The present invention relates to a local air cleaning apparatus.
Conventionally, a clean bench is often used as an apparatus for improving air cleanliness of a local work space. In a typical clean bench, only a front side of the work bench has an opening for performing work and sides thereof other than the front side form an enclosure in order to maintain cleanliness. In such a clean bench, a clean air outlet is arranged in the enclosure, and a worker puts his or her hands therein from the front opening for working to perform work.
However, the opening for working in the clean bench is narrow. Accordingly, for workers performing the assembly of precision instrument or the like, there is a problem with workability. In addition, as in a production line, when work involves the transfer of manufactured articles or manufacturing components, procedures such as arrangement of the entire line in the clean room have been taken. This is, however, problematic in terms of increasing the size of equipment.
Therefore, a local air cleaning apparatus has been proposed in which air flow opening faces of a pair of push hoods capable of blowing out a uniform flow of cleaned air are arranged opposite to each other to cause collision of air flows from the respective air flow opening faces so as to allow a region between a pair of push hoods to be a clean air space having higher cleanliness than other regions (Patent Literature 1).
Patent Literature 1: Unexamined Japanese Patent Application Kokai Publication No. 2008-275266
Meanwhile, depending on the kind of work and the procedures of work, it may be desirable in some cases to work in a little larger clean air space. In addition, it may be occasionally desirable to work using a local air cleaning apparatus having a little simpler structure. Therefore, there has been a desire for a local air cleaning apparatus having a simpler structure.
The present invention has been accomplished in view of the above problems, and it is an objective of the present invention to provide a local air cleaning apparatus having a simple structure.
In order to achieve the above objective, a local air cleaning apparatus of the present invention comprises:
a push hood comprising an air flow opening face for blowing out a cleaned uniform air flow and
a guide provided on a side of the push hood comprising the air flow opening face, the guide extending from the side thereof comprising the air flow opening face toward a downstream side of the uniform air flow to form an opening face at an downstream-side end portion of the guide, wherein
the push hood is arranged such that the cleaned uniform air flow blown out from the air flow opening face passes through the inside of the guide and then collides with an air collision face on a downstream side of the opening face of the guide;
the opening face of the guide is spaced apart from and opposed to the air collision face to form an open region between the opening face of the guide and the air collision face; and
the cleaned uniform air flow blown out from the air flow opening face collides with the air collision face to flow out of the open region so as to cause the inside of the guide and the inside of the open region to have higher cleanliness than other regions.
Preferably, the opening face of the guide and the air flow opening face of the push hood are of substantially the same shape.
The push hood comprises, for example, a plurality of push hoods connected together.
Preferably, the cleaned uniform air flow blown out from the air flow opening face has a flow rate of 0.2 to 0.5 m/s.
The opening face of the guide has a width of, for example, 2 m or more and less than 10 m. In this case, preferably, the distance between the opening face of the guide and the air collision face is a distance over which the uniform air flow blown out from the opening face collides with the air collision face within 4 seconds.
The opening face of the guide has a width of, for example, 1 m or more and less than 2 m. In this case, preferably, the distance between the opening face of the guide and the air collision face is a distance over which the uniform air flow blown out from the opening face collides with the air collision face within 3 seconds.
The opening face of the guide has a width of, for example, 0.2 m or more and less than 1 m. In this case, preferably, the distance between the opening face of the guide and the air collision face is a distance over which the uniform air flow blown out from the opening face collides with the air collision face within 2 seconds.
Preferably, the air collision face has a bent portion bent toward the guide side near positions opposing end portions of the opening face of the guide.
In such a local air cleaning apparatus,
the opening face of the guide has a width of, for example, 2 m or more and less than 10 m, and, preferably, the distance between the opening face of the guide and the air collision face is a distance over which the uniform air flow blown out from the opening face collides with the air collision face within 6 seconds.
In addition, the opening face of the guide has a width of, for example, 1 m or more and less than 2 m, and, preferably, the distance between the opening face of the guide and the air collision face is a distance over which the uniform air flow blown out from the opening face collides with the air collision face within 5 seconds.
Furthermore, the opening face of the guide has a width of, for example, 0.2 m or more and less than 1 m, and, preferably, the distance between the opening face of the guide and the air collision face is a distance over which the uniform air flow blown out from the opening face collides with the air collision face within 3 seconds.
