the implant does not catch on a proximal edge of the loading cannula as the implant is moved proximally into the loading cannula.
The second portion of the device may include sloped surfaces configured to engage the side portions of the wing in a manner that forces the side portions to be folded in a predetermined direction.
In accordance with example embodiments of the present invention, a method of loading an implant having a flexible wing into a loading cannula, includes: retracting the implant proximally through the device according to any of the preceding claims until the implant is disposed in the loading cannula; and separating the loading cannula from the loading funnel.
In accordance with example embodiments, a device for sealing an aperture in a tissue includes: (a) an implant configured to seal the aperture when positioned adjacent to the aperture; and (b) a delivery shaft configured to engage the implant to allow the implant to be maneuvered into sealing engagement with a distal surface of the tissue, the delivery shaft comprising: (i) a retaining sleeve comprising a locking projection engagable with the locking recess of the implant to secure the implant to the delivery shaft, and (ii) a release sleeve axially slideable relative to the retaining sleeve between a first axial position in which the release sleeve is configured to maintain locking engagement between the locking recess of the implant and the locking projection of the retaining sleeve, and a second axial position in which the release sleeve permits the locking projection of the retaining sleeve to disengage the locking recess of the implant.
The release sleeve may include an interlocking projection configured to engage an interlocking recess of the implant when the release sleeve is in the first axial position and to disengage the interlocking recess when the release sleeve is moved from the first axial position to the second axial position.
The interlocking projection may be one of plurality of interlocking projections configured to engage a respective plurality of interlocking recesses of the implant.
The projection may be biased toward a flared position such that movement of the release sleeve from the first axial position to the second axial position causes the interlocking projection to flare away from and out of engagement with the interlocking recess of the implant.
The device may further include: a handle coupled to the delivery shaft; and an actuator moveable between a first position and second position relative to the handle, wherein the device is configured such that (a) movement of the actuator from the first position to the second position causes a change in the position of two components of the implant relative to each other and (b) movement of the actuator from the second position to the first position causes the delivery shaft to release the implant.
The implant may be formed of a polymer adapted to remain shelf stable and functional for sealing after terminal sterilization.
The polymer may be adapted to remain shelf stable and functional for sealing after terminal sterilization using at least one of (a) ethylene oxide, (b) electron-beam, (c) gamma irradiation, and (d) nitrous oxide.
The polymer may be biodegradable.
The polymer may comprise Polydioxanone, Poly-L-lactide, Poly-D-lactide, Poly-DL-lactide, Polyglycolide, ε-Caprolactone, Polyethylene glycol, or combinations of these.
The polymer may comprise polydioxanone.
The device may be configured to seal a perforation in a hollow vessel.
The implant may include an intraluminal portion configured to form a seal with the perforation by contacting an intraluminal surface of the hollow vessel.
The implant may include an extra-luminal portion configured to extend outside the hollow vessel, the delivery shaft being configured to engage the implant via the extra-luminal portion.
The implant may include a flexible wing extending outwardly from a base portion.
The device may be configured to be guided over a guidewire.
The implant may be formed at least in part of a material having an inherent viscosity in a range from 0.5 to 7.0 dl/g.
The implant may include a flexible wing having a diameter greater than a diameter of the aperture in the tissue.
The implant may include a distal foot portion, a flexible wing, and a recessed surface disposed in the distal foot portion and into which the flexible wing is positioned and crimped to provide an effective fluid seal between the foot portion and the flexible wing.
The crimping may be achieved using at least one of (a) mechanical, (b) chemical, and (c) thermal methods.
The implant may include: a flexible wing; and a foot including a distal portion configured to be disposed distally of the flexible wing when the implant is positioned to seal the aperture and a proximal neck configured to extend away from the aperture and proximally away from the aperture.
The distal portion of the foot may have a length this is greater than a diameter of the aperture.
The proximal neck may be flexible relative to the distal portion of the foot.
The proximal neck may extend distally along an axis relative to an upper surface of the distal portion of the foot at an angle that is within the range from 10° to 70°.
The distal portion of the foot may be configured to reinforce the flexible wing to facility sealing of the aperture.
The implant may include a base portion and a pin moveable relative to the base portion between a first position and a second position, wherein the pin in the second position is configured to extend outwardly from the base to provide a safety against the base being fully pushed or pulled distally through the aperture to be sealed.
The implant may include a guide channel configured to receive a guide wire.
The pin may be configured to block the guide channel when the pin is in the second position.
The pin may be configured to leave the guide channel open when the pin is the second position.
The base may include a cavity configured to allow sealing of the guide channel via coagulation after removal of a guidewire from the guide channel.
The device may further include: a loading funnel configured to fold the implant into an elongated folded configuration to permit the wing to pass through a procedural sheath when the delivery shaft maneuvers the implant into a location of the aperture to be sealed.
The loading funnel may include: a tapered portion configured to progressively fold the implant into the folded configuration when the implant is maneuvered through the tapered portion in a proximal direction; and a narrowed portion configured to receive the implant with the flexible wing in the folded configuration when the implant is maneuvered further in the proximal direction and proximally beyond the tapered portion.
The tapered portion may include a frustoconical conical portion and the narrowed portion comprises a cylindrical portion.
The frustoconical portion and the cylindrical portion may be non-concentric.
The narrowed portion may include a cannula configured receive the implant with the wing in the folded configuration and that can be detached from the remainder of the loading funnel.
The device may further include a packaging having a proximal and a distal end, wherein: the delivery shaft, the implant, and the loading funnel are disposed in the packaging such that the delivery shaft extends distally through the narrowed portion of the funnel and into the tapered portion, where the delivery shaft is coupled to the implant; and the loading funnel is held in the packaging such that proximal movement of the delivery shaft relative to the package causes, sequentially, (a) proximal movement of the implant through the tapered portion to progressively fold the implant into the folded configuration, (b) proximal movement of the implant into the cannula, and (c) separation of the cannula, with the implant disposed therein, from the remainder of the loading funnel.
The implant may be held in the tapered portion by the delivery shaft a location.
The device may further include a handle coupled to the delivery shaft.
The cannula may be configured to access multiple forms of introducer sheaths.
In accordance with example embodiments, a method of using the device includes: loading the implant in to the cannula at the time of a surgery in which the implant is used; and inserting the cannula into a proximal access of a procedural sheath in order to introduce the implant in the folded configuration into the procedural sheath.
The method may further include feeding a proximal end of the guidewire through the implant and the delivery shaft prior to inserting the cannula into the proximal access of the procedural sheath, such that the distal end of the guidewire extends through the aperture to be closed by the implant.
In accordance with example embodiments, a device includes: a sealing member configured to seal the aperture when positioned adjacent to the aperture; and a delivery device releasably coupleable to the sealing member such that the delivery device is configured to position the sealing member adjacent to the aperture, wherein the sealing member comprises a passageway configured to receive a guidewire to guide the sealing member to the aperture, the sealing member configured to seal the passageway after complete removal of the guidewire from the passageway.
The sealing member may include a base portion and a moveable member that is moveable between a first position and a second position relative to the base portion.
The sealing member may be configured such that movement of the moveable member from the first position to the second position causes occlusion of the passageway in order to seal the passageway after removal of the guidewire from the passageway.
