The present invention relates to the field of wired communication and control networks, and, more particularly, to local area networks and networks used for sensing, communication, and control.
Local area networks (LANs) for distributing data communication, sensing, and control signals are often based on a “bus” topology, as shown in
Control networks, interconnecting sensors, actuators, and DTE's also commonly use the same topology, such as the network described in U.S. Pat. No. 4,918,690 (Markkula, Jr. et al.) and shown in
Hereinafter, the term “node” is used for both control and data-communication applications.
A topology (such as bus topology) whose physical layer communication media employs multi-point connections, is not optimal for communication, and exhibits the following drawbacks:
Despite these drawbacks, however, bus topology offers two unique advantages:
1. If the application requires “broadcast” data distribution, where the data generated by a given node must be distributed to all (or a majority of) the nodes in the network, network operation is very efficient. This is because only a single network operation is required (i.e., to establish which node is the transmitter). The broadcast data is received by all other nodes in the network in parallel without additional network overhead.
The communication-related drawbacks described previously above are solved by networks constructed of multiple communication links, wherein each instance of the link communication media connects only two units in the network. Here, the physical layer in each segment is independent of other links, and employs a point-to-point connection. Data and/or messages are handled and routed using data-link layer control. One example of such system for LAN purposes is the Token-Ring, described in the IEEE 802 standard. An example of a corresponding control network is described in U.S. Pat. No. 5,095,417 to Hagiwara et al. Both networks use circular topology (“ring topology”) as illustrated in
Both the Hagiwara network and the Token-Ring network use unidirectional communication in each communication link and require a circular topology. The PSIC network described in U.S. Pat. No. 5,841,360 to the present inventor teaches a similar network where the use of a circular topology is optional, and bi-directional communication (either half-duplex or full-duplex mode) is employed in the communication links.
The above-mentioned prior art patents and networks are representative only. Certain applications are covered by more than one issued patent. Additional discussion concerning the above-mentioned topologies can be found in U.S. Pat. No. 5,841,360 entitled “Distributed Serial Control System” which issued Nov. 24, 1998, in co-pending U.S. patent application Ser. No. 09/123,486 filed Jul. 28, 1998, both I the name of the present inventor, and incorporated by reference for all purposes as if fully set forth herein.
Networks such as those illustrated in
There is thus a widely-recognized need for, and it would be highly advantageous to have, a means of implementing a network which allows for both improved communication characteristics, while also supporting broadcast discipline and fast message distribution along the network.
It is an object of the present invention to provide a local area network in which at least some of the drawbacks described above are reduced or eliminated.
To this end, the present invention provides a local area network based on nodes connected to payloads. The nodes are interconnected to form a network of half-duplex or full-duplex communication links based on electrically conducting communication media such as twisted conductor pairs or coaxial cables. Each communication link interconnects two nodes in the network. Each node is capable of being dynamically configured as a transmitter or as a receiver. In addition, however, each receiving node can also be dynamically configured to be a repeater, which simply retransmits the received data. In this way, data from one link can be repeated to all other links via an automatic multicast process. In normal operation, a specific node is selected as the data generating unit to transmit data to the network. All other nodes serve as repeaters and receivers, and hence the data is multicast instantaneously from the selected data generating node throughout the network. After completing this transmitting session, another node may be selected as the data generating node, with all other nodes serving as repeaters and receivers in a like fashion.
A network according to the present invention can also be configured in a circular topology, enabling operation to continue even when there is a malfunction or loss of a communication link
Therefore, according to the present invention there is provided a local area network for distributing data communication, sensing, and control signals, the local area network including at least three nodes having an operational mode and interconnected by at least two distinct communication links according to a topology, wherein: (a) each of the communication links has at least two electrical conductors; (b) each of the communication links connects two of the nodes in a point-to-point configuration; (c) each of the communication links is operative to communicating in the half-duplex mode; (d) at least one of the nodes is connected to a payload; (e) at least two of the nodes have the operational mode selectable as a data-generating operational mode; (f) at least one of the nodes has the operational mode selectable as a repeating operational mode; and wherein the local area network has a state selectable from a group of at least two distinct states, wherein each state is characterized by having a single selected one of the nodes in the data-generating operational mode, with the remainder of the nodes in operational modes selected from a group containing the receiving operational mode and the repeating operational mode.
