This application is related to a co-pending application entitled “TIGHTLY TWISTED WIRE PAIR ARRANGEMENT FOR CABLING MEDIA,” filed on Oct. 8, 2003, by the present inventors. The contents of this related application are hereby incorporated by reference.
1. Field of the Invention
The present invention relates to a cabling media employing a plurality of twisted wire pairs. More particularly, the present invention relates to a twisting scheme for the twisted wire pairs constituting the cabling media, which allows for a relatively higher bit rate transmission, and reduces the likelihood of transmission errors due to alien and internal crosstalk.
2. Description of the Related Art
Along with the greatly increased use of computers for homes and offices, there has developed a need for a cabling media, which may be used to connect peripheral equipment to computers and to connect plural computers and peripheral equipment into a common network. Today's computers and peripherals operate at ever increasing data transmission rates. Therefore, there is a continuing need to develop cabling media, which can operate substantially error-free at higher bit rates, but also satisfy numerous elevated operational performance criteria, such as a reduction in alien crosstalk when the cable is in a high cable density application.
U.S. Pat. No. 5,952,607, which is incorporated herein by reference, discloses a typical twisting scheme employed in common twisted pair cables.
Each of the wire pairs A, B, C, D has a fixed twist interval a, b, c, d, respectively. Since the first and second common cables E and J are identical in construction, each of the wire pairs F, G, H, I also has the same fixed twist interval a, b, c, d, respectively. Each of the twist intervals a, b, c, d is different from the twist interval of the other wire pairs. As is known in the art, such an arrangement assists in reducing crosstalk between the wire pairs within the first common cable E. Further, as is common in the art, each of the twisted wire pairs has a unique fixed twist interval of slightly more than, or less than, 0.500 inches. The table below summarizes the twist interval ranges for the first through eight pairs A, B, C, D, F, G, H, I:
Cabling media with the twisting scheme outlined above, such as the cabling media disclosed in U.S. Pat. No. 5,952,607, have enjoyed success in the industry. However, with the ever-increasing demand for faster data rate transmission speeds, it has become apparent, that the cabling media of the background art suffers drawbacks. Namely, the background art's cabling media exhibits unacceptable levels of Alien near end crosstalk (ANEXT), at higher data transmission rates.
To measure the ANEXT of the pairs, an industry standard testing technique making use of a vector network analyzer (VNA) was employed. Briefly, to obtain the data of
To obtain the traces t2 through t4 in the graphs of
The reference line REF of
It is an object of the present invention to provide a cabling media with improved internal and alien crosstalk performance, as compared to existing cabling media.
More specifically, it is an object of the present invention to develop a method of variation of twist length and strand length resulting in a cabling media employing multiple twisted wire pairs, wherein the variation in twist length along each of the included pairs and/or the strand length imparted on all four pairs reduces the internal and alien crosstalk levels of the cabling media.
These and other objects are accomplished by a cabling media including a plurality of twisted wire pairs housed inside a jacket. Each of the twisted wire pairs has respective twist lengths, defined as a distance wherein the wires of the twisted wire pair twist about each other one complete revolution. In this embodiment, the twist lengths of the twisted wire pairs vary along a portion of or along the entire length of the cabling media. In one embodiment, the cabling media includes four twisted wire pairs, with each twisted wire pair having its twist length varying along the length of the cabling media. The cabling media can be designed to meet the requirements of CAT 5, CAT 5e or CAT 6 cabling, and demonstrates low alien and internal crosstalk characteristics even at data bit rates of 10 Gbit/sec.
In accordance with the present invention, a cabling media, which is suitable for data transmission with relatively low crosstalk, includes a plurality of metallic conductors-pairs, each pair includes two plastic insulated metallic conductors which are twisted together. The characterization of the twisting is set by parameters such as twist length as well as core strand length/lay. For example, the twist length of one or more of the twisted wire pairs may be purposefully varied within a set range along the length of the cabling media. Further, the core strand length/lay may be purposefully varied within a set range along the length of the cabling media. Such parameters for the twist lengths and core strand length/lay are purposefully selected in order to achieve performance capabilities that significantly improve upon the alien crosstalk impairment that exists in present unshielded twisted pair (UTP) cables.