The delivery device may be configured to move the moveable member from the first position to the second position.
In one aspect of example embodiments of the invention, an implantable device for sealing a surgical perforation is provided. In accordance with example embodiments, this device is polymer-based. For example, the device may be formed of a biodegradable polymer. The resulting biodegradable polymer may be biocompatible and bioresorbable with the ability to degrade when implanted in-vivo.
A biodegradable polymer can have crystalline and amorphous regions and are therefore, in general, semi-crystalline in nature. Degradation of a biodegradable polymer such as initiates in the amorphous regions, with the crystalline regions also degrading but at a slower rate relative to the amorphous regions. Without wishing to be tied to a theory, degradation of a polymer such as Polydioxanone (PDO) occurs along the polymer back bone by hydrolysis of the ester bonds. This non-specific ester bond scission occurs randomly along the polymer chain with water penetration initially cutting the chemical bonds and converting the long polymer chains into natural monomeric acids found in the body, such as lactic acid. Such monomeric acids are then phagocytized by the enzymatic action of special types of mononuclear and multinuclear white blood cells. The polymer is thus degraded into non-toxic, low molecular weight residues that are capable of being eliminated from the body by normal metabolic pathways, e.g. via exhalation and/or excretion. Such a pathway thereby enables reference to the breakdown of such polymers in-vivo through terminology such as absorbable, bioabsorbable, degradation, biodegradation, resorbtion, bioresorbtion, etc.
In another aspect, the biodegradable polymer may be shelf stable even after terminal sterilization, e.g. using ethylene oxide, gamma irradiation, e-beam irradiation, nitrous oxide, etc. for in vivo use. In accordance with example embodiments, the biodegradable polymer is designed to withstand terminal sterilization, such as ethylene oxide sterilization, and still maintain long-term shelf life stability and product functionality. Terminal sterilization, such as by ethylene oxide, can have a dramatic effect on the structural stability of polymers as they are either degraded into low molecular weight species or cross linked into complex polymeric systems, which can negatively alter the post-sterilization polymer properties. Accordingly, in order to provide a post sterilization, shelf-stable, biocompatible polymeric implant; the polymer, in accordance with example embodiments of the present invention, is able to survive the terminal sterilization procedure and still maintain functionality.
It has been found that post-sterilization stability is achievable by using polymers with an inherent viscosity [IV] (which is a method of evaluating the relative molecular weight of the polymeric system) that is of a sufficient starting range to endure a drop in IV post-sterilization and still meet the required implant design requirements. Without wishing to be tied to a theory, it is believed that polymers are susceptible to degrade into lower molecular weight species during terminal sterilization, thereby affecting the inherent viscosity of the implant during storage. By starting with a polymer system with an IV value in its upper range pre-sterilization, it is possible to have a sterile system, post-sterilization with an IV lower than that of the starting system but that is designed to meet the required shelf-life stability. This IV value is typically in the range of 0.5-7.0 dl/g.
Additionally, in accordance with example embodiments, the use of a specific and defined atmosphere for storage of the implant pre- and post-sterilization further adds to increasing the post-sterilization shelf-life stability of the polymer in question. One such method is the use of a controlled atmosphere, specifically one where excessive moisture is reduced via a vacuum or low moisture containing dried gases such as nitrogen, argon, etc. Furthermore, the use of packaging materials with a low moisture vapor transmission rate, for example orientated polypropylene (OPP), Polyethylene terephthalate (PET), Linear low-density polyethylene (LLDPE), polyethylene (PE), foil-based packaging materials (e.g. aluminium), or combinations thereof, in combination with a low moisture environment can further aid in enhancing the stability of the polymeric material post-sterilization.
Further features and aspects of example embodiments of the present invention are described in more detail below with reference to the appended Figures.
Various example embodiments are described in detail herein. These embodiments generally share certain features in common. Accordingly, the various embodiments each share common features, except to the extent indicated otherwise. As such, for the sake of conciseness, the description of the common features is not repeated in connection with the description of each described embodiment. Further, features that are the same or analogous among the various embodiments are, in connection with some embodiments, given like reference numbers, but followed by a letter associated with the particular embodiment. For example, if an embodiment has an element 7, the corresponding or analogous element in further embodiments would be designated 7a, 7b, 7c, and so on. For convenience, the description of these features is not repeated in connection with each embodiment; rather, it should be understood that the description of these features in connection with other embodiment(s) applies unless indicated otherwise.
As described herein, example embodiments of the present invention provide surgical closure systems, devices, and methods. As such, provided systems, devices, and methods are useful for closing a perforation (i.e., a hole, puncture, tear, rip, or cut, etc.) in any hollow vessel associated with a mammalian surgical procedure. One of ordinary skill in the art will appreciate that the systems, devices, and methods are useful for closing a perforation in any lumen of a mammal, including, for example, the gastrointestinal tract (e.g. the stomach, intestines, colon, etc.), heart, peritoneal cavity, esophagus, vagina, rectum, trachea, bronchi, or a blood vessel.
Although certain figures and embodiments relate to use of systems and devices for closure of a perforation associated with vascular surgery, one of ordinary skill in the art will appreciate that components of a provided device are not size dependent (i.e., are scalable) and are therefore useful for closure of any perforation in a lumen of a mammal.
Some embodiments of the present invention are directed to a closure system, device, and method of percutaneous closure of an arteriotomy following an endovascular/intra-arterial procedures.
One of ordinary skill in the art will recognize that many mammalian lumina are comprised of one or more friable tissues. Thus, a common difficulty associated with surgical closure of a perforation in such lumina is that suture material, used in typical closure systems, tends to cause tears in the friable tissue. Such tearing of the luminal tissue impedes healing and causes scarring. Indeed, such tearing of the friable tissues of the internal lumina of blood vessels can lead to scarring, dislodgment of tissue particles, blockage, or even eventual death of the patient. In view of the fragile nature of luminal tissues, an aspect of example embodiments of the present invention is to provide systems, devices, and methods that allow cseal to be formed closure of a tissue perforation in a reliable manner with minimal trauma to the luminal tissue, for example, by providing a sutureless seal.
With regards to the arterial wall morphology, in the context of example embodiments directed to closing arterial perforations, the fibrous adventitial layer of an artery (i.e., the outer layer) is relatively tough, whilst the intimal and endothelial layers are friable. Because of the morphology of the arterial wall, an arteriotomy may be circumferential in nature and perpendicular to the longitudinal axis of the artery.
Closure Device
Referring to
The device 5′ shown in
All implant device components (e.g., the foot core 20, the flexible wing 60, and the extra-luminal pin 80, 80a in the illustrated examples of
As illustrated in
The implant 5 is inserted into the artery 2 through a procedural sheath 100 illustrated in
Referring, for example, to
It is noted that since some illustrated examples are provided in the context of an arteriotomy, the terms “intra-luminal” and “extra-luminal” may be referred to as “intra-arterial” and “extra-arterial” in the context of the illustrated embodiments, it being understood that the arteriotomy-closure application is non-limiting and the closure of any suitable tissue aperture may be performed by example embodiments of the present invention.