The present invention can provide a local air cleaning apparatus having a simple structure.
Hereinafter, a local air cleaning apparatus according to the present invention will be described with reference to the drawings.
As depicted in
The push hood 2 can be any push hood as long as the push hood has a mechanism for blowing out a cleaned uniform air flow. As a structure of the push hood, there can be employed a structure in which a cleaning filter is incorporated in a basic structure of a push hood conventionally used in push-pull ventilators.
The terms uniform air flow and uniform flow used herein have the same meaning as uniform flow described in “Industrial Ventilation” by Taro Hayashi (published by the Society of Heating, Air-Conditioning and Sanitary Engineers of Japan, 1982) and refer to a flow having a minute air flow rate, which is uniformly continuous and causes no large whirling portion. However, the present invention does not intend to provide an air blowout apparatus strictly specifying an air flow rate and a velocity distribution. In the uniform air flow, for example, a variation in a velocity distribution in a state without obstacles is preferably within ±50%, and furthermore within ±30%, with respect to the average value.
In the push hood 2 of the present embodiment, respective nine (longitudinal three pieces×transversal three pieces) push hoods are connected by a connector in such a manner that the air flow opening faces of the push hoods are oriented in the same direction and short sides and long sides, respectively, of the push hoods are arranged adjacent to each other. Herein, structures of the push hoods connected by the connector are basically the same. Accordingly, a description will be given of the structure of a push hood 2a as one of the push hoods, thereby describing the structure of the push hood 2 of the present embodiment.
As depicted in
The push hood 2 is arranged such that the air flow opening face thereof is opposed to an air collision face W such as a wall. Herein, the description “the air flow opening face is opposed to the air collision face W” means not only a state in which the air flow opening face 23 of the push food 2 and the air collision face W are opposed in parallel to each other, but also, for example, a state in which the air flow opening face 23 of the push food 2 and the air collision face W are slightly inclined from each other, as depicted in
In the housing 21 are arranged an air blowing mechanism 24, a high performance filter 25, and a rectification mechanism 26.
The air blowing mechanism 24 is arranged on a side where the air flow suction face 22 is located in the housing 21. The air blowing mechanism 24 comprises an air blowout fan and the like. The air blowing mechanism 24 takes in an outside air or a room air, which is the surrounding air of the push hood 2a, from the air flow suction face 22 and blows out an air flow from the air flow opening face 23. In addition, the air blowing mechanism 24 is configured to control a blowout force of the fan so as to allow the flow rate of an air flow blown out from the air flow opening face 23 to be changed.
The high performance filter 25 is arranged between the air blowing mechanism 24 and the rectification mechanism 26. The high performance filter 24 comprises a high performance filter in accordance with a cleaning level, such as a HEPA filter (High Efficiency Particulate Air Filter) or an ULPA filter (Ultra Low Penetration Air Filter) for filtrating the surrounding air taken in. The high performance filter 25 cleans the surrounding air taken in by the air blowing mechanism 24 into a clean air having a desirable cleaning level. The clean air cleaned to the desirable cleaning level by the high performance filter 25 is sent to the rectification mechanism 26 by the air blowing mechanism 24.
The rectification mechanism 26 is arranged between the high performance filter 25 and the air flow opening face 23. The rectification mechanism 26 is provided with a not-shown air resistor, which is formed using a punching plate, a mesh member, and/or the like. The rectification mechanism 26 corrects (rectifies) a blown air sent from the higher performance filter and having an amount of aeration biased with respect to the entire part of the air flow opening face 23 into a uniformized air flow (a uniform air flow) having an amount of aeration unbiased with respect to the entire part of the air flow opening face 23. The uniform air flow rectified is blown out by the air blowing mechanism 24 from the entire part of the air flow opening face 23 to the outside of the push hood 2.
In addition, as depicted in
In the push hood 2a thus formed, the surrounding air taken in by the air blowing mechanism 24 is cleaned into a clean air having a desirable cleaning level by the pre-filter 27 and the high performance filter 25. Then, the clean air obtained by the cleaning is rectified into a uniform air flow by the rectification mechanism 26. The uniform air flow thus cleaned is blown out externally from the entire part of the air flow opening face 23 in a direction substantially vertical to the air flow opening face 23 of the push hood 2a.
