The present invention generally relates to lobular drive systems, and more specifically relates to a lobular drive system and method and apparatus for fabricating same.
Fasteners are a critical component of many structures and mechanisms, from the simplest machine to a highly complex space shuttle. Because of the critical functions performed by these fasteners, improvements in their structure and functional properties are continually sought. One such improvement is the TORX® brand drive system, which can be employed, for example, in a drive socket or on a head portion of a fastener, or on a drive bit or socket used for driving such a fastener into a workpiece.
The construction and benefits of the TORX® brand drive system are disclosed in U.S. Pat. No. 3,584,667, which is hereby incorporated herein by reference in its entirety. The TORX® brand drive system represents a significant improvement in the fastener industry.
An application of the TORX® brand drive system is disclosed in U.S. Pat. No. 4,269,246, which is hereby incorporated herein by reference in its entirety. Specifically, the drive bit of the '246 patent provides means for providing a wedging effect between the bit and a fastener for holding fasteners on the drive bit when the bit is inserted in a recess or socket on the fastener, thereby facilitating one-handed installation of fasteners into a workpiece. This one-handed installation is highly desirable for use in some applications of fasteners where a large number of fasteners are to be installed in a workpiece, or a plurality of workpieces, such as on an assembly line. This type of friction engagement is also desirable where it is preferred to use non-magnetic drives and fasteners. Additionally, the particular construction of the '246 patent helps to prevent “walking” or “wobble” of a fastener, which can cause damage to workpiece. This “walking” or “wobble” is particularly acute when a pilot hole is not used or during manual installation of self-tapping or self-drilling screws. The drive bit is also self-aligning, which provides significant benefits when utilizing drill screws.
Even though the fastener and the drive bit or assembly provided by the '246 patent are quite effective, there is always room for further improvements or refinements. Specifically, the drive bit of the '246 patent has a tree degree taper on a major diameter thereof. As such, the drive bit makes contact with the fastener at a top of the fastener socket into which the bit is inserted. More definitely, the contact between the bit and the fastener socket occurs at outer, leading edges of lobes on the bit and a center of flutes in the socket. The bit wedges across a major diameter of the bit Accordingly, the above-discussed wedging effect theoretically occurs at six contact “points,” equal in number to the number of flutes and lobes, between the bit and the socket. Because wedging between the bit and the socket occurs only at outside edges of the lobes of the drive bit, high magnitude mechanical stresses can build up at these limited locations. This stress concentration can cause excessive bit wear, as well as loss of dimensional tolerances.
Furthermore, because of the limited contact between the bit and the fastener, a natural tendency arises causing the bit to cam out of the socket in the fastener. Accordingly, there is a potential that the effective lifetime of the drive bit will suffer a reduction, viz. a reduction in ability to prevent wobble, as well as a reduction in the integrity of an interference fit between the bit and the fastener which can make one-handed manual installation more difficult. Additionally, variations in socket fall away, as measured across the major diameter of the socket, which may be difficult to eliminate, can adversely affect depth of penetration of the drive bit into the socket, thereby adding variability of insuring sufficient bit penetration into the socket for driving of the fastener.
Despite there being lobular drive systems available, there is a need for a lobular drive system which provides an improved interference fit. The interference fit tends to become enhanced when the fastener is being tightened, and tends to become diminished when the fastener is attempted to be loosened, thereby providing a certain level of tamper resistance once the fastener has been installed.
An object of an embodiment of the present invention is to provide an improved lobular drive system.
Another object of an embodiment of the present invention is to provide a lobular drive system which provides an enhanced interference fit.
Still another object of an embodiment of the present invention is to provide a lobular drive system which provides at least two contact points per lobe—one on a leading edge of the lobe, and one on a trailing edge.
Yet another object of an embodiment of the present invention is to provide a lobular drive system which provides some measure of tamper resistance.
Several embodiments of the present inventions are possible, some of which are illustrated herein. One embodiment of the present invention provides a drive system which can be embodied on the head of a driver (or driver bit), in a drive socket, on a fastener head post or in a fastener socket.
For example, a specific embodiment of the present invention which is illustrated herein is in the form of a fastener which includes a socket or recess that includes a plurality of alternating lobes and recesses, where each of the lobes and recesses are twisted or angled. The fact that each of the lobes and recesses are twisted or angled provides an enhanced interference fit in the form of at least two contact points per lobe—one on a leading edge of the lobe, and one on a trailing edge—as well as a measure of tamper resistance.
It should be noted that engagement at two contact points for each of the six lobes, or however many are employed in the multi-lobular design, is the theoretical maximum. Due to tolerances and wear during use, engagement may occur at fewer contact points per lobe or at fewer than all of the lobes.
The fastener is configured such that the fastener can be driven using a conventional multi-lobular driver (such as one which is consistent with that which is disclosed in U.S. Pat. No. 3,584,667). Alternatively, the fastener can be driven by a driver which is in accordance with another embodiment of the present invention, where the driver has a drive head which also has a plurality of corresponding alternating lobes and recesses which are twisted or angled.