The extra-luminal section 40 of the foot core 20 is provided in the form of a neck 42 which extends from the intra-luminal section 25 at an angle, e.g. selected from a range from 10° to 70°, and has five primary functions:
1. Secure the flexible wing 60 within the recessed section 22. This recessed section 22 also provides an effective seal between the flexible wing 60 and foot core 20. In the example illustrated, e.g. in
2. Secures and allows release of the entire implant to a delivery system via interlock recesses 45 in the neck 42. This functionality is described in further detail elsewhere herein.
3. Houses the extra-luminal pin 80 and secures it when deployed to its final position.
4. Houses a guidewire channel or conduit 50. The guidewire channel 50 is illustrated, e.g. in
5. The 10°-70° incline on the neck in combination with the extra-luminal pin 80, or 80a, also provides, e.g. for safety purposes, protection against the implant being pushed off the luminal surface by application of extracorporeal pressure above the implantation site or due to patient movements.
The intra-luminal section 25 of the foot core 20 has a primary function to provide a rigid scaffold to support the flexible wing 60. The underside of the intra-luminal section 25 may be concave in cross-section to reduce its profile within the artery 2 and has a hollow entry portion or port 52 of the guidewire channel 50 adjacent the neck 42, shown in the sectioned foot core 20 of
It should be appreciated that many variations of the intra-luminal portion may be provided, only a limited number of which are shown herein. For example,
The flexible wing 60,
Referring, e.g. to
In addition to elastically deforming to conform to the luminal surface 3 of the artery 2, the flexible wing 60 also elastically deforms to fit within the procedural sheath 100 for delivery into the artery 2. This is achieved by rolling the wing 60 into a cylinder-like configuration. Once within the artery 2, and beyond the procedural sheath 100, the flexible wing 60 intrinsically recovers towards its flat state to allow the hemodynamic hydraulic pressure in the artery 2 to conform the wing 60 to the shape of the arterial luminal and surface topography 3. In this regard, the elasticity of the wing 60 allows the wing 60 deform locally at differing areas of the luminal surface 3 of the artery 2. This allows the wing 60 to conform to local irregularities along the surface 3 to ensure that the arteriotomy is adequately sealed despite such irregularities.
The flexibility of the wing 60 is not just important in a lateral configuration to facilitate collapse during delivery, but it is also important to flex in a longitudinal plane. Flexibility in both lateral and longitudinal planes is important to ensure an effective seal around the arteriotomy of arteries in differing disease states with different surface topographies and varying anatomical configurations. Longitudinal flex is facilitated by the configurations shown, e.g. in
Although the wing 60 has a circular outer periphery, it should be understood that the wing 60 may be provided with any suitable geometry. Further, although the wing 60 has a uniform thickness, it should be understood that the wing 60 may be provided with a thickness that varies at different regions of the wing 60. For example, the wing 60 could have a thickness in its central region that is greater than a thickness toward the circumferential periphery of the wing 60.
The extra-luminal pin 80 is a safety feature of the closure system to prevent the implant being pushed off the luminal surface by application of extracorporeal pressure above the implantation site or due to patient movements. The extra-luminal pin 80 in the illustrated example does not generally contribute to or form part of the sealing function of the implant 5. The implant 5 will seal the arteriotomy in the absence of the extra-luminal pin 80 in accordance with some example embodiments. The extra-luminal pin 80 is deflected parallel to the artery 2 wall as it is advanced, as illustrated, e.g. in
Depending on implant design and requirements, the extra-luminal pin 80 may also be used to occlude the guidewire hole within the foot core 20 when deployed, e.g. in a configuration such as illustrated in
It should be understood, however, that any other suitable mechanism may be provided for closing the guidewire channel 50. For example, again referring to
Although the illustrated entry portion 52 of the guidewire channel 50 is conical, it should be appreciated that any suitable geometry may be provided. Referring to
Some alternative embodiments to the extra-luminal pin 80 shown, e.g. in
Referring to
The foot core 20h of
The foot core 20i of
To increase the flexibility of use, for example, another variation is to make the neck flexible. For example,
Further variations to that shown in
The configuration of
Further variations to impart flexibility to the implant neck is shown in
Referring to
The conical taper lock between the extra-luminal pin 80w and the foot core 20w relies, in this example, on the foot core taper being at a lesser angle than the taper on the mating surfaces of the extra-luminal pin 80w. This taper-lock not only enhances the lock between the two components 80w, 20w once positioned relative to each other, but also improves the potential fluid seal between the two components with respect to sealing the guidewire channel 50w.
Referring to
The closure device 5y includes a foot core 20y having a profile that is “hybrid” in that it shares geometric features with both a round foot core, such as, e.g. the foot core 20a shown in
The rounded portions 56y extend around the portion of the foot core 20y that extends through the flexible wing 60 to provide increased lateral surface area of the foot core 20y, adjacent the opening in the wing 60 and the arteriotomy to be sealed. This region of increased lateral surface area provides for a greater sealing between, e.g. the foot core 20y and the wing 60.
The projecting portions 57y give the intra-luminal portion of the hybrid foot core 20y an elongated shape. This elongated shape further limits the ability of the foot core from being inadvertently pulled back through the arteriotomy when the operator is setting the closure device 5y in into its implanted position.
Thus, the hybrid foot core 20y may provide the sealing advantages of a wide or rounded foot core as well as the setting benefits of an elongated foot core.
The geometry of the hybrid foot core 20y provides support to the artery in both a longitudinal direction and transverse direction. Although the foot core 20k has a circular central region, it should be understood that any suitable widened geometry, e.g. oval, square, rectangular and/or polygonal, with rounded and/or sharp corners. This central region provides a flaring out of the profile of the intra-luminal portion of the foot core 20k in the region where the neck of the foot core 20k passes through the flexible wing 60.
In a manner analogous to that of the device 5 illustrated, e.g. in
Referring, for example, to
Nevertheless, the foot core 20z may provide similar benefits to the rounded portions 56y due to the lateral projection of the portions 56z relative to the width of the lateral portions 56z relative to the width of the projecting portions 57z. As with the foot core 20y, this increased width is provided at a location adjacent the location where the extra-luminal portion 40z extends through the aperture in the flexible wing 60.
Thus, the foot core 20z reduces the width of the lateral projections, but only to an extent that does not substantially affect the sealing between, e.g. the foot core 20z and the wing 60.
As with the foot core 20y, the foot core 20z may provide the sealing advantages of a widened or rounded foot core as well as the setting benefits of an elongated foot core.
Referring to
The anterior surface 61 and/or the posterior surface 64 is provided with an altered wettability, i.e., a change in surface energy from the native, e.g. smooth, surface finish. This change in wettability may be provided in the form of electrical charge, surface texture, protein attachment, mechanical scraping, chemical etching, laser etching and/or other etching, shot blasting (using various shot media), plasma discharge, manufacturing process that encourage functional end groups at the surface, and/or any other suitable form. This change in surface energy encourages cell (or thrombocyte) attachment or adhesion directly or via protein attachment, extracellular matrix and/or adhesion molecule to the luminal surface of the flexible-wing or, conversely, discourage cell or protein attachment. In the illustrated example, the wettability of the anterior surface 61 is increased in order to encourage attachment or adhesion. Cellular attachment or platelet aggregation on the luminal surface 61 of the flexible wing 60 aids and expedites sealing as well as anchoring the intra-arterial implant. This change in surface energy also encourages the adhesion, via a change to the surface tension of the modified material, to the surrounding soft tissue.