One end of the guide 3 is provided on the side of the push hood 2 having the air flow opening face 23. In addition, the guide 3 is provided on the air flow opening face 23 and formed in such a manner as to extend therefrom toward the downstream side of the uniform air flow blown out from the air flow opening face 23 and cover an outer peripheral outline portion of the air flow opening face 23. For example, when the air flow opening face 23 is rectangular, the guide 3 is formed to be extended so as to have a U-shaped. With an open side of the U-shaped and a floor, the guide 3 including the outer peripheral outline portion in a blowout direction of the uniform air flow surrounds, like a tunnel, the periphery of an air flow in parallel to a stream of the uniform air flow blown out from the air flow opening face 23. Additionally, when there is no floor, the guide 3 is formed to be extended so as to have, for example, a square cross-sectional shape, not a U-shaped. The guide 3 is formed so as to have an open region between the other end thereof (the opening face 31) and. Herein, the opening face 31 of the guide 3 refers to a hollow end face, namely an opening, which is surrounded by the peripheral edge outline of a downstream-side end portion (a boundary with the open region) of the guide 3 extending like the tunnel toward the downstream side of the uniform air flow blown out from the air flow opening face 23. For example, in a case of substituting the floor for a part of the guide 3, when the cross section of the guide 3 is U-shaped, a square hollow opening formed by the downstream-side end portion of the guide 3 and the floor corresponds to the opening face 31. When the cross section of the guide 3 is square, a square hollow opening formed at the downstream-side end portion of the guide 3 corresponds to the opening face 3.
The guide 3 can be formed using an arbitrary material as long as an air flow blown out from the opening face 31 can maintain the state of a cleaned uniform air flow blown out from the air flow opening face 23. In addition, the guide 3 does not necessarily have to completely cover the entire periphery of the uniform air flow as long as the state of the cleaned uniform air flow blown out from the air flow opening face 23 can be maintained. For example, a hole may be opened or a slit may be formed in a part of the guide 3.
The guide 3 is arranged such that the opening face 31 thereof is opposed to the air collision face W. By arranging the guide 3 such that the opening face 31 is opposed to the air collision face W, an air flow blown out from the opening face 31 collides with the air collision face W. As depicted in
Herein, the description “the opening face 31 is opposed to the air collision face W” means not only a state in which the opening face 3 is opposed in parallel to the air collision face W, but also, for example, a state in which the opening face 31 of the guide 3 and the air collision face are slightly inclined from each other, as depicted in
Preferably, the opening face 31 is formed so as to have substantially the same shape as the air flow opening face 23. This is because when the opening face 31 and the air flow opening face 23 are formed to have substantially the same shape, the state of a uniform air flow blown out from the air flow opening face 23 can be easily maintained in the opening face 31. However, the shapes of the opening face 31 and the air flow opening face 23 do not necessarily have to be substantially the same. For example, as depicted in
A length b of the guide 3 can be any length as long as an open region can be formed between the opening face 31 of the guide 3 and the air collision face W when the opening face 31 thereof and the air collision face W are spaced apart from and opposed to each other. Preferably, the length b of the guide 3 is set to a predetermined length according to a distance X between the air flow opening face 23 of the push hood 2 and the air collision face W, the flow rate of a uniform air flow blown out from the air flow opening face 23 (the opening face 31), and the like.
As will be described below, when the length b of the guide 3 is 12 m, a distance (X-b) between the opening face 31 of the guide 3 and the air collision face W is preferably set to be not more than a distance of 4 times a flow rate (a distance over which a uniform air flow blown out from the opening face 31 collides with the air collision face W within 4 seconds) when the width of the opening face 31 is 2 m or more and less than 10 m. In addition, when the width of the opening face 31 is 1 m or more and less than 2 m, the distance (X-b) therebetween is preferably set to be not more than a distance of 3 times a flow rate (a distance over which the uniform air flow blown out from the opening face 31 collides with the air collision face W within 3 seconds). Furthermore, when the width of the opening face 31 is 0.2 m or more and less than 1 m, the distance (X-b) therebetween is preferably set to be not more than a distance of 2 times a flow rate (a distance over which the uniform air flow blown out from the opening face 31 collides with the air collision face W within 2 seconds). This is because setting the distance (X-b) to the distances allows the inside of the guide 3 and the open region between the opening face 31 and the air collision face W to have high cleanliness.