Still another embodiment of the present invention which is illustrated herein is a punch pin which includes a head that has a plurality of alternating lobes and recesses which are angled or twisted. The head of the punch pin is configured to punch into the head of a fastener thereby forming the recess discussed above.
Still yet another embodiment of the present invention which is illustrated herein is a device which is configured to retain and use the punch pin to punch the recess into the head of the fastener. The device may include, for example, a pin holder, bearing and packing that are all disposed in a casing. The device is configured to retain the punch pin in a manner such that the punch pin is free to spin while being retained. As such, the device can be used to punch the head of the punch pin into the head of the fastener, and as the head of the punch pin is withdrawn from the recess which has been formed in the fastener, the head of the punch pin can effectively rotate out of the recess.
The organization and manner of the structure and operation of the invention, together with further objects and advantages thereof, may best be understood by reference to the following description taken in connection with the accompanying drawings wherein like reference numerals identify like elements in which:
While this invention may be susceptible to embodiment in different forms, there are shown in the drawings and will be described herein in detail, specific embodiments with the understanding that the present disclosure is to be considered an exemplification of the principles of the invention, and is not intended to limit the invention to that as illustrated.
Regardless of the number of flutes and lobes which are provided, the flutes 22 and lobes 24 of the recess 18 in the head 12 of the fastener 10 shown in
The angle of twist of the flutes 22 and lobes 24 is shown best in
A conventional multi-lobular driver or driver bit 38 such as shown in
Preferably, the extent of the twist of the flutes 22 and lobes 24 in the recess 18 in the head 12 of the fastener 10 is not so extreme such that the depth of penetration or insertion of the drive head 40 is sufficient to reduce any tendency for the drive head 40 to cam out of the recess 18 when the fastener 10 is driven into a workpiece. Because of the cam out resistance provided by the configuration, an end load is not required to install a fastener 10 in a threaded bore in a workpiece. However, when self-tapping or drill screws are used, often no pilot hole is provided. Accordingly, when self-tapping screws are utilized, an end load is required for facilitating tapping or drilling of the screw into the workpiece. With the particular contact line-point of contact configuration provided by the drive head 40, the driver 38 is able to utilize this requisite end load to minimize wobble or walking of self-tapping screws as they are driven into a workpiece. Thus, the twist or angle of the flutes 22 and lobes 24 of the recess 18 of the fastener 10 are able to perform not only as means for preventing cam out and means for aligning the fastener 10 with the driver 38, but also as means for reducing wobble.
Due to the twist or angle of the flutes 22 and lobes 24 of the recess 18 in the head 12 of the fastener 10 being angled in a clockwise direction, the interference fit between the head 40 of the driver 38 and the recess 18 in the head 12 of the fastener 10 tends to become enhanced when the driver 38 is being rotated clockwise, i.e. when the driver 38 is used to tighten the fastener 10. In contrast, the interference fit between the head 40 of the driver 38 and the recess 18 in the head 12 of the fastener 10 tends to diminish while the driver 38 is being rotated counterclockwise, i.e. when the driver 38 is used to attempt to loosen the fastener 10. In other words, due to the direction of the angle of twist of the flutes 22 and lobes 24 in the recess 18 in the head 12 of the fastener 10, the driver 38 tends to ride out of the recess 18 when rotated counterclockwise. This provides some measure of tamper resistance. This tamper resistance feature can be enhanced by increasing the angle of the twist of the lobes 24 and flutes 22 of the recess 18.
Furthermore, a driver can be provided which also has angled or twisted flutes and lobes, wherein the driver is in accordance with an embodiment of the present invention. This would increase the tendency of the driver to ride out of engagement with the recess 18, thereby providing tamper resistance. The extent of twist of the flutes and lobes on the driver may be less than or substantially equal to the extent of the twist of the flutes 22 and lobes 24 of the recess 18 in the head 12 of the fastener 10. Regardless, the driver may be constructed from any suitable material having sufficient structural integrity for applying the necessary torque to the fastener.
Although the twisted flutes and lobes have been described in association with a recess in the head of a fastener as well as possibly a drive head on a driver or driver bit, such a drive system may instead be embodied in the form of alternating twisted flutes and lobes in a drive socket and/or on a fastener head post.
While the punch pin 60 has been described in connection with punching a recess 18 in the head 12 of a fastener 10, the punch pin 60 can also be used to punch a recess in a drive socket, wherein the formed drive socket can thereafter be used to engage and drive a fastener head post, which may also have either straight (i.e., conventional) or twisted flutes and lobes, in accordance with an embodiment of the present invention.
As shown in
While preferred embodiments of the invention are shown and described, it is envisioned that those skilled in the art may devise various modifications without departing from the spirit and scope of the foregoing description.
This application claims the benefit of U.S. Provisional Application Ser. No. 60/947,041, filed Jun. 29, 2007, which is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60947041 | Jun 2007 | US |