Referring to example embodiment of
The posterior surface 64 is relatively flat in the illustrated example. It should be understood, however, that the posterior surface 64 may be provided with a texture in some example embodiments. Further the posterior surface 64 may be provided with any other mechanism of altered wettability, either increased or decreased, as may be suitable.
Delivery System for Delivering the Closure Device
The closure device 5 is designed to be delivered into the artery 2, or other suitable location, via the procedural sheath 100 used in the interventional procedure over a guidewire 150 in the illustrated examples. Hence, the delivery sequence may start with the sheath 100 and guidewire 150 in situ within the vessel 2. The procedural sheath 100 of the illustrated example includes a hub 110 containing a valve and typically a side arm 120, as illustrated, e.g. in
The side arm 120 may be used, for example, to inject contrast to confirm the position of the sheath 100 relative to the arteriotomy or pressured saline to prevent the sheath 100 from back filling with blood. The valve assembly within the hub 110 is provided to allow the introduction of devices of varying diameters into the sheath 100 and prevents blood loss through the rear of the sheath 100. The guidewire 150, which extends through the longitudinal lumen of the sheath 100, is provided as a safety feature which allows percutaneous re-access to the arterial lumen as a contingency if needed.
Referring to
The shaft 92 includes three flexible concentric slidable tubes 155, 160, 175. The inner tube (pusher-tube 155, illustrated in
Referring to
Handle components: With reference to
The thumb slider 250 is configured to move along a linear guideway formed by housing 203, which includes the first and second housing portions 205 and 210. In particular, the thumb slider 250 is configured to move, due to, e.g. manual actuation by the thumb of a human operator, between a first position and a second position. The first position is shown, for example, in
The guidewire 150 runs through the pusher tube 155 and through the handle, including through the guidewire extension tube 215 and out the proximal or rear end of the handle 200. The guidewire extension tube 215 is supported by support ribs 216 of the housing 203.
The handle 200 is configured such that movement of the thumb slider 250 from the first position to the second position causes the extra-luminal pin 80 of the implant 5 to move from its proximal delivery position as shown, e.g. in
The lock member 240 is configured to prevent the deployment of the extra-luminal pin 80 prior to removal of the guidewire 150 from the delivery device. The lock member 240 is configured to be pressed transversely into the housing 203 from a first position illustrated, for example, in
Referring to
In order for the operator to move the projection 248 out of engagement with the recess 213, the user applies a proximally directed force to the lock member 240. The lock member 240 includes a pair of slots 241 and 242 that allow a portion 247 between the slots 241 to be bend or flex with respect to the remainder of the lock member 240 when the operator applies the proximally directed force. Since the projection 248 is disposed on the portion 247, this bending of the portion 247 causes the projection 248 to move out of engagement with the recess 213, thereby allowing the lock member 240 to be depressed.
When the lock member 240 is in the non-depressed first position, a locking tab 244 extends into a space in the thumb slider 250 adjacent a locking surface 252, such that the interface between the locking tab 244 of the lock member 240 and the locking surface of the thumb slider 250 forms a positive stop to prevent the thumb slider 250 from moving axially away from the lock member 240. Since the lock member 250 is constrained to the housing 203 in a fixed axial position, the positive stop between the lock member 240 and the thumb slider 250 prevents the thumb slider 250 from being slid forward to its distal position, thus preventing the corresponding actuation of the extra-luminal pin 80 into its deployed position.
In order to unlock the thumb slider 250 to allow deployment of the extra-luminal pin 80, the user depresses the lock member 240 to move the lock member from its first position to its depressed second position, illustrated, for example, in
To prevent the lock member 240 from being depressed prior to removal of the guidewire 150, the lock member 240 is provided with a through hole 243 through which the guidewire 150 passes during positioning of the implant 5. When the guidewire 150 extends through the through hole 243, as illustrated in
Although the lock member 240 is provided with a through hole in the illustrated example, it should be understood that any suitable geometry, e.g. a slot, notch, and/or flat surface, may be provided to engage the guidewire 150 and thereby block movement of the lock member 240.
Referring to
After the lock member 240 is depressed to disengage the lock member 244 from the thumb slider 250, as illustrated, e.g. in
This distal movement of the thumb slider 250 results in deployment of the extra-luminal pin 80. As with the handle 93, the handle 200 achieves the actuation of the extra-luminal pin 80 from its delivery position to its deployed position by distally pushing the pusher tube 155. In particular, the proximal end of the pusher tube 155 is attached to the pusher tube hub 220, which is in turn coupled to the thumb slider 250. Thus, as the thumb slider 250 moves distally or forward, the pusher tube hub 220 is also moved distally or forward, thereby also moving the pusher tube 155 forward to push the extra-luminal pin 80 from its proximal position to its extended deployed position.
Referring to
As the thumb slider 250 and the pusher tube are pushed distally relative to the housing 203, the retaining sleeve 160 and the release sleeve 175 remain stationary with relative to the housing. Thus, the pusher tube 155 is pushed relative to the retaining sleeve 160 and the release sleeve 175, and therefore also relative to the implant 5 supported by the retaining sleeve 160 and the release sleeve 175.
The retaining sleeve 160 is maintained in its stationary position relative to the housing 203 by being mounted in a retainer hub compartment 207 of the housing 203, as illustrated, for example, in
The release sleeve 175 is maintained in its stationary position relative to the housing 203 during the forward movement of the thumb slider 250 by distal and proximal stops of the housing 203 that engage the release sleeve hub 230 to constrain distal and proximal movement, respectively. The distal stop is formed by a projection or wall 209 of the housing 203, as illustrated, e.g. in
Referring to
After deployment of the intra-luminal pin 80, the next procedural step is to release the implant 5 from the delivery device. In order to do so in the illustrated example, the user needs to move the release sleeve 175 proximally relative to the retaining sleeve 160. The mechanism for releasing the implant 5 upon the relative motion between the release sleeve 175 and the retaining sleeve 160 is described in further detail elsewhere in the present description.
In order to move the release sleeve 175 proximally relative to the retaining sleeve 160, which remains stationary relative to the housing 203, (a) the proximal lock, which is the hub lock 208 in the illustrated example, must be disengaged from the release sleeve hub and (b) the thumb slider 250 engages the release sleeve hub 230 such that proximal movement of thumb slider 250 relative to the housing 203 causes corresponding movement of the release sleeve hub 230, and therefore also the release sleeve 175, relative to the housing 203 and the retaining sleeve 160.
Referring to
The hub locks 208 may be configured as cantilevered projections from the housing 203 that flex in the lateral direction in the manner of a leaf spring, while maintaining sufficient rigidity in the axial direction to resist proximal movement of the release sleeve hub 230 when engaged therewith. Moreover, any other suitable proximal locking mechanism may be provided.
After the hub locks 208 are moved out of alignment with the projections 232 of the release sleeve hub 230, a clip member 255, which slides over a ramped or sloped surface 233 of the release sleeve hub 230, latches with the release sleeve hub 230 by engaging with distally facing latch surface 234 of the release sleeve hub 230.