In one particular embodiment of this invention, a cable comprises as its transmission media, four twisted pair of individually insulated conductors with each of the insulated conductors including a metallic conductor and an insulation cover, which encloses the metallic conductor. The twisting together of the conductors of each pair is characterized as specifically set out herein and the plurality of transmission media are enclosed in a sheath system, which in a most simplistic embodiment may be a single jacket made of a plastic material. As a result of the particular twist scheme employed for the conductor pairs, operational performance criteria of the resulting cable is improved. Also, the cable of this invention is relatively easy to connect and is relatively easy to manufacture and install.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus, are not limits of the present invention, and wherein:
Each twisted wire pair includes two conductors. Specifically, the first twisted wire pair 3 includes a first conductor 11 and a second conductor 13. The second twisted wire pair 5 includes a third conductor 15 and a fourth conductor 17. The third twisted wire pair 7 includes a fifth conductor 19 and a sixth conductor 21. The fourth twisted wire pair 9 includes a seventh conductor 23 and an eighth conductor 25. The fifth twisted wire pair 51 includes a ninth conductor 27 and a tenth conductor 29. The sixth twisted wire pair 53 includes an eleventh conductor 31 and a twelfth conductor 33. The seventh twisted wire pair 55 includes a thirteenth conductor 35 and a fourteenth conductor 37. The eighth twisted wire pair 57 includes a fifteenth conductor 39 and a sixteenth conductor 41.
Each of the conductors 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41 is constructed of an insulation layer surrounding an inner conductor. The outer insulation layer may be formed of a flexible plastic material having flame retardant and smoke suppressing properties. The inner conductor may be formed of a metal, such as copper, aluminum, or alloys thereof. It should be appreciated that the insulation layer and inner conductor may be formed of other suitable materials.
As illustrated in
For the second twisted wire pair 5, the third conductor 15 and the fourth conductor 17 twist completely about each other, three hundred sixty degrees, at a second interval x along the length of the first cable 1. The second interval x purposefully varies along the length of the first cable 1. For example, the second interval x could purposefully vary randomly within a second range of values along the length of the first cable 1. Alternatively, the second interval x could purposefully vary in accordance with an algorithm along the length of the first cable 1.
For the third twisted wire pair 7, the fifth conductor 19 and the sixth conductor 21 twist completely about each other, three hundred sixty degrees, at a third interval y along the length of the first cable 1. The third interval y purposefully varies along the length of the first cable 1. For example, the third interval y could purposefully vary randomly within a third range of values along the length of the first cable 1. Alternatively, the third interval y could purposefully vary in accordance with an algorithm along the length of the first cable 1.
For the fourth twisted wire pair 9, the seventh conductor 23 and the eighth conductor 25 twist completely about each other, three hundred sixty degrees, at a fourth interval z along the length of the first cable 1. The fourth interval z purposefully varies along the length of the first cable 1. For example, the fourth interval z could purposefully vary randomly within a fourth range of values along the length of the first cable 1. Alternatively, the fourth interval z could purposefully vary in accordance with an algorithm along the length of the first cable 1.
The fifth through the eighth twisted wire pairs 51, 53, 55, 57 have the same purposefully varying twist intervals w, x, y, and z, because the second cable 44 is identically constructed as compared to the first cable 1. However, it should be noted that due to the randomness of the twist intervals it is remarkably unlikely that the twist intervals w, x, y, and z employed in the second cable 44 would have the same randomness of twists for the twisted wire pairs 51, 53, 5557 as the twisted wire pairs 3, 5, 7, 9 of the first cable 1. Alternatively, if the twists of the twisted wire pairs are set by an algorithm, it would remarkably unlikely that a segment of the second cable 44 having the twisted wire pairs 51, 53, 5557 cable 1 would lie alongside a segment of the first cable 1 having the same twist pattern of the twisted wire pairs 3, 5, 7, 9.
Each of the twisted wire pairs 3, 5, 7, 9, 51, 53, 55, 57 has a respective first, second, third and fourth mean value within the respective first, second, third and fourth ranges of values. In one embodiment, each of the first, second, third and fourth mean values of the intervals of twist w, x, y, z is unique. For example in one of many embodiments, the first mean value of the first interval of twist w is about 0.44 inches; the second mean value of second interval of twist x is about 0.41 inches; the third mean value of the third interval of twist y is about 0.59 inches; and the fourth mean value of the fourth interval of twist z is about 0.67 inches. In one of many embodiments, the first, second, third and fourth ranges of values for the first, second, third and fourth intervals of twisted extend +/−0.05 inches from the mean value for the respective range, as summarized in the table below:
By purposefully varying the intervals of twist w, x, y, z along the length of the cabling media 1, 44, it is possible to reduce internal near end crosstalk (NEXT) and alien near end crosstalk (ANEXT) to an acceptable level, even at high speed data bit transfer rates over the first cable 1.