Herein, when the opening face 31 is a circle, a width (L) of the opening face 31 refers to the diameter of the circle, as depicted in
The guide 3 thus formed is, as depicted in
In the local air cleaning apparatus 1 thus formed, a surrounding air near the air flow suction face 22 taken in by the air blowing mechanism 24 of the push hood 2 is cleaned by the pre-filter 27 and the high performance filter 25 into a clean air having a desirable cleaning level. Then, the clean air obtained by the cleaning is rectified into a uniform air flow by the rectification mechanism 26 and the cleaned uniform air flow is blown out into the guide 3 from the entire part of the air flow opening face 23.
Herein, the cleaned uniform air flow blown out from the air flow opening face 23 has a flow rate of preferably 0.3 to 0.5 m/s. In order to suppress power consumption, the air velocity can be reduced to 0.2 to 0.3 m/s. When the inside of the local air cleaning apparatus 1 is contaminated and quick cleaning is desirable, the air velocity can be reduced to 0.5 to 0.7 m/s. Accordingly, the flow rate of the cleaned uniform air flow can be selected as needed. This is because, by blown out at these flow rates, the cleaned uniform air flow blown out from the air flow opening face 23 moves through the inside of the guide 3 as if extruded and the state of the uniform air flow can be easily maintained in the guide 3. Additionally, slowing the flow rate can reduce the number of rotation of the fan of the air blowing mechanism, whereby noise level and power consumption can be suppressed. Due to the reduction, the volume of air blown is reduced, which can thus reduce the amount of dust accumulated on the pre-filter 27 and the high performance filter 25. On the other hand, in a situation in which contaminants are generated in a cleaned space of the guide 3, setting the flow rate of the uniform air flow to about 0.5 m/s allows the contaminants in the guide 3 and in the open region formed between the guide 3 and the air collision face W to be removed more quickly than at a flow rate of the uniform air flow of 0.2 m/s. Thus, the flow rate of the uniform air flow can be freely set according to the purpose of use. Meanwhile, an excessive increase in the air velocity of the uniform air flow blown out from the air flow opening face 23 leads to the occurrence of a whirling portion, and when the uniform air flow is blown out from the opening face 31, turbulence can occur and thereby contaminants outside the open region may be rolled up into the open region formed between the guide 3 and the air collision face W. Accordingly, preferably, the air velocity of the uniform air flow blown out from the air flow opening face 23 is set to an air velocity that does not cause any whirling portion.
The cleaned uniform air flow blown out to the guide 3 passes through the guide 3 while maintaining the state of the uniform air flow and then is blown out from the opening face 31. The air flow blown out from the opening face 31 collides with the air collision face W. The air flow, after having collided, flows outside the open region formed between the guide 3 and the air collision face W (outside the local air cleaning apparatus 1). As a result, the region between the air flow opening face 23 and the air collision face W (the inside of the guide 3 and the open region between the opening face 31 and the air collision face W) can have higher cleanliness than regions outside the local air cleaning apparatus 1.
Herein, a comparison was made between the present invention and the local air cleaning apparatus described in Patent Literature 1. For the comparison, dimensions of the air flow opening face of the push hood in both apparatuses were set to a width of 1050 mm and a height of 850 mm and nine push hoods ((longitudinal three pieces×transversal three pieces) each having the air flow opening face were connected together. In addition, the flow rate of a cleaned uniform air flow blown out from the air flow opening faces was set to 0.5 m/s. In this case, in the local air cleaning apparatus described in Patent Literature 1, it was confirmed that the upper limit of the distance between the air flow opening faces 23 obtained as a cleaned space was about 5.5 m. In contrast, in the local air cleaning apparatus 1 of the present invention, it was confirmed that the distance between the air flow opening face 23 and the air collision face W obtained as a cleaned space can be increased up to about 20 m. Thus, the local air cleaning apparatus 1 of the present invention can have a simple structure and can form a large clean air space.