After latching of the thumb slider 250 to the release sleeve hub 230, the operator moves the thumb slider 250 proximally to a proximal third position in the direction of the arrow shown in
The cam surfaces 254a and 254b are of sufficient length in the illustrated example to maintain the disengaged position of the hub locks 208 until the proximally directed faces of the projections 232 of the release sleeve hub 230 have proximally cleared the distally facing stop surfaces of the hub locks 208.
When the device is in the state illustrated in
The thumb slider 250 further includes a projection 256 that engages a corresponding recess 212 in the housing 203 when the thumb slider 250 is in the proximal position. This engagement allows the lock member 240 to be retained in the respective first and second positions, but allows movement upon application of a force sufficient to overcome the engagement. Thus, the projection 256 and the recess 212 function as a detent mechanism.
Prior to withdrawal of the distal end of the delivery device, the thumb slider 250 may be again moved distally, to a fourth position, as illustrated in
Although in the illustrated example, the distal fourth position of the thumb slider corresponds to the distal second position of the thumb slider, it should be understood that the first and third positions may be different.
To facilitate passage of the release sleeve hub 230 distally past the hub locks 208, the release sleeve hub 230 may be provided with ramped or sloped chamfer surfaces 236, which are illustrated in
The shaft 92 is designed to push the implant 5 down the procedural sheath 100 into the artery 2 and allow control of the implant's relative position by the user from the handle 93.
Implant retention and release: Referring, e.g. to
To release the implant 5 from the distal tip of the delivery device 90, the release-sleeve 175 is slid back to expose the interlock projections 165 on the retaining-sleeve 160. The tip of the retaining-sleeve 160 is split longitudinally, via longitudinal splits or notches 167, to allow lateral movement of the interlocking projections 165, and the rear shoulders of interlocking recesses 45 on the foot core 20 may be ramped, as illustrated, e.g. in
Further, mating surfaces of the interlock projections 165 and the interlocking recesses 45 may be provided with one or more radial protrusions that engage with one or more corresponding radial recesses. For example, an interlocking projection 165 may include a plurality of radial protrusions that engage a corresponding plurality of radial recesses of a mated interlocking recess 45, or the interlocking recess 45 could be provided with the radial protrusions that mate with corresponding radial recesses of the interlocking projection 165. Further, the interlocking recess 45 could have at least one recess and at least one protrusion, the at least one recess and the at least one protrusion respectively mating with corresponding at least one protrusion and at least one recess of the interlocking recess 45. These various surface recess/protrusion configurations may provide a high level of securement (e.g. in the axial direction) between the interlocking projections 165 and the interlocking recesses 45. Moreover, these various surface recess/protrusion configurations may be provided alone or in combination with other interlocking mechanisms between the interlocking projections 165 and the interlocking recesses 45.
Although the interlocking projections 165 extend straight along the length of the retaining sleeve 160, it should be appreciated that the projections 165 may be flared outwardly, such that retraction of the release sleeve 175 allows the interlock projections 165 to spring outwardly away from their interlocking engagement with the interlock recesses 45.
Referring to
The loading funnel in the illustrated example includes four components namely, the funnel or funnel body 96, cap 97, seal 98, and seal-retainer 99 shown in
The cap 97 and seal 98 are pre-loaded on the shaft 92 of the delivery device 90 proximal to the implant 5. The funnel 96 is advanced over the implant 5, large opening end first, to compress the wing 60 into a cylindrical shape as the tapered section of the funnel 96 is advanced over the implant 5. The funnel 96 is advanced until the implant 5 is resident in the cylindrical section 130 of the funnel 96.
Once the implant 5 is disposed in the cylindrical section 130 of the funnel 96, the cap 97 is now attached to the funnel 96, which forms a seal with the delivery device's shaft 92.
Loading funnel configurations: The loading funnel 95 in a very simple form may be a tapered funnel. However, to encourage the flexible wing 60 to fold when loaded into the funnel body 96, an alternative option is to provide a funnel body 96a that includes a protrusion 132a along the tapered section 131a which extends into the cylindrical section 130a, as shown in
Referring to
The above-described loading funnel concepts require the cap 97, 97a, 97b to be pre-loaded onto the shaft 92 of the device 1 proximal to the implant 5 and the funnel 96, 96a, 96b to be advance over the implant 5 and shaft 92. Referring to
Referring to
Referring to
The open split arrangement of
For example, referring to
It should be appreciated that a split or splittable funnel body concept is applicable to any funnel arrangement in the context of the present invention. Further, although the splits or split lines of the illustrated examples are coplanar with the longitudinal axes of the respective funnel bodies, it should be appreciated that the split or split line may be non-coplanar and/or have an irregular path.
Moreover, although the illustrated examples include a single split or split line, it should be appreciated that multiple splits or split lines or any combination of splits and split lines may be provided. Further, a respective split line may be split at one or more locations along the length of the split line and weakened so as to be splittable at one or more other locations along the split.
Other mechanisms for removing the funnel body may include, for example, cutting or tearing the funnel body, e.g. with a cutting tool, in the presence or absence of predetermined split lines such as the split lines described above.
Although the tapered geometry of the various funnel bodies described herein may in some examples be illustrated as being conical or of a constant taper angle, it should be understood that curved and/or irregular tapers may be provided in addition, or as an alternative, to the illustrated funnel bodies.
The delivery of the implant 5 starts with the procedural sheath 100 and guidewire 150 percutaneously positioned in situ.
The delivery sequence depends on which variant of loading funnel is used. For example, if any of the loading funnel shown in
Step 1: Back load the guidewire 150 into the foot core 20 and the shaft 92 and handle 93 of the device 90. This step is generally illustrated in
Step 2: Insert the implant 5 into the funnel 96 to compress the flexible wing 60, and place the cap 97 and seal 98 (as well as retainer 99) onto the rear of loading funnel 96. This step is generally illustrated in
Step 3: Insert the loading funnel 95 (and the other components of the device 90), which houses the implant 5, into the hub 110 and valve 115 at the rear of the procedural sheath 100. This step is generally illustrated in
Step 4: As illustrated in
Step 5: Withdraw the procedural sheath 100 from the artery 2 and position the implant 5 in juxtaposition to the arteriotomy. The implant 5 is now controlling the bleeding from the arteriotomy. This step is generally illustrated in
Step 6: Once confirmed that the implant 5 is correctly positioned and effecting a seal, the guidewire 150 is withdrawn, the extra-luminal pin 80 is deployed, and the implant is released. This step is generally illustrated in
Step 7: Withdraw the procedural sheath 100 and delivery device 90 from the tissue tract to leave the implant (foot core 20, flexible wing 60, and extra-luminal pin 80) implanted to complete the delivery of the implant 5 and sealing of the arteriotomy. This step is generally illustrated in
The above delivery sequence steps outline a method of implant deployment, there are many possible variants on this sequence to suit clinical requirements or preferences. For example, it may be advantageous to leave the guidewire 150 in situ through the implant after implant release, to maintain arterial percutaneous access, and remove the guidewire 150 when judged clinically appropriate. In this regard, it is noted that, as indicated above, in some embodiments, e.g. the version having extra-luminal pin 80a, the guide wire may remain in place even after deployment of the pin.
