Certain intestinal disorders are investigated with small devices the size of a pill, that transmit pressure readings as they progress through intestines. A receiver is located near a person swallowing the pill to receive the transmitted pressure readings. A general idea of the pressures generated as the pill progresses is obtained, but information as to the relative position of the pill in the intestines is not known. Electromagnetic waves have been used to attempt to track the pill more precisely, but the conductivity of the body can interfere with such waves. At best, a one foot resolution may be obtained in this manner. There is a need for higher precision.
A device includes a microphone for receiving multiple acoustic signals transmitted by external transmitters. A transducer coupled to the microphone converts received acoustical energy into an electrical signal. A transmitter is coupled to the transducer for broadcasting signals representative of a phase difference between the multiple acoustic signals received by the microphone, thereby providing information from which the position of the device may be determined.
In one embodiment, position tracking of a receiving device within a gas or fluidic environment (for example a human body), is performed by measuring acoustic wave propagation parameters to provide real time, high precision telemetry. Multiple synchronized acoustic sources at different known locations transmit signals that are received by a receiver on the device to be located. The coordinates of the receiver can be determined by measuring a difference in the amplitude (coarse positioning) or phase (precise positioning) of the acoustic waves coming from different sources using triangulation calculations.
In one embodiment, all the sources are externally synchronized and only the difference in the wave propagation delay time at the receiver location is to be measured (by comparing, for example, the phase of binary signal sequence modulating the carrier acoustic wave). Such a differential scheme eliminates the necessity to have a precise clock located at the receiver and greatly simplifies signal processing to be performed at the receiver. That leads to substantial miniaturization of the device and reduction of the power consumption, essential for numerous medical applications (e.g. implanted medical device IMD). Intermittent or periodic transmission rates can further reduce power consumption.
In the following description, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific embodiments which may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that structural, logical and electrical changes may be made without departing from the scope of the present invention. The following description is, therefore, not to be taken in a limited sense, and the scope of the present invention is defined by the appended claims.
The functions or algorithms described herein are implemented in software or a combination of software and human implemented procedures in one embodiment. The software comprises computer executable instructions stored on computer readable media such as memory or other type of storage devices. The term “computer readable media” is also used to represent carrier waves on which the software is transmitted. Further, such functions correspond to modules, which are software, hardware, firmware or any combination thereof. Multiple functions are performed in one or more modules as desired, and the embodiments described are merely examples. The software is executed on a digital signal processor, ASIC, microprocessor, or other type of processor operating on a computer system, such as a personal computer, server or other computer system.
Position tracking of a receiving device within a gas or fluidic environment (for example a human body), is performed by measuring acoustic wave propagation parameters to provide real time, high precision telemetry. Multiple synchronized acoustic sources at different known locations transmit signals that are received by a receiver on the device to be located. The coordinates of the receiver can be determined by measuring a difference in the amplitude (coarse positioning) or phase (precise positioning) of the acoustic waves coming from different sources using triangulation calculations.
In one embodiment as shown generally at 100 in
I1(t)=10 sin ((ω1+ωm(t))t) I2(t)=I20 sin ((ω2+ωm(t))t)
A microphone 120 is located on a device such as a receiver 125 located inside a medium, such as a body, is tuned to receive the modulated carrier signals. These signals will be phase shifted (φ1, φ2) relative to each other and attenuated due to a difference in distance between the receiver and generators. Within the medium, propagation velocity differences in different materials, such as organs and tissues, are negligible (and in some cases can be accounted for) leading to minimal parasitic phase delay of the acoustic signal.
R1(t)=A1I10 sin((ω1+ωm(t))t+φ1) R2 (t)=A2I20 sin((ω2+ωm(t))t+φ2)
Where A1 and A2 are attenuation of the acoustic waves, determined by the travel distance and properties of the media. The microphone 120 or transducer on the receiver 125 converts received acoustical energy into an electrical signal, and after amplification, rebroadcasts the signals using, for example, an RF transmitter 130 or other type of communication channel.