In order to understand the invention and to see how it may be carried out in practice, some preferred embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
a, 5b, 5c, and 5d show different possible states of a node according to the present invention.
a and 9b show different possible states of a node in circular topology network according to the present invention.
The principles and operation of a network according to the present invention may be understood with reference to the drawings and the accompanying description. The drawings and descriptions herein are conceptual only. In actual practice, a single circuit can implement one or more functions; alternatively, each function can be implemented by a plurality of components and circuits. In the drawings and descriptions, identical reference numerals indicate those components that are common to different embodiments or configurations.
Node 40 contains the following functional blocks:
A node can be stand-alone or integrated into the payload. For example, in the case of personal computer, the node can be housed within the computer enclosure as an add-on card.
a and 5b describe the various repeater/router functions by means of the possible states of a repeater/router during normal operation. As shown in
Similarly,
Whereas
Nodes 62, 63, 64, 65 and 66 are all the based on node 40 as described previously. Nodes 62, 65, and 66 are in ‘Right to Left’ state as illustrated in Figure. 5b, whereas node 64 is in ‘Left to Right’ state, as illustrated in
While the network is functioning, the current operational mode of a node is selectable from the available operational modes. Some operational modes may be mutually exclusive, while others may be selected simultaneously. For example, the data-generating operational mode is exclusive of the repeating operational mode, whereas the receiving operational mode may be selected at the same time as the repeating operational mode.
In most applications, more than one node can serve as a data-generating node at different times. In such a case, the network states will be changed as a function of time according to predetermined logic and control, in order to allow each data generating node an opportunity to transmit. However, no more than single node can serve as data-generating node at a time. While a node is serving as data-generating node, all other nodes states are accordingly set to be repeaters and/or receivers, to allow for data distribution along the network. Nodes located ‘left’ of the data generating node will be in a ‘right to left’ state, while nodes located ‘right’ of the data-generating node will be in a left to right' state.
It should be clear that, whereas the nodes at the network ends, the ‘left-most’ node 62 and the ‘right-most’ node 64 could use the same structure as shown in
It should also be clear that one or more of the nodes in the network need not be connected to a payload, as is illustrated for node 65 in
When the same wires are used for both communication and power, the node 40 should be modified to include a power/data combiner/splitter 71 as shown in
While the foregoing description applies the present invention to a linear topology, the present invention can also be implemented using a circular topology for ‘ring’ type networks. In one embodiment, both ends of the network are connected to a node which is configured to receive from both sides, hence including two receivers. However,
For compactness,
As described above, the operation of the network (either bus or circular topology) switches from state to state. Each state is characterized by having a specific node functioning as data-generating node at a time, while all other nodes serve as repeaters and receivers, routing the data coming from the data-generating node. Hence, there is a need for a network controller to determine which node in the network will be the data-generating node.
Various techniques can be used to implement such a network controller. The network controller can select nodes sequentially, by means of token passing from node to node (similar to that of the Token-Ring network). The network controller can be external to the network, using dedicated communication media. Preferably, the network controller will be embedded and will manage the network states via signals transported by the network itself. In most cases, each node should be allocated an address, enabling data routing in the network from arbitrary node to arbitrary node.
Another popular method of network discipline is ‘master/slave’ operation. In another embodiment of the present invention, one of the nodes will be designated as the master node. In the initial state, this node serves as the data-generating node, and while in this state directs other nodes to transmit. During the following state the selected node will serve as the data-generating node. This two-state sequence will be repeated, with a different node selected to be the data-generating node in each subsequent cycle, according to predetermined logic or under external control.
The network taught by U.S. Pat. No. 5,841,360 to the present inventor, herein referred to as the “PSIC Network”, employs multiple communication links, independent of each other. Such a network supports several features which are not available in the previously-described network, such as automatic addressing, fault localization, and circular topology redundancy in the case of single failure.