Referring to
Closure Product and Packing
The surgical device 301 includes, inter alia, the handle 200 as described in additional detail herein, and a loading funnel/cannula assembly 395, which is analogous to other loading funnel/cannula arrangements described herein.
As illustrated in
The product 300 is configured such that the device 301 is removable from the tray 400 by proximally pulling the device 301 from the tray 400. In this example, the offset loading funnel 396 is retained in the tray as the remainder of the device 301 is withdrawn proximally from the tray.
To remove the device from the tray, the operator grips handle 200 protruding from the proximal end of the tray 400, e.g. between the thumb and fingers. While holding the tray 400 in the opposite hand or supporting the tray on a suitable surface for stability, the user may withdraw the device 301 proximally in a straight smooth continuous motion until the device 301 is completely free of the tray. Since the funnel 396 is retained in the tray 400 as the remainder of the device 301 is withdrawn, the implant 2 held by the device 301 moves proximally along the loading funnel/cannula assembly 395 such that the flexible wing of the implant 5 is folded by the funnel as the implant progresses toward the loading cannula 335. Upon further pulling the device 301, the implant 5 moves into the tube 336 of cannula 335, which maintains the folded configuration of the implant 5 until the implant 5 is deployed along the guidewire as described in further detail herein with regard to other examples.
Upon further retraction of the device 301, a positive stop engages between the loading cannula 335 and the shaft of the device 301, such that the cannula 335 is pulled away from and breaks free of the loading funnel 396. Upon further retraction of the device 301, the device 301 is freed from the tray, with the loading funnel 396 retained in the tray.
Referring to
The device 300 includes an alignment mark 175 that extends longitudinally along the device 300 to provide a visual indication that the device 301 is properly rotated with respect to the tray 400 and the offset loading funnel 396 to ensure that the wing of the implant 5 is properly folded by the funnel 396. Geometric engagement of the device 301 with the tray 400 also facilitates this alignment. The alignment of the offset funnel 396 is facilitated by the geometry of the tray 400, the recess 405 of which is shaped to match the offset of the funnel 396 to thereby resist rotation of the funnel 396.
The tray 400 also includes a cover 450 that prevents inadvertent actuation of the lock member 240, thumb slider 250 or any other operable mechanism of the handle 300 while the device 301 is in the tray 400.
The tray 400 may provide a specific and defined atmosphere for storage of the implant pre- and post-sterilization, which may further add to increasing the post-sterilization shelf-life stability of the polymer from which the exemplary implant 5 is formed. One such mechanism is the use of a controlled atmosphere, specifically one where excessive moisture is reduced by means of use of a vacuum or low moisture containing dried gases such as nitrogen, argon, etc. Furthermore, the use of packaging materials with a low moisture vapor transmission rate, for example orientated polypropylene (OPP), Polyethylene terephthalate (PET), Linear low-density polyethylene (LLDPE), polyethylene (PE), foil-based packaging materials (e.g. aluminium), or combinations thereof, in combination with a low moisture environment can further aid in enhancing the stability of the polymeric material post-sterilization.
Referring to
The packaging zone protects the implant 5 from packaging (e.g., protective tray 400 illustrated in
Referring again to
The front face of the narrowed zone 502 includes a pair of sloped surfaces 512 angled to match the angle of the foot core 20 (i.e., the angle formed between the length of the foot core and the longitudinal axis of the loading funnel 500). This ensures that any curvature of the wing 60 does not cause the wing 60 to fold upwardly. As the implant is withdrawn into this narrowed section of the funnel, the wing is forced downwards relative to the foot core 20 by the walls of the funnel.
The overlap zone 503 allows one side of the implant wing 60 to pass over or under the other side. This stops the edges of the wing from butting into each other, an action which can result in damage to the wing. This may be achieved via an overlap guide comprised of, for example, a channel 510. As the implant is withdrawn into the overlap zone 503, one side of the now folded down wing 60 runs down into the channel 510, lowering that side of the wing which allows the other side of the wing to pass over it, thus eliminating the possibility of implant wing 600 edge-butting. The overlapping of the opposite sides of the wing 60 while the wing 60 is passing over the channel 510 is illustrated, for example, in
Referring to
Referring to
Referring to sequential illustration of
Referring to the sequential illustration of
In the position shown in
In the illustrated implementation, the implant 5 may be delivered in reverse direction of loading such that the loading and delivery system is not a “through” system. It should be understood, however, that other implementations may incorporate through systems whereby the implant is delivered to the implantation site in the same direction as the loading direction relative to the loading cannula 530.
As illustrated, the funnel 500 may advantageously include distinct zoned areas within funnel to eliminate incorrect reverse folding of the implant wing 60 and provide distinct features, for example, (a) ensuring that the implant wing 60 folds correctly down under the implant foot core 20, (b) ensuring that during the implant loading and folding process, the implant wing lateral edges do not crash or butt into each other; rather, that there is a biased lifting and/or lowering of one lateral side of the wing 60 relative to the other, (c) narrowing the funnel orifice to ensure continuous folding of implant 5 during the loading cycle, (d) providing a final inner diameter of funnel being of a smaller dimension as compared to that of the loading cannula 530 and orientation of the loading cannula 530 relative to the funnel 500 is such that the implant wing 60 does not catch on the tip of the cannula 530 as it is withdrawn proximally into the interior of the cannula 530, and (e) provide a pull-through system with “front-to-back” withdrawal with the proximal or back exit delivering the folded implant into the cannula 530. It should be understood that other features may be provided and/or that one or more of these listed features may be omitted in some alternative implementations.
Potential advantages of the loading funnel 500 may include, for example, (a) distinct and predetermined withdraw, loading, and folding zones, (b) correction of any possible incorrect positioning of the implant wing 60 during the initial loading process, (c) ensuring that the implant wing 60 folds correctly and downwardly under the foot core 20, (d) ensuring that the wing edges do not butt together or crash, via the biased lifting or lowering one side of the wing, and (e) loading of the implant 5 in a biased folded orientation into a loading cannula 530 for transfer into an introducer sheath to allow implantation. It should be understood that other potential advantages may be provided and/or that one or more of these listed advantages may not be provided by some alternative implementations.
Referring to
Although some example embodiments have been described herein in the context of vascular closure applications, it should be understood that the various mechanisms and concepts described herein are not limited to vascular applications and are applicable to any suitable applications that require closure of an aperture in a tissue.