In addition, compared to an open-type air cleaning apparatus using the technology described in Patent Literature 1, even when the flow rates of uniform air flows blown out from push hoods having the same area are the same, the present invention can provide a considerably larger clean air space. Furthermore, since the apparatus of the invention does not need a push food on both sides, even when the power consumption per push hood is the same, the amount of electricity consumed per unit area in the clean air space can be reduced. Or when cleaning the same clean space, air velocity can be slower than in Patent Literature 1, and therefore the number of rotation of the fan in the air blowing mechanism can be reduced, enabling the power consumption to be reduced. Then, since the air velocity can be slower, noise due to the operation of the local air cleaning apparatus can also be reduced. Additionally, since the volume of air passing through the filters is reduced, the amount of dust accumulated on the filters for obtaining a clean air is reduced, which can therefore suppress the exhaustion of the filters. Furthermore, when the open-type local air cleaning apparatus of Patent Literature 1 was installed under the above conditions, it was confirmed that power consumption was 7200 W and noise level was 75 dB(A) in the center between the air flow opening faces 23 opposed to each other. In contrast, in the apparatus of the present invention used under the above installation condition (the distance between the air flow opening face 23 and the air collision face W: 20 m), it was confirmed that power consumption was 3600 W and noise level was equivalent to that in Patent Literature 1 above in the center between the air flow opening face 23 and the air collision face W. In other words, in Patent Literature 1, a space having a volume of about 45 cubic meters was cleaned and the amount of electricity consumed for cleaning per cubic meter was about 160 W, whereas the apparatus of the present invention was confirmed to have cleaned a space having a volume of about 160 cubic meters and the amount of electricity consumed for cleaning per cubic meter was confirmed to be about 22.5 W. In addition, although the present invention described above has exemplified the case in which the distance between the air flow opening face 23 and the air collision face W is 20 m, increasing the distance can lead to further reduction in the power consumption per unit volume.
Furthermore, in a typical clean room, the entire room is cleaned and it is therefore not easy to perform construction work, whereas in the local air cleaning apparatus 1 of the present embodiment, the push hood 2 can be easily moved. In addition, the local air cleaning apparatus 1 of the embodiment can significantly facilitate layout changes in the work region, such as bending the guide 3 provided on the push hood 2 depending on the work in a range that does not affect the uniform air flow and moving an open region formed between the opening faces of the guides to an arbitrary position.
In addition, in the case of a typical clean room in which a worker himself or herself enters a clean region to perform work, a work region for the worker is not changed no matter how much distance between a floor on which the worker works and a ceiling with a clean air blowing apparatus is increased. However, in the local air cleaning apparatus 1, a horizontal flow is used. Thus, an increase of a region in the guide 3 can lead to an increase of a work region (floor area) for the worker himself or herself entering the clean region to perform work.
Additionally, in the open region of the present embodiment, there are no doors that allow a worker, a component, and a manufacturing machine to pass through, necessary in a typical clean room. Thus, cleanliness reduction in the clean air region caused by opening of the doors does not occur and going in-and-out of a worker and carrying-in and -out of a component or the like can be always done through the open region. In a typical clean room, when the inside of the clean room is contaminated, contaminated air in the clean room is diluted with a clean air supplied to the clean room and then exhausted to gradually clean the inside of the clean room. Accordingly, it takes a couple of hours to clean the inside of a clean room when contaminated. However, in the present invention, even if the inside of the guide 3 and the inside of the open region are contaminated, a cleaned uniform air flow blown out from the air flow opening face flows in such a manner as to extrude the contaminated air from the inside of the guide to the outside thereof, so that cleaning can be performed in an extremely short time.
Additionally, in a typical clean room, the clean air supplied to the clean room is discharged from an exhaust outlet provided in the clean room or a small gap formed between a wall face and the floor of the clean room. This is because a typical clean room makes the gap as small as possible to allow the inside of the clean room to be maintained under positive pressure so as to prevent contaminated air from entering from outside. However, unlike the clean room that discharges clean air from the small gap, the present invention can form an open region as large as possible and can clean also the formed space. Accordingly, the open region can be used as a door as mentioned above or the like, as a cleaned region.
As described above, according to the local air cleaning apparatus 1 of the present embodiment, the push hood 2 provided with the guide 3 is arranged so as to be opposed to the air collision face W, whereby the inside of the guide 3 and the open region between the opening face 31 and the air collision face W can have higher cleanliness than regions outside the local air cleaning apparatus 1. In this manner, the present invention can provide the local air cleaning apparatus 1 having a simple structure.