External signal processing 140 or triangulator, such as a demodulator and phase comparator, is used to demodulate the rebroadcast signals in order to determine the phase difference φ2−φ1 and discern the propagation distance difference between the two signal generators 110, 115 and the internal receiver 125. The demodulator and phase comparator may be implemented by software or firmware, or a combination of the two, and may be implemented on an ASIC or other hardware device.
In one embodiment a programmable delay may be introduced in one of the acoustic generators 110, 115 (according to measured φ2−φ1) to compensate the difference in propagation time and to provide exact in-phase arrival of the signals to the receiver. Delay time (equal to difference in propagation time) is used to calculate the difference in distance between the receiver and each of the sources.
In order to determine three dimensional resolution as well as velocity and acceleration measurements, several pairs of acoustic signal generators 210, 215, 220, 225, 230 and 235 as seen in
A block diagram of an example receiver 125 is shown in
The receiver 125 in one embodiment comprises a sensor 330, such as a pressure sensor, temperature sensor, acidity sensor or other type of sensor. The sensor is also coupled to the transmitter, which transmits signals representative of a sensed parameter, such as pressure, temperature or pH. In one embodiment, line 310 comprises an upconverter for converting signals into a MHz range signal for transmission. Line 310 may also contain circuitry that provides for intermittent transmission, such as at one minute intervals or other desired interval to save battery life. Line 310 may also comprise a receiver for receiving external commands. For instance, such commands may initiate transmission of information, may change the interval of transmission, or may be used to stop transmission. Other commands may be implemented as desired.
Line 310, when comprising circuitry, may contain computer-readable instructions stored on a computer-readable medium that are executable by a processing unit of the computer or other instruction executing circuitry.
In yet a further embodiment, a portion of the pill may comprise a compartment of desired volume 340. The compartment may contain a therapeutic substance such as a medication or other type of substance, such as a diagnostic marker or other material that is releasable by command, or at a predetermined time by actuation of a latch, also represented at 340.
The Abstract is provided to comply with 37 C.F.R. §1.72 (b) to allow the reader to quickly ascertain the nature and gist of the technical disclosure. The Abstract is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Position tracking of a receiving device within a gas or fluidic environment (for example a human body), is performed by measuring acoustic wave propagation parameters to provide real time, high precision telemetry. Multiple synchronized acoustic sources at different known locations transmit signals that are received by a receiver on the device to be located. The coordinates of the receiver can be determined by measuring a difference in the amplitude (coarse positioning) or phase (precise positioning) of the acoustic waves coming from different sources using triangulation calculations.
All the sources are externally synchronized and only the difference in the wave propagation delay time at the receiver location is to be measured (by comparing, for example, the phase of binary signal sequence modulating the carrier acoustic wave). Such a differential scheme eliminates the necessity to have a precise clock located at the receiver and greatly simplifies signal processing to be performed at the receiver. That leads to substantial miniaturization of the device and reduction of the power consumption, essential for numerous medical applications (e.g. implanted medical device IMD).
This differential principle of telemetry can be expanded if different kind of waves, with different propagation speeds are employed. For example, supplementary to the acoustic waves, an electromagnetic radio frequency (E&M RF) communication channel can be established between the sources and the device. The distance between each source and the device can be measured by detecting the difference in propagation time between the acoustic and E&M waves.
Acoustic sources/receiver can operate in far-field mode, which greatly expands the area and simplifies signal analysis. For many applications the size of the hydrophone (determined by the acoustic wavelength) can be in the millimeter or even sub-millimeter range.
This application is a Continuation Under 35 U.S.C. § 1.111(a) of International Application No. PCT/US2004/027163, filed Aug. 20, 2004 and published in English as WO 2005/019860 on Mar. 3, 2005, which claims priority to U.S. Provisional Application Ser. No. 60/496,450, filed Aug. 20, 2003, which applications are incorporated herein by reference.
The invention described herein was made with U.S. Government support under Grant Number DMR0079992 awarded by the National Science Foundation. The United States Government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
60496450 | Aug 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US04/27163 | Aug 2004 | US |
Child | 11358675 | Feb 2006 | US |