In order to exploit the benefits of both these network types it is possible to construct a network which supports both disciplines, and can be controlled to be either in one discipline or in the other. For example, the network may start as PSIC Network. During this start-up period, automatic addressing and fault localization will be performed. Thereafter, the network may configure itself to work according to this application or may use time-sharing and alternately switch between both configurations.
In the ‘transmit both sides’ state, transmitter 45a transmits to both ports using line drivers 44a and 44a1, implementing the functionality shown in
The ‘transmit right receive left’ state reflects the state shown in
In the ‘transmit/receive both sides’ state, the node can receive and transmit in both interfaces simultaneously, thus implementing the full PSIC Network functionality.
Nodes with More than Two Line Connections
Whereas the foregoing discussion describes a node having two line couplers (which may be reduced to single interface in the case of end-unit in a network employing ‘bus’ topology), it is obvious that three or more such interfaces could also be used. In such a case, at least one additional repeater/router must be added for each additional interface. For example,
Similarly, additional interfaces can be used. Furthermore, a network can employ nodes of different interface capacities, which can be freely connected to construct a network of arbitrary topology. In all cases, the basic rule that each communication link connect only two nodes must be observed. Furthermore, the network logic embedded in the nodes has to insure that no more than a single node generates data, while all others must be in the transparent repeater/router state, directed from the data-generating node.
Implementation. Implementing any of the above schemes is straightforward for anyone skilled in the art. In one embodiment, RS-485 (EIA-485) is employed for the physical layer. In such a case, line driver 44a and line receiver 44b are directly implemented using a common RS-485 line driver or line receiver, respectively. Similarly, the switches illustrated in
Repeaters and regenerators are known in both prior-art WAN (Wide Area Network) and LAN (Local area network) systems, mainly for the purpose of allowing operation over lengthy connections. However, there are major differences between those networks and the present invention. First, most prior-art repeaters employ single input and single output. The present invention allows for multiple ports. Second, prior-art repeaters are unidirectional, while the present invention is not restricted to a specific direction of data flow. Additionally, the present invention requires a control mechanism (a network controller) for determining the data flow direction, whereas prior-art systems, being unidirectional, do not require such control. In most prior-art networks, units in the network can be clearly defined as either payload-associated units or dedicated repeaters. Such a distinction is not valid when implementing a network according to the present invention, since each payload-associated unit in the network also includes the repeater functionality.
Although a network according to the present invention, when configured in circular topology, can be superficially similar to a Token-Ring network, there are major differences between them. In a Token-Ring network, there is a single constant direction of data flow. The present invention does not impose single direction of data flow, but the flow may change as part of the network operation. In addition, in
Token-Ring networks the data-generating unit is sequentially allocated according to the network topology. In the present invention, the data-generating node need not be chosen according to any specific rule, although sequential selection of the data-generating node is possible.
While the invention has been described with respect to a limited number of embodiments, it will be appreciated that many variations, modifications and other applications of the invention may be made.
This is a continuation of U.S. application Ser. No. 13/351,874, filed Jan. 17, 2012; itself a continuation of U.S. application Ser. No. 11/438,259, filed May 23, 2006, now U.S. Pat. No. 8,121,132, issued on Feb. 21, 2012; itself a division of grandparent application Ser. No. 11/190,884, filed Jul. 28, 2005, now U.S. Pat. No. 7,200,152, issued on Apr. 3, 2007; which is a continuation of Ser. No. 09/349,020, filed Jul. 7, 1999, now U.S. Pat. No. 6,956,826 issued on Oct. 18, 2005.
Number | Date | Country | |
---|---|---|---|
Parent | 11190884 | Jul 2005 | US |
Child | 11438259 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13351874 | Jan 2012 | US |
Child | 14064442 | US | |
Parent | 11438259 | May 2006 | US |
Child | 13351874 | US | |
Parent | 09349020 | Jul 1999 | US |
Child | 11190884 | US |