The present invention is, however, not limited to the above embodiment and various modifications and applications can be made. Hereinafter, a description will be given of other embodiments applicable to the present invention.
In the above embodiment, the present invention has been described by exemplifying the case in which the shape of the guide 3 provided on the push hood 2 is straightly extended from the air flow opening face 23 of the push hood toward the opening face 31 of the guide. However, for example, as depicted in
In the above embodiment, the present invention has been described by exemplifying the case in which the push hood 2 includes, respectively, the nine (longitudinal three pieces×transversal three pieces) push hoods 2a connected together by a connector. However, the number of the push hoods 2a forming the push hood 2 may be 10 or more, or 8 or less. For example, the push hood 2 may include, respectively, four (longitudinal two pieces×transversal two pieces) push hoods 2a connected together by a connector. When connecting the push hoods 2a as in these examples, the air flow opening faces of the push hoods 2a are oriented in the same direction and short sides and long sides, respectively, of the mutual push hoods 2a are arranged adjacent to each other. In this case, preferably, the mutual push hoods 2a are connected together in such a manner that side faces, upper and lower faces, or both of the side faces and the upper and lower faces of the adjacent push hoods are in an airtight state, or the mutual push hoods 2a are connected together in an airtight state via a seal material such as a packing interposed between the side faces, the upper and lower faces, or both thereof of the adjacent push hoods 2a. In addition, as depicted in
The above embodiment has described the present invention by exemplifying the case in which, in the open region between the opening face 31 and the air collision face W, the upper face and both side faces are open. However, for example, as depicted in
While the above embodiment has described the present invention by exemplifying the case in which the air collision face W is flat like a wall or a partition screen, the air collision face W is not limited thereto. For example, preferably, the air collision face W has a bent portion W1 bent toward the side having the guide 3 (the push hood 2) at end portions of the air collision face W, which are near positions opposing the end portions of the opening face 31 of the guide 3, for example, at side portions of the air collision face W, as depicted in
In addition, the push hood 2 may have a structure with casters on the bottom thereof. In this case, the push hood 2 can be easily moved. Additionally, the guide 3 may be a unit of a partition with casters, which has a shape flexibly connectable to the push hood 2, where the unit may be covered with a vinyl sheet. In this case, construction work can be easy and movement of the unit can also be easy. Furthermore, the guide 3 may be formed like a vinyl house extensible in a stream direction of an air flow in a shape of bellows. In this case, the length of the guide 3 can be easily changed, the guide 3 can be easily bent, and the position of the guide 3, namely, a position for obtaining a clean space can be easily changed.
For example, when forming a clean zone in a corner of a room, a side wall face and/or the floor may be substituted for a part of the guides 3.
In addition, when a part of a conveyor-like line is arranged in a clean space, the part of the line intended to be cleaned may be entirely covered to be enclosed as in a tunnel; then, a push hood 2 may be attached so as to be connected to one end of the enclosed part of the line, whereas the other end thereof may be kept in an open state (opening face 31) to arrange the air collision face W at a position opposing the open end. In such an example, when the line is arranged along a wall, the wall can be substituted for a part of the guide 3.
Hereinafter, the present invention will be described in more detail with reference to specific Examples of the invention
Using the local air cleaning apparatus 1 depicted in
As indicated in Table 1, it was able to be confirmed that arranging the push hood 2 provided with the guide 3 in such a manner as to oppose the air collision face W allowed the inside of the guide 3 and the open region between the opening face 31 and the air collision face W to have higher cleanliness than the regions outside the local air cleaning apparatus 1. In this case, it was able to be confirmed that the power consumption was 3600 W and the noise level was 75 dB(A) in the center between the air flow opening face 23 and the air collision face W, thereby enabling the provision of a local air cleaning apparatus 1 having a simple structure.
Using the local air cleaning apparatus 1 depicted in
As indicated in Tables 2 to 10, it was able to be confirmed that even when changing the flow rate of the cleaned uniform air flow, the length b of the guide 3, and the distance X between the air flow opening face 23 of the push hood 2 and the air collision face W, the inside of the guide 3 and the open region between the opening face 31 and the air collision face W were able to have higher cleanliness than the regions outside the local air cleaning apparatus 1. In addition, in this case, it was able to be confirmed that the power consumption was 1062 to 3600 W and the noise level was 59 to 75 dB(A) in the center between the air flow opening face 23 and the air collision face W.