Although the present invention has been described with reference to particular examples and exemplary embodiments, it should be understood that the foregoing description is in no manner limiting. Moreover, the features described herein may be used in any combination.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/789,584, filed Mar. 15, 2013, the entire content of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
321721 | Hassan | Jul 1885 | A |
2560162 | Ferguson | Jul 1951 | A |
2778254 | Carapellotti | Jan 1957 | A |
3874388 | King et al. | Apr 1975 | A |
4583540 | Malmin | Apr 1986 | A |
4650472 | Bates | Mar 1987 | A |
4705040 | Mueller et al. | Nov 1987 | A |
4744364 | Kensey | May 1988 | A |
4852568 | Kensey | Aug 1989 | A |
4890612 | Kensey | Jan 1990 | A |
4896668 | Popoff et al. | Jan 1990 | A |
5021059 | Kensey et al. | Jun 1991 | A |
5037433 | Wilk et al. | Aug 1991 | A |
5053046 | Janese | Oct 1991 | A |
5085661 | Moss | Feb 1992 | A |
5127412 | Cosmetto et al. | Jul 1992 | A |
5171258 | Bales et al. | Dec 1992 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5269804 | Bales et al. | Dec 1993 | A |
5330488 | Goldrath | Jul 1994 | A |
5336231 | Adair | Aug 1994 | A |
5342393 | Stack | Aug 1994 | A |
5350399 | Erlebacher et al. | Sep 1994 | A |
5391182 | Chin | Feb 1995 | A |
5462560 | Stevens | Oct 1995 | A |
5470337 | Moss | Nov 1995 | A |
5501691 | Goldrath | Mar 1996 | A |
5501700 | Hirata | Mar 1996 | A |
5507755 | Gresl et al. | Apr 1996 | A |
5527322 | Klein et al. | Jun 1996 | A |
5531759 | Kensey et al. | Jul 1996 | A |
5545178 | Kensey et al. | Aug 1996 | A |
5549633 | Evans et al. | Aug 1996 | A |
5593422 | Muijs Van de Moer et al. | Jan 1997 | A |
5601557 | Hayhurst | Feb 1997 | A |
5601571 | Moss | Feb 1997 | A |
5620461 | Muijs Van De Moer et al. | Apr 1997 | A |
5653716 | Malo et al. | Aug 1997 | A |
5662681 | Nash et al. | Sep 1997 | A |
5665096 | Yoon | Sep 1997 | A |
5676689 | Kensey et al. | Oct 1997 | A |
5690674 | Diaz | Nov 1997 | A |
5700273 | Buelna et al. | Dec 1997 | A |
5700277 | Nash et al. | Dec 1997 | A |
5707393 | Kensey et al. | Jan 1998 | A |
5722981 | Stevens | Mar 1998 | A |
5755727 | Kontos | May 1998 | A |
5782861 | Cragg et al. | Jul 1998 | A |
5797939 | Yoon | Aug 1998 | A |
5814065 | Diaz | Sep 1998 | A |
5827281 | Levin | Oct 1998 | A |
5860990 | Nobles et al. | Jan 1999 | A |
5868762 | Cragg et al. | Feb 1999 | A |
5916236 | Muijs Van de Moer et al. | Jun 1999 | A |
5935147 | Kensey et al. | Aug 1999 | A |
5941899 | Granger et al. | Aug 1999 | A |
5954732 | Hart et al. | Sep 1999 | A |
5997515 | de la Torre et al. | Dec 1999 | A |
6007563 | Nash et al. | Dec 1999 | A |
6033427 | Lee | Mar 2000 | A |
6056768 | Cates et al. | May 2000 | A |
6080183 | Tsugita et al. | Jun 2000 | A |
6126675 | Shchervinsky et al. | Oct 2000 | A |
6136010 | Modesitt | Oct 2000 | A |
6179863 | Kensey et al. | Jan 2001 | B1 |
6190400 | Van De Moer et al. | Feb 2001 | B1 |
6200328 | Cragg | Mar 2001 | B1 |
6206895 | Levinson | Mar 2001 | B1 |
6241768 | Agarwal et al. | Jun 2001 | B1 |
6245080 | Levinson | Jun 2001 | B1 |
6296658 | Gershony et al. | Oct 2001 | B1 |
6319263 | Levinson | Nov 2001 | B1 |
6350274 | Li | Feb 2002 | B1 |
6383208 | Sancoff et al. | May 2002 | B1 |
6395015 | Borst et al. | May 2002 | B1 |
6398796 | Levinson | Jun 2002 | B2 |
6425911 | Akerfeldt et al. | Jul 2002 | B1 |
6461364 | Ginn et al. | Oct 2002 | B1 |
6485481 | Pfeiffer | Nov 2002 | B1 |
6500184 | Chan et al. | Dec 2002 | B1 |
6508828 | Akerfeldt et al. | Jan 2003 | B1 |
6596012 | Akerfeldt et al. | Jul 2003 | B2 |
6596014 | Levinson et al. | Jul 2003 | B2 |
6638286 | Burbank et al. | Oct 2003 | B1 |
6669707 | Swanstrom et al. | Dec 2003 | B1 |
6702835 | Ginn | Mar 2004 | B2 |
6730112 | Levinson | May 2004 | B2 |
6764500 | Muijs Van De Moer et al. | Jul 2004 | B1 |
6779701 | Bailly et al. | Aug 2004 | B2 |
6786915 | Akerfeldt et al. | Sep 2004 | B2 |
6860895 | Akerfeldt et al. | Mar 2005 | B1 |
6890342 | Zhu et al. | May 2005 | B2 |
6932824 | Roop et al. | Aug 2005 | B1 |
6939363 | Akerfeldt | Sep 2005 | B2 |
6942674 | Belef et al. | Sep 2005 | B2 |
6949107 | McGuckin, Jr. et al. | Sep 2005 | B2 |
6949114 | Milo et al. | Sep 2005 | B2 |
6964668 | Modesitt et al. | Nov 2005 | B2 |
6969397 | Ginn | Nov 2005 | B2 |
6984219 | Ashby et al. | Jan 2006 | B2 |
6989022 | Nowakowski | Jan 2006 | B2 |
6997940 | Bonutti | Feb 2006 | B2 |
7001398 | Carley et al. | Feb 2006 | B2 |
7001400 | Modesitt et al. | Feb 2006 | B1 |
7008440 | Sing et al. | Mar 2006 | B2 |
7008441 | Zucker | Mar 2006 | B2 |
7008442 | Brightbill | Mar 2006 | B2 |
7094248 | Bachinski et al. | Aug 2006 | B2 |
7169168 | Muijs Van De Moer et al. | Jan 2007 | B2 |
7326221 | Sakamoto et al. | Feb 2008 | B2 |
7462188 | McIntosh | Dec 2008 | B2 |
7534248 | Mikkaichi et al. | May 2009 | B2 |
7569063 | Bailly et al. | Aug 2009 | B2 |
7662161 | Briganti et al. | Feb 2010 | B2 |
7678133 | Modesitt | Mar 2010 | B2 |
7753935 | Brett et al. | Jul 2010 | B2 |
7846180 | Cerier | Dec 2010 | B2 |
7918868 | Marshall et al. | Apr 2011 | B2 |
7998169 | Modesitt | Aug 2011 | B2 |
8002791 | Modesitt | Aug 2011 | B2 |
8002792 | Modesitt | Aug 2011 | B2 |
8002793 | Modesitt | Aug 2011 | B2 |
8012168 | Modesitt | Sep 2011 | B2 |
8083767 | Modesitt | Dec 2011 | B2 |
8137380 | Green et al. | Mar 2012 | B2 |