The graphs of
A breakthrough of the present invention is the discovery that by the purposefully varying or modulating the twist intervals w, x, y, z, the interference signal coupling between adjacent cables is randomized. In other words, assume a first signal passes along a twisted wire pair from one end to another end of a cable, and the twisted wire pair has a randomized, or at least varying, twist pattern. It is highly unlikely that an adjacent second signal, passing along another twisted wire (whether within the same cable or within a different cable), will travel for any significant distance alongside the first signal in a same or similar twist pattern. Because the two adjacent signals are traveling within adjacent twisted wire pairs having different varying twist patterns, any interference coupling between the two adjacent twisted wire patterns is greatly reduced.
It should be noted that the interference reduction benefits of varying the twist patterns of the twisted wire pairs can be combined with the tight twist intervals disclosed in Applicants' co-pending application entitled “TIGHTLY TWISTED WIRE PAIR ARRANGEMENT FOR CABLING MEDIA,” incorporated by reference above. Under such circumstances, the interference reduction befits of the present invention are even more greatly enhanced. For example the first, second, third and fourth mean values for the first, second, third and fourth twist intervals w, x, y, z may be set at 0.44 inches, 0.32 inches, 0.41 inches, and 0.35 inches, respectively.
The present invention has determined at least one set of ranges for the values of the variable twist intervals w, x, y, z, which greatly improves the alien NEXT performance, while maintaining the cable within the specifications of standardized cables and enabling an overall cost-effective production of the cabling media. In the embodiment set forth above, the twist length of each of four pairs is purposefully varied approximately +/−0.05 inches from the respective twisted pair's twist length's mean value. Therefore, each twist length is set to purposefully vary about +/−(7 to 12) % from the mean value of the twist length. It should be appreciated that this is only one embodiment of the invention. It is within the purview of the present invention that more or less twisted wire pairs may be included in the cable 1 (such as two pair, twenty five pair, or one hundred pair type cables). Further, the mean values of the twist lengths of respective pairs may be set higher or lower. Even further, the purposeful variation in the twist length may be set higher or lower (such as +/−0.15 inches, +/−0.25 inches, +/−0.5 inches or even +/−1.0 inch, or alternately stated the ratio of purposeful variation in the twist length to mean twist length could be set at various ratios such as 20%, 50% or even 75%).
Heretofore, it was believed that it would be necessary to overall shield the twisted wire pairs 3, 5, 7, 9 within the jacket 2 in order to achieve the necessary alien NEXT reduction at the higher frequencies of data transmission. Overall shielding of the twisted wire pairs 3, 5, 7, 9 would result in an expensive cabling media and would lead to complexity in connectivity and installation. By the present invention, the jacket 2 need not include a shielding layer in order to have a reduced alien NEXT. Therefore, the cabling media of the present invention shows a vast improvement by producing a cabling media with an acceptable alien NEXT response at a lower cost than previously thought possible.
The purpose of twisting the twisted wire pairs 3, 5, 7, 9 about each other is to further reduce alien NEXT and improve mechanical cable bending performance. As is understood in the art, the Alien NEXT represents the induction of crosstalk between a twisted wire pair of a first cabling media (e.g. the first cable 1) and another twisted wire pair of a “different” cabling media (e.g. the second cable 44). Alien crosstalk can become troublesome where multiple cabling media are routed along a common path over a substantial distance. For example, multiple cabling media are often passed through a common conduit in a building.
By the present invention, the core strand length interval v is purposefully varied along the length of the cabling media. By varying the core strand length interval v along the length of the cabling media, alien NEXT is further reduced, as will be demonstrated by the graphs of
The ANEXT performance of the cable 1, constructed as set forth above, should be compared to the background art's cable performance, as illustrated in
The reduction in ANEXT of the cable 1, constructed as set forth above, can be seen in the traces t1″, t2″, t3″ and t4″. The traces t1″, t2″, t3″ and t4″ should be compared to the traces t1, t2, t3 and t4 of
As disclosed above, a cabling media constructed in accordance with the present invention shows a high level of immunity to alien NEXT, which translates into a cabling media capable of faster data transmission rates and a reduced likelihood of data transmission errors. The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are to be included within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5739473 | Zerbs | Apr 1998 | A |
Number | Date | Country |
---|---|---|
6-349344 | Dec 1994 | JP |