Using the local air cleaning apparatus 1 depicted in
As indicated in
In the present Examples and Reference Examples, cases of 300 pieces/CF or less were evaluated to be high in cleanliness. However, for example, even a case of 1000 pieces/CF or less can also be evaluated to be sufficiently high in cleanliness. In this case, when the width of the opening face is 2 m or more and less than 10 m, the inside of the guide 3 and the open region between the opening face 31 and the air collision face W can have high cleanliness by setting the distance (X-b) to be not more than a distance of 4 times the flow rate (a distance over which a uniform air flow blown out from the opening face 31 collides with the air collision face W within 4 seconds). In addition, the inside of the guide 3 and the open region between the opening face 31 and the air collision face W can have high cleanliness, when the width of the opening face is set to 1 m or more and less than 2 m, by setting the distance (X-b) to be not more than a distance of 3 times the flow rate (a distance over which the uniform air flow blown out from the opening face 31 collides with the air collision face W within 3 seconds), and when the width of the opening face is set to 0.2 m or more and less than 1 m, by setting the distance (X-b) to be not more than a distance of 2 times the flow rate (a distance over which the uniform air flow blown out from the opening face 31 collides with the air collision face W within 2 seconds).
As depicted in
As indicated in Example 11, Reference Example 1, Example 20, and Reference Example 10, it was able to be confirmed that by having the bent portion W1 bent toward the side having the guide 3 (push hood 2) at the side portions of the air collision face W, the distance between the opening face 31 and the air collision face W that can be cleaned increased to from 1.5 to 2 m, as well as the shortest distance c between the end portion of the opening face 31 and the bent portion W1 increased to 1.93 m. In addition, as depicted in Example 13, Reference Example 3, Example 21, and Reference Example 11, it was able to be confirmed that, by having the bent portion W1 bent toward the side thereof having the guide 3 at the side portions of the air collision face W, the distance between the opening face 31 and the air collision face W that can be cleaned increased to from 0.8 to 1.2 m, as well as the shortest distance c between the end portion of the opening face 31 and the bent portion W1 increased to 1.16 m. Thus, it was confirmed that, due to the arrangement of the bent portion W1 bent toward the side having the guide 3 at the side portions of the air collision face W, there can be provided a local air cleaning apparatus 1 having a simple structure and a larger clean air space can be formed.
Accordingly, the local air cleaning apparatus 1 using the air collision face W having the bent portion W1 (the nine push hoods 2a (the width of the opening face 31: 2650 mm)) was confirmed to be able to have a high cleanliness of 300 pieces/CF or less by setting the distance (X-b) between the opening face 31 of the guide 3 and the air collision face W to be not more than a distance of 6 times the flow rate (a distance over which a uniform air flow blown out from the opening face 31 collides with the air collision face W within 6 seconds).
In addition, it was confirmed that, with the local air cleaning apparatus 1 using the air collision face W having the bent portion W1, a high cleanliness of 300 pieces/CF or less can be obtained, when the number of the push hoods 2a is four (the width of the opening face 31: 1700 mm), by setting the distance (X-b) to be not more than a distance of 5 times the flow rate (a distance over which the uniform air flow blown out from the opening face 31 collides with the air collision face W within 5 seconds), and when the number of the push hoods 2a is one (the width of the opening face 31: 850 mm), by setting the distance (X-b) to be not more than a distance of 3 times the flow rate (a distance over which the uniform air flow blown out from the opening face 31 collides with the air collision face W within 3 seconds).
The present application is based on Japanese Patent Application No. 2011-166316 filed on Jul. 29, 2011, Japanese Patent Application No. 2011-196726 filed on Sep. 9, 2011, and Japanese Patent Application No. 2011-222785 filed on Oct. 7, 2011, the entire specifications, claims, and drawings of which are incorporated herein by reference.
The present invention is useful for air cleaning in a local work space.