8177795 | Niese et al. | May 2012 | B2 |
8241325 | Modesitt | Aug 2012 | B2 |
8267942 | Szabo et al. | Sep 2012 | B2 |
8361092 | Asfora | Jan 2013 | B1 |
8597324 | Briganti et al. | Dec 2013 | B2 |
8652166 | ÅKerfeldt | Feb 2014 | B2 |
8821507 | Axelson, Jr. | Sep 2014 | B2 |
8906050 | Brett et al. | Dec 2014 | B2 |
9060751 | Martin et al. | Jun 2015 | B2 |
20010044631 | Akin et al. | Nov 2001 | A1 |
20020019648 | Akerfeldt et al. | Feb 2002 | A1 |
20020019649 | Sikora et al. | Feb 2002 | A1 |
20020107506 | McGuckin et al. | Aug 2002 | A1 |
20020169377 | Khairkhahan et al. | Nov 2002 | A1 |
20020177864 | Camrud | Nov 2002 | A1 |
20030050665 | Ginn | Mar 2003 | A1 |
20030060846 | Egnelov et al. | Mar 2003 | A1 |
20030078598 | Ginn et al. | Apr 2003 | A1 |
20030093093 | Modesitt et al. | May 2003 | A1 |
20030120305 | Jud et al. | Jun 2003 | A1 |
20030144695 | McGuckin et al. | Jul 2003 | A1 |
20030216756 | Klein et al. | Nov 2003 | A1 |
20040082906 | Tallarida et al. | Apr 2004 | A1 |
20040092964 | Modesitt et al. | May 2004 | A1 |
20040092969 | Kumar | May 2004 | A1 |
20040093025 | Egnelov | May 2004 | A1 |
20040098044 | Van de Moer et al. | May 2004 | A1 |
20040133238 | Cerier | Jul 2004 | A1 |
20040176798 | Epstein et al. | Sep 2004 | A1 |
20040243122 | Auth et al. | Dec 2004 | A1 |
20050021055 | Toubia et al. | Jan 2005 | A1 |
20050033326 | Briganti et al. | Feb 2005 | A1 |
20050070957 | Das | Mar 2005 | A1 |
20050149065 | Modesitt | Jul 2005 | A1 |
20050209613 | Roop et al. | Sep 2005 | A1 |
20050251201 | Roue et al. | Nov 2005 | A1 |
20050267520 | Modesitt | Dec 2005 | A1 |
20050288706 | Widomski et al. | Dec 2005 | A1 |
20060106418 | Seibold et al. | May 2006 | A1 |
20060142784 | Kontos | Jun 2006 | A1 |
20060142797 | Egnelov | Jun 2006 | A1 |
20060265008 | Maruyama et al. | Nov 2006 | A1 |
20060287673 | Brett et al. | Dec 2006 | A1 |
20070112385 | Conlon | May 2007 | A1 |
20070135826 | Zaver et al. | Jun 2007 | A1 |
20070179509 | Nagata et al. | Aug 2007 | A1 |
20070179527 | Eskuri et al. | Aug 2007 | A1 |
20070255313 | Modesitt | Nov 2007 | A1 |
20070282351 | Harada et al. | Dec 2007 | A1 |
20070282373 | Ashby et al. | Dec 2007 | A1 |
20080228204 | Hamilton et al. | Sep 2008 | A1 |
20080243148 | Mikkaichi et al. | Oct 2008 | A1 |
20080312646 | Auth et al. | Dec 2008 | A9 |
20090012521 | Axelson, Jr. | Jan 2009 | A1 |
20090018574 | Martin | Jan 2009 | A1 |
20090088723 | Khosravi et al. | Apr 2009 | A1 |
20090112257 | Preinitz et al. | Apr 2009 | A1 |
20090143821 | Stupak | Jun 2009 | A1 |
20090312786 | Trask et al. | Dec 2009 | A1 |
20100094425 | Bentley et al. | Apr 2010 | A1 |
20100125296 | Modesitt | May 2010 | A1 |
20100152772 | Brett et al. | Jun 2010 | A1 |
20100228184 | Mavani et al. | Sep 2010 | A1 |
20110087270 | Penner et al. | Apr 2011 | A1 |
20110224728 | Martin et al. | Sep 2011 | A1 |
20120089166 | Modesitt | Apr 2012 | A1 |
20120296275 | Martin et al. | Nov 2012 | A1 |
20130274795 | Grant et al. | Oct 2013 | A1 |
20140018846 | Grant et al. | Jan 2014 | A1 |
20140018847 | Grant et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
102010048908 | Apr 2012 | DE |
102010048908 | Apr 2012 | DE |
0761250 | Mar 1997 | EP |
0894475 | Feb 1999 | EP |
2260770 | Dec 2010 | EP |
WO-9408513 | Apr 1994 | WO |
WO-0033744 | Jun 2000 | WO |
WO-02102236 | Dec 2002 | WO |
WO-2004012601 | Feb 2004 | WO |
WO-2006117766 | Nov 2006 | WO |
WO-2007011353 | Jan 2007 | WO |
WO-2008042229 | Apr 2008 | WO |
WO-2008152617 | Dec 2008 | WO |
WO-2009149455 | Dec 2009 | WO |
WO-2010027693 | Mar 2010 | WO |
WO-2010123821 | Oct 2010 | WO |
WO-2011080588 | Jul 2011 | WO |
WO-2012090069 | Jul 2012 | WO |
WO-2012156819 | Nov 2012 | WO |
WO-2013128292 | Sep 2013 | WO |
WO-2014141209 | Sep 2014 | WO |
Entry |
---|
DE 102010048908; Medical Kit for Inserting Medical Product; EPO English Machine Translation; Mar. 11, 2016; pp. 1-11. |
European Patent Office Partial Supplementary Search Report. Application No. 12784868.7, dated Jan. 12, 2015, 5 pages. |
Extended European Search Report, Application No. EP 11852355.4, dated Sep. 28, 2015, 7 pages. |
Grant et al., Hales' 1733 Haemastaticks, Anesthesiology, 112:1:65 (2010). |
Hales, Stephen, Statical Essays, vol. 2 (1773). |
International Preliminary Report on Patentability, PCT/1132010/003461, dated Jul. 12, 2012, 10 pages. |
International Preliminary Report on Patentability, PCT/IE2006/000043, dated Oct. 30, 2007, 10 pages. |
International Search Report, PCT/IB2010/003461, dated Oct. 11, 2011, 6 pages. |
International Search Report, PCT/IB2011/003295, dated Jun. 29, 2012, 4 pages. |
International Search Report, PCT/IB2012/001101, dated Jan. 30, 2013, 3 pages. |
International Search Report, PCT/IB2013/000839, dated Jan. 14, 2014, 6 pages. |
International Search Report, PCT/IB2014/059848, dated Jul. 7, 2014, 5 pages. |
Written Opinion, PCT/IB2012/001101, dated Jan. 30, 2013, 5 pages. |
Written Opinion, PCT/IB2010/003461, dated Oct. 11, 2011, 9 pages. |
Written Opinion, PCT/IB2011/003295, dated Jun. 29, 2012, 5 pages. |
Written Opinion, PCT/IB2013/000839, dated Jan. 14, 2014, 11 pages. |
Written Opinion, PCT/IB2014/059848, dated Jul. 7, 2014, 8 pages. |
Written Opinion, PCT/IE2006/000043, dated Oct. 29, 2007, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20140345109 A1 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
61789584 | Mar 2013 | US |