1 Local air cleaning apparatus
2,2a Push hood
3 Guide
21 Housing
22 Air flow suction face
23 Air blowout face (Air flow opening face)
24 Air blowing mechanism
25 Higher performance filter
26 Rectification mechanism
27 Pre-filter
31 Opening face
L Width of opening face
W Air collision face
Number | Date | Country | Kind |
---|---|---|---|
2011-166316 | Jul 2011 | JP | national |
2011-196726 | Sep 2011 | JP | national |
2011-222785 | Oct 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/066032 | 6/22/2012 | WO | 00 | 8/18/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/018461 | 2/7/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3998142 | Foreman et al. | Dec 1976 | A |
4023472 | Grunder et al. | May 1977 | A |
4927438 | Mears et al. | May 1990 | A |
5326316 | Hashimoto et al. | Jul 1994 | A |
5487768 | Zytka et al. | Jan 1996 | A |
6113486 | Beudon et al. | Sep 2000 | A |
6632260 | Siemers | Oct 2003 | B1 |
9410710 | Suzuki et al. | Aug 2016 | B2 |
20040198215 | Bridenne | Oct 2004 | A1 |
20080057851 | Valkeapaa | Mar 2008 | A1 |
20120297741 | Reid et al. | Nov 2012 | A1 |
20140366498 | Suzuki et al. | Dec 2014 | A1 |
20150059298 | Suzuki et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
55-118754 | Sep 1980 | JP |
57-28225 | Feb 1982 | JP |
61-027435 | Feb 1986 | JP |
63-176943 | Jul 1988 | JP |
64-034420 | Feb 1989 | JP |
03-080951 | Apr 1991 | JP |
6-178907 | Jun 1994 | JP |
09-057033 | Mar 1997 | JP |
11-218355 | Aug 1999 | JP |
2003-31451 | Jan 2003 | JP |
2004-012038 | Jan 2004 | JP |
2004-525337 | Aug 2004 | JP |
2006-242419 | Sep 2006 | JP |
2006-242419 | Sep 2006 | JP |
2008-275266 | Nov 2008 | JP |
2008275266 | Nov 2008 | JP |
WO 9850134 | Nov 1998 | WO |
WO 2005113169 | Dec 2005 | WO |
WO 2011085735 | Jul 2011 | WO |
Entry |
---|
Canadian Second Examiner's Report dated Jan. 14, 2016, in Canadian App. No. 2,841,243. |
U.S. Appl. No. 14/347,330, filed Mar. 26, 2014. |
U.S. Appl. No. 14/131,599, filed Jan. 8, 2014. |
EESR for App. No. 12820022.7 (counterpart of U.S. Appl. No. 14/234,737) dated Feb. 23, 2015. |
EESR for App. No. 12837874.2 (counterpart application of U.S. Appl. No. 14/347,330) dated Oct. 4, 2015. |
Australian Office Action for App. No. 2012281804 (counterpart application of U.S. Appl. No. 14/131,599) dated Mar. 5, 2015. |
Australian Examination Report dated Mar. 27, 2015 in App. No. 2012319869. |
Canadian First Examiner's Report dated Apr. 2, 2015, in App. No. 2,850,285. |
Korean Office Action dated Apr. 22, 2015 in App. No. 10-2014-7007201. |
Extended European Search Report dated Feb. 23, 2015 in App. No. 12 820 022.7. |
Australian Examination Report No. 1 dated Mar. 5, 2015, in App. No. 2012291379. |
Canadian First Examiner's Report dated Mar. 26, 2015, in App. No. 2,842,895. |
Korean Office Action dated Apr. 20, 2015, in App. No. 10-2014-7001854. |
Int'l. Search Report issued in Int'l. App. No. PCT/JP2012/066032, dated Aug. 28, 2012 (with translation). |
Int'l. Search Report issued in Int'l. App. No. PCT/JP2012/066033, dated Sep. 4, 2012. |
Translation of Informal Comment submitted to WIPO dated Feb. 20, 2013. |
Int'l. Search Report issued in Int'l App. No. PCT/JP2012/066031, dated Aug. 28, 2012 (with translation). |
Extended European Search Report dated Feb. 23, 2015 in App. No. 12 811 470.9. |
Australian Examination Report No. 1 dated Mar. 6, 2015, in App. No. 2012281804. |
Canadian First Examiner's Report dated Mar. 26, 2015, in App. No. 2,841,243. |
Korean Office Action dated Apr. 16, 2015, in App. No. 10-2014-7000442. |
U.S. Appl. No. 14/131,599, filed Aug. 18, 2014. |
Number | Date | Country | |
---|---|---|---|
20150059298 A1 | Mar 2015 | US |